JPS61145410A - Position surveying apparatus of moving body - Google Patents

Position surveying apparatus of moving body

Info

Publication number
JPS61145410A
JPS61145410A JP26645684A JP26645684A JPS61145410A JP S61145410 A JPS61145410 A JP S61145410A JP 26645684 A JP26645684 A JP 26645684A JP 26645684 A JP26645684 A JP 26645684A JP S61145410 A JPS61145410 A JP S61145410A
Authority
JP
Japan
Prior art keywords
image
image sensor
moving body
marks
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26645684A
Other languages
Japanese (ja)
Inventor
Masanori Tajima
田島 昌則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Penta Ocean Construction Co Ltd
Original Assignee
Penta Ocean Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Penta Ocean Construction Co Ltd filed Critical Penta Ocean Construction Co Ltd
Priority to JP26645684A priority Critical patent/JPS61145410A/en
Publication of JPS61145410A publication Critical patent/JPS61145410A/en
Pending legal-status Critical Current

Links

Landscapes

  • Navigation (AREA)

Abstract

PURPOSE:To enable positive and accurate surveying operation of a position of a ship, by projecting simultaneously an image of each mark onto image sensors using a lens system. CONSTITUTION:A position surveying apparatus 11 of a moving body is laid on an operation ship 15 and marks 17, 19, 21 set on the ground are sighted from a moving operation site range 13. By this arrangement, images developed of the marks 17, 19, 21 on the image sensor 31 are converted to electric signals and they are emitted as image signals corresponding to luminous intensity levels and become binarized image signals after comparison with the threshold values by the initial processing means 35. By the image signals corresponding to each mark 17, 19, 21, each center of gravity (d), (e), (f) is obtained by an image processing and calculating means 37. The calculating means 37 processes arithmetically deviation of these values from the center point (g) on the sensor 31 and that (e) of the central line 19 and included angles alpha, beta between marks 17, 19 and those between marks 19, 21 are obtained. Here, the calculating means 37 transmits a signal to an automatic colimation mechanism 41 in such a way that a deviation of the center point (g) on the sensor 31 from the center of gravity (e) of the mark 19 may be minimized and the optical axis of a lens 33 is adjusted and the co-ordinate informations of the ship position are obtained by processing the included angles alpha, beta by the calculating means 37.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、作業船の船位の測量等に用いる移動体の位置
測量装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a position surveying device for a moving body used for surveying the position of a work boat, etc.

(従来の技術) 従来1作業船の船位等の測量は光学機器を用いて次のよ
うに行われるのが一般的であった。即ち、陸上の既知の
位置に少なくとも3つの標を六分儀で規準し、各標相互
間の挟角を求めて三角測量の三点両角測定して船位を特
定する方法、反射鏡による規準標からの反射測距光を利
用して光波測距儀で各規準標までの距離を測定して船位
を特定する方法等である。
(Prior Art) Conventionally, the position of a work boat, etc. has generally been measured using optical equipment as follows. In other words, there is a method of determining the ship's position by using a sextant to measure at least three markers at known positions on land, finding the included angle between each marker, and measuring both sides of the three points in triangulation. This method uses reflected distance measuring light to measure the distance to each reference standard with a light wave range finder to determine the ship's position.

(発明が解決しようとする問題点) しかしながら、前者の船位測量方法では、各標相互間の
挟角を同時に測定するものではないため。
(Problems to be Solved by the Invention) However, the former ship positioning method does not simultaneously measure the included angle between each marker.

