JPS6114510A - Ultrasonic thickness gauge - Google Patents

Ultrasonic thickness gauge

Info

Publication number
JPS6114510A
JPS6114510A JP13573684A JP13573684A JPS6114510A JP S6114510 A JPS6114510 A JP S6114510A JP 13573684 A JP13573684 A JP 13573684A JP 13573684 A JP13573684 A JP 13573684A JP S6114510 A JPS6114510 A JP S6114510A
Authority
JP
Japan
Prior art keywords
thickness
ultrasonic
transducer
tube
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13573684A
Other languages
Japanese (ja)
Inventor
Tadashi Okabe
忠 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP13573684A priority Critical patent/JPS6114510A/en
Publication of JPS6114510A publication Critical patent/JPS6114510A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness

Abstract

PURPOSE:To measure a thickness correctly and easily by arranging plural ultrasonic vibrators with division in peripheral direction and by finding the differential time with receipt of the echo that the ultrasonic wave transmitted by each vibrator is reflected on the surface and backface of a tube. CONSTITUTION: The bottom face of a probe 11 arranging ultrasonic vibrators U1-U8 is placed on the tube to be measured. Then, by the command sent from a control circuit 13 the vibrator U1 is connected to an echo sounder transducer 14 via a multiplexer 12 and a voltage is applied on the vibrator U1 from the echo sounder transducer 14, and an ultrasonic wave is irradiated with the excitation of the U1. A gate 15 is then opened only for the period that the two wave receiving signals reflected on the surface and backface of the tube are inputted into the gate circuit 15, and during the period thereof the clock signal transmitted from a clock signal generator 16 is inputted into an arithmetic circuit 17. The thickness of the tube is then calculated from the differential time of two wave receiving signals found from the number of clock signals and the sound speed value of a sound speed measuring part 18.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は管の厚さ等を測定する場合に使用される超音
波厚さ針に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an ultrasonic thickness needle used for measuring the thickness of tubes, etc.

(ロ)従来の技術 超音波厚さ計は、第3図に示すように、送受波器を含む
信号処理回路1からプローブ2内に設けられる超音波振
動子3にパルス信号(第4図C参照)を加えて超音波振
動子を振動させ、この超音(第4図す参照)を管4に投
射し、管4の外面Aと内面Bで反射して帰ってくる信号
を受波し、これらの受波信号(第4図C参照)の時間差
Tと予め設定する音速から管4の厚さを演算するように
している。この種の超音波厚さ計において、プローブの
超音波振動子が2つに分割されたものがあり、管の厚さ
を測定するのに、振動子の分割軸を管の長手方向とそれ
に垂直な方向に当て、測定した厚さの小さな値の方を厚
さとして得るようにしたものがある。しかし、この超音
波厚さ計では、管の長手方向やそれに垂直な方向に振動
子の分割軸を正確に合わせるのに、特別の治具5(第3
図参照)を使用しなければならなかった。また管とプロ
ーブとの最適の接触状態を得るために、管の径に応じて
、異なる治具を必要とする欠点があった。
(B) Conventional technology As shown in FIG. 3, an ultrasonic thickness gauge transmits a pulse signal (see FIG. ) to vibrate the ultrasonic transducer, project this ultrasonic sound (see Figure 4) onto the tube 4, and receive the signal reflected from the outer surface A and inner surface B of the tube 4. , the thickness of the tube 4 is calculated from the time difference T between these received signals (see FIG. 4C) and the preset sound velocity. In this type of ultrasonic thickness gage, the ultrasonic transducer of the probe is divided into two parts, and when measuring the thickness of the pipe, the split axis of the transducer is set in the longitudinal direction of the pipe and perpendicular to it. There is a device in which the smaller value of the measured thickness is obtained as the thickness. However, with this ultrasonic thickness gauge, a special jig 5 (third
(see figure) had to be used. Another drawback is that different jigs are required depending on the diameter of the tube in order to obtain an optimal contact state between the tube and the probe.