作業船の移動あるいは動揺によって各標相互間の挟角に
測定誤差が生じ易く、また、後者の方法では規準標とし
ての反射鏡からの反射距離光を受けて測距するものであ
るため、光波測距儀に自動規準装置を装備しておいても
、光波測距儀から発せられる測距光が狭い発散角のため
1作業船の移動あるいは同様によって測距光が反射鏡か
ら外れ、自動規準にて反射鏡をとらえる間は測距動作が
できなくなり、すなわち連続した測距ができないという
問題点があった。
Measurement errors are likely to occur in the included angle between each standard due to the movement or oscillation of the workboat, and the latter method measures distance by receiving reflected distance light from a reflector serving as a reference standard, so light waves cannot be measured. Even if the rangefinder is equipped with an automatic reference device, the distance measurement light emitted from the light wave rangefinder has a narrow divergence angle, so the distance measurement light may come off the reflector due to the movement of a work boat or something similar, resulting in automatic reference. There was a problem in that distance measurement could not be performed while the reflector was being captured by the camera, that is, continuous distance measurement could not be performed.

本発明は、これらの点に着目してなされたもので、船位
の測量作業が確実に行え、測定誤差も小さな移動体の位
置測量装置を提供せんとするものである。
The present invention has been made with attention to these points, and it is an object of the present invention to provide a position surveying device for a moving body that can perform ship position surveying work reliably and has small measurement errors.

(問題点を解決するための手段) そのため、本発明では、移動体の位置測量装置を、多数
の受光素子が格子状に配列されたイメージセンサと、既
知の位置に設置された少なくとも3つの標の像を前記イ
メージセンサ上に投影するレンズ系と、前記イメージセ
ンサから出力される前記投影された各棟の像の光度レベ
ルに対応する画像信号を明暗パターンに二値化した画像
信号に変換する初期処理手段と、この初期処理手段が出
力する二値化画像信号に基づいて前記各標相互間の挟角
を算術的に求め、この各挟角に三角測量の三点両角法に
よる演算を施して移動体の位置を特定する画像処理演算
手段とによって構成したものである。
(Means for Solving the Problems) Therefore, in the present invention, a position measuring device for a moving object is equipped with an image sensor in which a large number of light receiving elements are arranged in a grid pattern, and at least three markers installed at known positions. a lens system that projects an image of the building onto the image sensor, and converts an image signal corresponding to the luminous intensity level of the projected image of each building output from the image sensor into an image signal that is binarized into a bright and dark pattern. an initial processing means, and arithmetically determines the included angle between each of the marks based on the binary image signal outputted by the initial processing means, and calculates each included angle by the three-point diagonal method of triangulation. and image processing calculation means for specifying the position of the moving object.

(作用) このように構成された本発明の移動体の位置測量装置で
は、陸上の既知の位置に設置された3つの標をイメージ
センサ上にレンズ系によって同時に結像させ、イメージ
センサ上に投影された前記各棟の像を初期処理手段1画
像処理演算手段等で処理するもので、イメージセンサ上
に投影された各棟の像対応のレベル画像信号を初期処理
手段によって明暗パターンに二値化した画像信号に変換
し、画像処理演算手段によってこの二値化画像信号から
各標相互間の挟角を算術的に求め、この各挟角に三角測
量の三点両角法による演算を施して移動体の位置を特定
するものであり、レンズ系を用いて各棟の像を同時にイ
メージセンサ上に投影するものであるため1作業船の多
少の移動、動揺等によっては各棟の像がイメージセンサ
の有効視野外に外れてこれを見失ってしまうようなこと
はほとんどなく、これによって船位の測量作業は容易と
なり、さらに、各棟の像はイメージセンサ上で同時に観
測されるものであるので1作業船の移動、動揺等に基づ
く誤差も小さな、移動体の位置測量装置の提供を可能に
したものである。
(Function) In the mobile object positioning device of the present invention configured as described above, three targets installed at known positions on land are simultaneously imaged on the image sensor by the lens system, and projected onto the image sensor. The image of each building is processed by the initial processing means 1 image processing calculation means, etc., and the initial processing means binarizes the level image signal corresponding to the image of each building projected onto the image sensor into a bright and dark pattern. The included angle between each mark is calculated from this binary image signal using an image processing calculation means, and the included angle is calculated by the three-point double angle method of triangulation to move the target. This system identifies the position of the body, and uses a lens system to simultaneously project the images of each building onto the image sensor, so depending on the slight movement or oscillation of the work vessel, the image of each building may not be displayed on the image sensor. There is almost no chance of losing sight of the ship because it is out of the effective field of view, which makes the work of surveying the ship's position easier.Furthermore, since the images of each building are observed simultaneously on the image sensor, one task is easy. This makes it possible to provide a positioning device for a moving object that has small errors due to ship movement, oscillation, etc.

(実施例) 次に、本発明の実施の一例を図面を参照しながら説明す
る。第1図は本発明に係る移動体の位置測量装置の一実
施例を示す概略構成図、第2図はこの移動体の位置測量
装置と3つの標との位置関係を示す説明図である1図面
において、11は海上の作業移動区域13内に浮ぶ作業
船15に設備された移動体の位置測量装置であり、17
,19゜21は陸上に設置された標である。ここで、こ
の標17.19.21は、例えばハロゲンランプ等のバ
ックグランドの光に対して充分に判別可能な輝度をもつ
光源を備えていて、100〜1000m程度の間隔をも
って水平に設置されており、その設置位置は正確に把握
されている。
(Example) Next, an example of implementation of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram showing an embodiment of a position measuring device for a moving body according to the present invention, and FIG. 2 is an explanatory diagram showing the positional relationship between the position measuring device for a moving body and three markers. In the drawing, 11 is a positioning device for a mobile body installed on a work boat 15 floating in a work movement area 13 on the sea;
, 19°21 is a marker installed on land. Here, this marker 17.19.21 is equipped with a light source, such as a halogen lamp, that has enough brightness to distinguish against background light, and is installed horizontally at intervals of about 100 to 1000 m. and its installation location is accurately known.

また、31はイメージセンサ、33はレンズ系、35は
初期処理手段、37は画像処理演算手段。
Further, 31 is an image sensor, 33 is a lens system, 35 is an initial processing means, and 37 is an image processing calculation means.

39は表示器、41は自動視準機構であり、前記移動体
の位置測量装置11はこれらによって形成されている。
39 is a display, 41 is an automatic collimation mechanism, and the position measuring device 11 of the moving body is formed by these.

イメージセンサ31は無数の微小なフォトダイオード4
3を平面上に高密度に格子配列したもので第3図にその
詳細を示す。レンズ系33はこのイメージセンサ31の
前面に配置され、その水平視野の角度θはイメージセン
サ31の有効視野内にカバーされている。従って、この
レンズ系33の水平視野内の3つの標17,19.21
は確実にイメージセンサ31上に投影され、各標17,
19.21相互間の挟角α、βは夫々イメージセンサ3
1の水平方向のフォトダイオード43の数にほぼ対応付
けられる。自動視準機構41は、このとき中央の標19
の像が常時イメージセンサ31のほぼ中央に結像するよ
うにレンズ系33の光軸を調整する如く作用する。
The image sensor 31 is made up of countless tiny photodiodes 4
3 are arranged in a high-density lattice arrangement on a plane, and the details are shown in FIG. The lens system 33 is arranged in front of the image sensor 31, and its horizontal field of view angle θ is covered within the effective field of view of the image sensor 31. Therefore, the three marks 17, 19, 21 within the horizontal field of view of this lens system 33
is reliably projected onto the image sensor 31, and each mark 17,
19.21 The included angles α and β are the image sensor 3, respectively.
This approximately corresponds to the number of photodiodes 43 in the horizontal direction of 1. At this time, the automatic sighting mechanism 41
The lens system 33 functions to adjust the optical axis of the lens system 33 so that the image thereof is always formed approximately at the center of the image sensor 31.