(ハ)目的 この発明の目的は上記に鑑み、特別の治具を使用せずと
も、正確な測定が誰でも容易になし得る超音波厚さ計を
提供することである。
(c) Purpose In view of the above, it is an object of the present invention to provide an ultrasonic thickness gauge that allows anyone to easily perform accurate measurements without using a special jig.

(ニ)構成 上記目的を達成するために、この発明の超音波厚さ計は
複数個の超音波振動子が周方向に分割配置されるプロー
ブと、送受波器と、前記超音波振動子を時間順次に切替
えて送受波器に結合し、各超音波振動子を時分割駆動す
る走査手段と、各超音波振動子の割当分割時間毎に、前
記送受波器から送波された信号の時間差を算出する時間
差算出手段と、算出された時間差と音速から厚さを算出
する厚さ算出手段と、算出された厚さの最小値を記憶す
る記憶手段と、この記憶手段に記憶される厚さを出力す
る出力手段とから構成されている。
(D) Structure In order to achieve the above object, the ultrasonic thickness gauge of the present invention includes a probe in which a plurality of ultrasonic transducers are arranged divided in the circumferential direction, a transducer, and the ultrasonic transducer. a scanning means that is coupled to the transducer in a time-sequential manner and drives each ultrasonic transducer in a time-division manner, and a time difference between signals transmitted from the transducer for each allocated divided time of each ultrasonic transducer; a time difference calculation means for calculating the thickness, a thickness calculation means for calculating the thickness from the calculated time difference and the speed of sound, a storage means for storing the minimum value of the calculated thickness, and a thickness stored in the storage means. and an output means for outputting.

この超音波厚さ計において、複数個の超音波振動子が時
分割駆動されると、各超音波振動子の割当分割時間毎に
、それぞれ厚さが算出される。各超音波振動子は、周方
向に配列され、各分割軸は、管の長手方向及びその垂直
方向を含み、各方向を向いている。そのため、プローブ
を動かさなくても、各超音波振動子の分割時間毎に算出
した厚さの最小値を求めることにより、あたかも、各方
向にプローブを動かして最小値を測定したのみ同等の結
果が得られる。
In this ultrasonic thickness gauge, when a plurality of ultrasonic transducers are time-divisionally driven, the thickness is calculated for each allocated divided time of each ultrasonic transducer. Each ultrasonic transducer is arranged in the circumferential direction, and each division axis faces each direction including the longitudinal direction of the tube and the vertical direction thereof. Therefore, by finding the minimum value of the thickness calculated for each division time of each ultrasonic transducer without moving the probe, it is possible to obtain equivalent results by moving the probe in each direction and measuring the minimum value. can get.

(ホ)実施例 以下、実施例により、この発明をさらに詳細に説明する
(E) Examples The present invention will be explained in more detail with reference to Examples below.

第1図はこの発明の1実施例を示す超音波厚さ計のブロ
ック図である。同図において、プローブ11内には、8
個の分割された超音波振動子U1、U2、・・・、U8
が設けられている。これら超音波振動子U1、U2、・
・・、U8は、プローブJ1の底面図を第2図に示すよ
うに、プローブ11の周方向に配置され、その分割軸は
放射状となっている。もっとも、分割数は8以外の任意
の値に選定できるし、プローブ11の底面形状も円形に
限られない。
FIG. 1 is a block diagram of an ultrasonic thickness gauge showing one embodiment of the present invention. In the same figure, inside the probe 11, there are 8
divided ultrasonic transducers U1, U2,..., U8
is provided. These ultrasonic transducers U1, U2,
. . , U8 is arranged in the circumferential direction of the probe 11, as shown in the bottom view of the probe J1 in FIG. 2, and its division axis is radial. However, the number of divisions can be selected to any value other than 8, and the shape of the bottom surface of the probe 11 is not limited to a circle.

各超音波振動子U1.1.J 2、・・・、U8はマル
チプレクサ12に接続され、制御回路13よりの指令信
号dにより、マルチプレクサ12が走査されると、送受
波器14に時間順次に接続されるようになっている。
Each ultrasonic transducer U1.1. J2, .