イメージセンサ31はこのようにして投影された各棟1
7,19,21の像を各フォトダイオード43毎に電気
信号に変換し、光度レベルに対応する画像信号としてこ
れを送出する。ここで、レンズ系33の水平視野角θを
90″とし、イメージセンサ31の有効視野角の水平方
向に配列されたフォトダイオード43の数を2000個
とすれば、各標相互の挟角の分解能は約0.045°と
なる。
The image sensor 31 detects each building 1 projected in this way.
Images 7, 19, and 21 are converted into electrical signals for each photodiode 43, and sent out as image signals corresponding to the luminous intensity level. Here, if the horizontal viewing angle θ of the lens system 33 is 90'' and the number of photodiodes 43 arranged in the horizontal direction of the effective viewing angle of the image sensor 31 is 2000, then the resolution of the included angle between each target is is approximately 0.045°.

また、前記初期処理手段35と画像処理演算手段37と
は1つのマイクロコンピュータによって実現されており
、初期処理手段35は前記イメージセンサ81より出力
される各棟17,19,21の像の光度レベルに対応す
る画像信号を所定の閾値と比較して明・暗、即ちオン・
オフニ値の二値化画像信号に変換する。この初期処理手
段35は前記閾値を各棟17,19,21の出す光とそ
れ以外のバックグランドの光とが常に明瞭に判別出来る
ような値に自動的に調整する機能を備えている。この閾
値の自動調整は後述する画像処理演算手段37よりフィ
ードバックされる補正信号によって行われる。
Further, the initial processing means 35 and the image processing calculation means 37 are realized by one microcomputer, and the initial processing means 35 is implemented by the luminous intensity level of the image of each building 17, 19, 21 output from the image sensor 81. The image signal corresponding to the
Convert to an off-value binary image signal. This initial processing means 35 has a function of automatically adjusting the threshold value to a value such that the light emitted by each building 17, 19, 21 and other background light can always be clearly distinguished. This automatic adjustment of the threshold value is performed by a correction signal fed back from an image processing calculation means 37, which will be described later.

画像処理演算手段37はこの初期処理手段35で処理さ
れたこ値化画像信号に基づいて、各棟17.19,21
の像の相互間のフォトダイオードの数から夫々の挟角α
、βを算術的に求め、この各挟角α、βと各棟17,1
9,21の位置情報に三角測量の三点両角法による演算
を施して作業船15の船位を海上の作業移動区域13内
に特定する。この船位の座標情報は表示器39へ送られ
て表示される。また、このとき、前記自動視準機構41
の制御信号および初期処理手段35の閾値の補正信号も
同時に演算されて、自動視準機構41あるいは初期処理
手段35ヘフイードバツクされる。
The image processing calculation means 37 calculates each building 17, 19, 21 based on the value converted image signal processed by the initial processing means 35.
From the number of photodiodes between the images of
, β are calculated arithmetically, and each included angle α, β and each building 17, 1
The position information of 9 and 21 is subjected to calculation using the three-point diagonal method of triangulation to specify the position of the work boat 15 within the work movement area 13 on the sea. This ship position coordinate information is sent to the display 39 and displayed. Also, at this time, the automatic aiming mechanism 41
The control signal and the threshold correction signal of the initial processing means 35 are also calculated at the same time and fed back to the automatic collimation mechanism 41 or the initial processing means 35.

このようにして構成された移動体の位置測量装置11は
、作業船15に積載されて作業移動区域13内より、陸
上の所定の位置に設置された標17.19.21を規準
する。その結果イメージセンサ31上に結像した標17
,19.21の像は、電気信号に変換されて光度レベル
に対応する画像信号として出力される。この光度レベル
に対応する画像信号は初期処理手段3Sで閾値と比較さ
れて二値化画像信号となる。各棟17,19,21の像
に対応した画像信号は第3図に黒点で表示する如くある
程度の広がりのあるエリアa、b、cとして抽出される
ため、画像処理演算手段37は最小自乗法等の統計的手
法を用いて夫々の重心点d、e、fを求める。このとき
前述のエリアが大きすぎたり一1標17,19,21以
外のものが抽出されている場合、あるいは各標17,1
9.21全てが抽出できない場合には前記閾値を自動的
に調節するための補正信号を初期処理手段35ヘフイー
ドバツクする。
The mobile body position surveying device 11 configured in this manner is loaded onto a work boat 15 and measures a reference mark 17, 19, or 21 installed at a predetermined position on land from within the work movement area 13. As a result, the target 17 is imaged on the image sensor 31.
, 19.21 is converted into an electrical signal and output as an image signal corresponding to the luminous intensity level. The image signal corresponding to this luminous intensity level is compared with a threshold value by the initial processing means 3S and becomes a binary image signal. Since the image signals corresponding to the images of each building 17, 19, and 21 are extracted as areas a, b, and c that have a certain extent as shown by the black dots in FIG. The center of gravity points d, e, and f are determined using statistical methods such as the following. At this time, if the area mentioned above is too large, or if marks other than 11 marks 17, 19, and 21 are extracted, or if each mark 17, 1
9. If all of the threshold values cannot be extracted, a correction signal for automatically adjusting the threshold value is fed back to the initial processing means 35.

画像処理演算手段37は、こうして求めた各棟17.1
9,21の像の重心点d、e、fと、イメージセンサ3
1上の中心点gと中央の標19の重心点eとのずれとを
算術的に処理することで標17.19問および標19,
21間の挟角α、β、。、ユ、1、イユニ、ヤッヶ、□
よ。や7゜点gと中央の標19の重心点eとのずれが大
きくなると、得られる挟角α、βに誤差が生じるため、
画像処理演算手段37は自動視準機構41に信号を送っ
て前述のずれが小さくなるようにレンズ系33の光軸を
調整する。画像処理演算手段37はさらに、こうして求
めた挟角α、βに、三角測量の三点両角法による演算を
施し1作業船の船位の座標情報を得る。この座標情報は
表示器39へ送られて表示される。
The image processing calculation means 37 calculates each building 17.1 obtained in this way.
Center of gravity points d, e, f of images 9 and 21 and image sensor 3
Question 17.19 and mark 19,
The included angles α, β, between 21. , Yu, 1, Iuni, Yakga, □
Yo. If the deviation between the 7° point g and the centroid point e of the central marker 19 becomes large, errors will occur in the obtained included angles α and β.
The image processing calculation means 37 sends a signal to the automatic collimation mechanism 41 to adjust the optical axis of the lens system 33 so that the above-mentioned deviation is reduced. The image processing calculation means 37 further performs calculations on the included angles α and β obtained in this way using the three-point diagonal method of triangulation to obtain coordinate information of the position of one work boat. This coordinate information is sent to the display 39 and displayed.

以上図示の実施例に従って詳細に説明したが、本発明は
これにのみ限定されるものではなく、海上での作業船の
船位測量のみならず、陸上で移動する作業台車等の位置
測量にも適応可能であり。
Although the present invention has been described in detail according to the illustrated embodiment, the present invention is not limited thereto, and is applicable not only to the positioning of work boats on the sea but also to the positioning of work carts etc. moving on land. It's possible.

構成上でも種々のバリエーションを含むものである0例
えば、イメージセンサの受光素子としてフォトダイオー
ド以外にCOD、BBD等を用いたものであってもよく
、また、初期処理手段と画像処理演算手段とを別々の専
用ハードウェアで構成してもよい、さらに、標もレーザ
ー等のコヒーレントな光を用い、レンズ系に偏光フィル
タを配置して異なる偏波面でのデータを採って処理すれ
ば。
For example, the image sensor may include a COD, BBD, etc. in addition to a photodiode as a light receiving element of the image sensor, and the initial processing means and image processing calculation means may be separated from each other. It may be constructed with dedicated hardware, or if the marker uses coherent light such as a laser and a polarizing filter is placed in the lens system to collect and process data at different polarization planes.