送受波器14は、制御回路13よりの指令信号eにより
、パルス信号を出力するとともに、プローブ11からの
エコー(受波信号)を受け、この受波信号をゲート回路
15に入力するようになっている。
The transducer 14 outputs a pulse signal in response to a command signal e from the control circuit 13, receives an echo (received signal) from the probe 11, and inputs this received signal to the gate circuit 15. ing.

ゲート回路15は、第1売口の受波信号と第2発註の受
波信号の入力される期間開けられ、この期間中、クロッ
ク信号発生器16よりのクロ・ツク信号が演算回路17
に入力される。このクロック信号数により、第1売口と
2発註の時間差が算出される。
The gate circuit 15 is opened during the period when the received signal from the first sales outlet and the received signal from the second sales outlet are input, and during this period, the clock signal from the clock signal generator 16 is input to the arithmetic circuit 17.
is input. Based on this number of clock signals, the time difference between the first selling point and the second selling point is calculated.

演算回路17は、制御回路13よりの指令信号gにより
、ゲート回路15からのクロ・ツク信号数すなわち時間
差Tと音速設定部18で設定される音速とから厚さを算
出する機能、さらに、各走査毎に、それまでの厚さの最
小値を算出する機能を備えている。
The arithmetic circuit 17 has the function of calculating the thickness from the number of clock signals from the gate circuit 15, that is, the time difference T, and the sound speed set by the sound speed setting section 18, in response to the command signal g from the control circuit 13, It has a function to calculate the minimum thickness up to that point for each scan.

メモリ19は、演算回路17で算出される厚さの最小値
を記憶するために設けられており、表示部20は、メモ
リ20に記憶される厚さの最小値を表示するようになっ
ている。
The memory 19 is provided to store the minimum thickness value calculated by the arithmetic circuit 17, and the display unit 20 displays the minimum thickness value stored in the memory 20. .

次に、以上のように構成される実施例超音波厚さ計を用
いて、管の厚さを測定する方法及び動作を説明する。
Next, a method and operation for measuring the thickness of a pipe using the ultrasonic thickness gauge according to the embodiment configured as described above will be explained.

測定に際しては、被測定管上に、プローブ11の底面を
載置する。そして制御回路13よりの信号dにより、先
ず超音波振動子U1を、マルチプレクサ12を介して送
受波器14に接続する。そして送受波器14から超音波
振動子U1にパルス電圧を加え、励振する。そして、こ
の超音波振動子U1から発射された超音波は、管の表面
と裏面で反射され、エコーとして送受波器14に帰って
くる。この2つのエコーの受波信号がゲート回路15に
入力される期間だけゲート15が開かれ、この期間、ク
ロック信号がクロック信号発生器16、ゲート回路15
を経て、演算回路17に入力され、演算回路17は、こ
のクロック信号をカウントして、第1と第2のと受波信
号の時間ITを求める。一方、音速設定部18で音速値
Cが設定されているので、演算回路17は、第1と第2
の受波信号の時間差Tと音速値Cより管の厚さを算出す
る。そして、この厚さはメモリ19にストアされる。
During measurement, the bottom surface of the probe 11 is placed on the tube to be measured. Then, in response to the signal d from the control circuit 13, the ultrasonic transducer U1 is first connected to the transducer 14 via the multiplexer 12. Then, a pulse voltage is applied from the transducer 14 to the ultrasonic transducer U1 to excite it. The ultrasonic waves emitted from the ultrasonic transducer U1 are reflected on the front and back surfaces of the tube and return to the transducer 14 as echoes. The gate 15 is opened only during the period when the received signals of these two echoes are input to the gate circuit 15, and during this period, the clock signal is transmitted to the clock signal generator 16 and the gate circuit 15.
The clock signal is then input to the arithmetic circuit 17, and the arithmetic circuit 17 counts this clock signal to find the time IT of the first and second received signals. On the other hand, since the sound speed value C is set in the sound speed setting section 18, the arithmetic circuit 17
The thickness of the tube is calculated from the time difference T between the received signals and the sound velocity value C. This thickness is then stored in memory 19.