極めて輝度の高いノイズ光があっても標の像と確実に弁
別できる。また、初期処理手段における閾値の調整もそ
の日の天候1時刻等のバックグランドの照度を参酌して
手動で調節してもよい、さらに、別途方法で移動体の位
置測量装置全体を標の方向に向けることができれば、レ
ンズ系の自動視準機構を割愛することも可能である。
Even if there is extremely high brightness noise light, it can be reliably distinguished from the target image. In addition, the threshold value in the initial processing means may be adjusted manually by taking into account the background illuminance such as the weather and time of the day. If it is possible to direct the lens, it is also possible to omit the automatic collimation mechanism of the lens system.

(発明の効果) 本発明は以上の様に構成され、レンズ系を用いて各棟の
像を同時にイメージセンサ上に投影するものであるため
、作業船の多少の移動、動揺等によっては各棟の像がイ
メージセンサの有効視野外に外れてこれを見失ってしま
うようなことはほとんどなくなり、船位の測量作業は極
めて容易なものとなり、さらに、各棟の像はイメージセ
ンサ上で同時に観測されるものであるため1作業船の移
動、動揺等に基づく誤差もほとんどなくすることができ
る等の優れた効果が得られる。
(Effects of the Invention) The present invention is constructed as described above, and uses a lens system to simultaneously project images of each building onto the image sensor. It is almost impossible for the image of the ship to fall outside the effective field of view of the image sensor and be lost, making the work of surveying the ship's position extremely easy.Furthermore, the images of each ship can be observed simultaneously on the image sensor. Because of this, it is possible to obtain excellent effects such as almost eliminating errors due to movement, oscillation, etc. of a single work boat.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る移動体の位置測量装置の一実施例
を示す概略構成図、第2図はこの移動体の位置測量装置
と3つの標との位置関係を示す説明図、第3図はイメー
ジセンサの一例を模式的に示す正面図である。 11・・・・・・移動体の位置測量装置、17,19゜
21・・・・・・標、31・・・・・・イメージセンサ
、33・・・・・・レンズ系、35・・・・・・初期処
理手段、37・・・・・・画像処理演算手段、41・・
・・・・自動視準機構。 第1図 第2図
FIG. 1 is a schematic configuration diagram showing an embodiment of a position measuring device for a moving body according to the present invention, FIG. 2 is an explanatory diagram showing the positional relationship between the position measuring device for a moving body and three markers, and FIG. The figure is a front view schematically showing an example of an image sensor. 11...Positioning device for moving object, 17,19゜21...Standard, 31...Image sensor, 33...Lens system, 35... . . . Initial processing means, 37 . . . Image processing calculation means, 41 .
...Automatic sighting mechanism. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)多数の受光素子が格子状に配列されたイメージセ
ンサと、既知の位置に設置された少なくとも3つの標の
像を前記イメージセンサ上に投影するレンズ系と、前記
イメージセンサから出力される前記投影された各標の像
の光度レベルに対応する画像信号を明暗パターンに二値
化した画像信号に変換する初期処理手段と、この初期処
理手段が出力する二値化画像信号に基づいて前記各標相
互間の挟角を算術的に求め、この各挟角に三角測量の三
点両角法による演算を施して移動体の位置を特定する画
像処理演算手段とを備えて成る移動体の位置測量装置。
(1) An image sensor in which a large number of light-receiving elements are arranged in a grid, a lens system that projects images of at least three markers installed at known positions onto the image sensor, and an image output from the image sensor. an initial processing means for converting an image signal corresponding to the luminous intensity level of the projected image of each target into a binary image signal in a bright/dark pattern; The position of a moving body, comprising image processing calculation means for arithmetically determining the included angle between each mark and performing calculations on each included angle using the three-point diagonal method of triangulation to specify the position of the moving body. Surveying equipment.
(2)前記レンズ系が、前記イメージセンサに投影され
る標の像の内の中央のものがイメージセンサの中心に結
像するように光軸方向を制御するための自動視準機構を
備えていることを特徴とする特許請求の範囲第(1)項
に記載の移動体の位置測量装置。
(2) The lens system is provided with an automatic collimation mechanism for controlling the optical axis direction so that the central image of the target image projected onto the image sensor is focused on the center of the image sensor. A position measuring device for a moving body according to claim (1).
(3)前記初期処理手段がイメージセンサが出力する前
記各標の像の光度レベルに対応する画像信号を明暗パタ
ーンの画像信号に二値化する際の閾値の自動調整機構を
具備している事を特徴とする特許請求の範囲第(1)項
に記載の移動体の位置測量装置。
(3) The initial processing means is equipped with an automatic threshold adjustment mechanism for binarizing the image signal corresponding to the luminous intensity level of the image of each target output by the image sensor into an image signal of a light and dark pattern. A position measuring device for a moving body according to claim (1).
JP26645684A 1984-12-19 1984-12-19 Position surveying apparatus of moving body Pending JPS61145410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26645684A JPS61145410A (en) 1984-12-19 1984-12-19 Position surveying apparatus of moving body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26645684A JPS61145410A (en) 1984-12-19 1984-12-19 Position surveying apparatus of moving body