以上のようにして、超音波振動子U1に関する一連の厚
さ測定処理が終了すると、次に制御回路13はマルチプ
レクサ12に走査信号を送り、切替により、今度は超音
波振動子U2を送受波器14に接続する。そして超音波
振動子U1の場合と同様にして、管の厚さを求める。ま
た求めた管の厚さと前回の管の厚さを比較し、小値の方
をメモリ19に記憶する。
When a series of thickness measurement processes regarding the ultrasonic transducer U1 are completed in the manner described above, the control circuit 13 sends a scanning signal to the multiplexer 12, and by switching, the ultrasonic transducer U2 becomes a transducer. Connect to 14. Then, the thickness of the tube is determined in the same manner as in the case of the ultrasonic transducer U1. Also, the obtained tube thickness is compared with the previous tube thickness, and the smaller value is stored in the memory 19.

以下、同様にして、時間の経過の度に、マルチプレクサ
12を切替え、超音波振動子U2、U3、・・・、U8
を時間順次に送受波器14に接続し、今回の測定値と前
回までの最小値を比較し、メモリ19に小さい方を新た
な最小値として記憶する。
Thereafter, in the same manner, the multiplexer 12 is switched every time the time passes, and the ultrasonic transducers U2, U3, . . . , U8 are switched.
are connected to the transducer 14 in time order, the current measured value and the previous minimum value are compared, and the smaller value is stored in the memory 19 as the new minimum value.

超音波振動子1、U2、・・・、U8に関する処理走査
が終了すると、メモリ19内の最も小値の数値が測定し
た厚さとして表示部20に表示される。
When the processing scan for the ultrasonic transducers 1, U2, . . . , U8 is completed, the smallest numerical value in the memory 19 is displayed on the display unit 20 as the measured thickness.

なお、メモリ19内のデータは走査の開始の前に、制御
回路13からの信号により最大値にセントされている。
Note that the data in the memory 19 is set to the maximum value by a signal from the control circuit 13 before the start of scanning.

なお、上記実施例においては、各分割時間毎に、厚さの
最小値を求め、これをメモリ20にストアし、厚さの最
小値を分割時間毎に更新するようにしているが、これに
代えて、時間差が最小となるものをメモリ20に記憶し
、最も小となる時間差と音速とから、厚さの最小値を算
出し1、この最小値を表示部20に表示するようにして
もよい。
In the above embodiment, the minimum thickness value is determined for each division time, and this is stored in the memory 20, and the minimum thickness value is updated for each division time. Alternatively, the one with the smallest time difference may be stored in the memory 20, the minimum value of the thickness may be calculated from the smallest time difference and the speed of sound, and this minimum value may be displayed on the display section 20. good.

(へ)効果 この発明によれば、プローブを何ら動かすことなく、厚
さの最小値を求めることができ、厚さ測定のために何ら
特別の治具を必要しないばかりか測定も非常に容易にな
すことができる。
(f) Effects According to this invention, the minimum value of thickness can be determined without moving the probe in any way, and not only does it require no special jig to measure thickness, but it also makes measurement very easy. It can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の1実施例を示す超音波厚    
    、太さ計のブロック図、第2図は同実施例に使
用されるプローブの底面図、第3図は、従来の一般的な
超音波厚さ針の原理を説明するための概略図、第4図は
同波形図である。 11ニブローブ、 12:マルチプレクサ、13:制御
回路、 14:送受波器、 15:ゲート回路、16:クロック信号発生器、17:
演算回路、 18:音速設定部、19:メモリ、  2
0:表示部、
FIG. 1 shows an ultrasonic wave thickness illustrating one embodiment of the present invention.
, a block diagram of the thickness gauge, FIG. 2 is a bottom view of the probe used in the same embodiment, FIG. 3 is a schematic diagram for explaining the principle of a conventional general ultrasonic thickness needle, and FIG. Figure 4 is the same waveform diagram. 11 nib lobe, 12: multiplexer, 13: control circuit, 14: transducer, 15: gate circuit, 16: clock signal generator, 17:
Arithmetic circuit, 18: Sound speed setting section, 19: Memory, 2
0: Display section,

Claims (1)