Publications (1)

Publication Number Publication Date
JPS61145410A true JPS61145410A (en) 1986-07-03

Family

ID=17431182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26645684A Pending JPS61145410A (en) 1984-12-19 1984-12-19 Position surveying apparatus of moving body

Country Status (1)

Country Link
JP (1) JPS61145410A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371780A (en) * 1976-12-06 1978-06-26 Japan Aviation Electron Control device for tracking moving object
JPS5616802A (en) * 1979-04-30 1981-02-18 Settsu Torasuto:Kk Method and unit for measuring electro-optically dimension,position and form of object

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5371780A (en) * 1976-12-06 1978-06-26 Japan Aviation Electron Control device for tracking moving object
JPS5616802A (en) * 1979-04-30 1981-02-18 Settsu Torasuto:Kk Method and unit for measuring electro-optically dimension,position and form of object

Similar Documents

Publication Publication Date Title
US6031606A (en) Process and device for rapid detection of the position of a target marking
US10890446B2 (en) Surveying device comprising height measuring system and method for measuring a height
US3610754A (en) Method for determining distances
US10352699B2 (en) Surveying device having a fine targeting and target tracking functionality
CN1092792C (en) Survey instrument
US9528828B2 (en) Method and system for determining position and orientation of a measuring instrument
EP0465584A1 (en) An arrangement for performing position determination.
JP2004198330A (en) Method and apparatus for detecting position of subject
US20070201040A1 (en) Laser-based position measuring device
JP2000504418A (en) Distance and / or position measuring device
WO2014067579A1 (en) Tracker unit and method in a tracker unit
CN107561495A (en) A kind of indoor 3-D positioning method based on laser tracking
EP3353492A1 (en) Device and method to locate a measurement point with an image capture device
JP2019060754A (en) Cloud altitude and wind velocity measurement method using optical image
KR100986505B1 (en) Touchless positioning system using ccd camera
US4494870A (en) Arrangement for setting out points and straight lines
JPH1019562A (en) Surveying equipment and surveying method
JPS61145410A (en) Position surveying apparatus of moving body
US3836259A (en) Apparatus for tracking a luminous object
JPH07139942A (en) Surveying apparatus
JP3854519B2 (en) Height difference measurement system
CN117233735B (en) Optical calibration device and method for infrared reconnaissance alarm system
JPH112521A (en) Position-measuring plotting device with inclination sensor
JPH03134499A (en) Sight position detection method
JPH06186035A (en) Three-dimenisonal position measuring system