【特許請求の範囲】[Claims] (1)複数個の超音波振動子が周方向に分割配置される
プローブと、送受波器と、前記各超音波振動子を時間順
次に切替えて送受波器に結合し、各超音波振動子を時分
割駆動する走査手段と、各超音波振動子の割当分割時間
毎に、前記送受波器から送波された信号の時間差を算出
する時間差算出手段と、算出された時間差と音速から厚
さを算出する厚さ算出手段と、算出された厚さの最小値
を記憶する記憶手段と、この記憶手段に記憶される厚さ
を出力する出力手段とからなる超音波厚さ計。
(1) A probe in which a plurality of ultrasonic transducers are dividedly arranged in the circumferential direction, a transducer, and each ultrasonic transducer is switched in time order and coupled to the transducer, and each ultrasonic transducer is connected to the transducer. scanning means for time-divisionally driving the ultrasonic transducer; time difference calculating means for calculating the time difference between the signals transmitted from the transducer for each allocated divided time of each ultrasonic transducer; An ultrasonic thickness gage comprising: a thickness calculation means for calculating the minimum value of the calculated thickness; a storage means for storing the minimum value of the calculated thickness; and an output means for outputting the thickness stored in the storage means.
JP13573684A 1984-06-29 1984-06-29 Ultrasonic thickness gauge Pending JPS6114510A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13573684A JPS6114510A (en) 1984-06-29 1984-06-29 Ultrasonic thickness gauge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13573684A JPS6114510A (en) 1984-06-29 1984-06-29 Ultrasonic thickness gauge

Publications (1)

Publication Number Publication Date
JPS6114510A true JPS6114510A (en) 1986-01-22

Family

ID=15158665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13573684A Pending JPS6114510A (en) 1984-06-29 1984-06-29 Ultrasonic thickness gauge

Country Status (1)

Country Link
JP (1) JPS6114510A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505363B2 (en) 2006-04-10 2009-03-17 Airmar Technology Corporation Automatic switch for marine sounders
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device
JP2009222701A (en) * 2008-02-19 2009-10-01 Jfe Steel Corp Wall thickness configuration measuring device of pipe, its method, and method for manufacturing pipe

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7505363B2 (en) 2006-04-10 2009-03-17 Airmar Technology Corporation Automatic switch for marine sounders
JP2009156694A (en) * 2007-12-26 2009-07-16 Kanazawa Inst Of Technology Measurement method and device
JP2009222701A (en) * 2008-02-19 2009-10-01 Jfe Steel Corp Wall thickness configuration measuring device of pipe, its method, and method for manufacturing pipe

Similar Documents

Publication Publication Date Title
US4354388A (en) Method for nondestructive material testing with ultrasound pulses
US3812709A (en) Stress gage
JPS627856B2 (en)
US4700571A (en) Ultrasonic imaging apparatus
JPS6114510A (en) Ultrasonic thickness gauge
JPH01156661A (en) Joint part survey instrument
US3733891A (en) Gating systems used with nondestructive material testers and the like
JPS61172055A (en) Apparatus for inspecting interior of piping
SU1644022A1 (en) Method and device for flaw detection using acoustic emission signals
SU1404930A1 (en) Method and apparatus for ultrasonic flaw detection in articles of composite materials
SU785735A1 (en) Autocirculation apparatus for measuring ultrasound velocity in media
JPH0862191A (en) Method and apparatus for aperture synthesis of ultrasonic
SU905643A1 (en) Ultrasonic device for checking article thickness
JPH07218242A (en) Peripheral length measuring apparatus
RU1387658C (en) Device for determining co-ordinates of defects
SU1010539A1 (en) Device for ultrasound speed touch-free checking
JP2612322B2 (en) Gate circuit of ultrasonic flaw detector
RU2082161C1 (en) Ultrasound echo-pulse depth meter
SU714159A1 (en) Level measuring device
JPH0532724Y2 (en)
JPS6020007Y2 (en) Analog signal time width changing device
SU1434359A1 (en) Apparatus for ultrasonic shadow inspection of articles
JPH06327670A (en) Ultrasonic diagnosis equipment
SU1320742A1 (en) Method of ultrasonic shadow examination of articles and device for effecting same
SU1125645A1 (en) Teaching-aid device on engineering geodesy