JPS61144633A - Image pickup device - Google Patents

Image pickup device

Info

Publication number
JPS61144633A
JPS61144633A JP59266323A JP26632384A JPS61144633A JP S61144633 A JPS61144633 A JP S61144633A JP 59266323 A JP59266323 A JP 59266323A JP 26632384 A JP26632384 A JP 26632384A JP S61144633 A JPS61144633 A JP S61144633A
Authority
JP
Japan
Prior art keywords
shutter
shutter vanes
voltage
warped
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59266323A
Other languages
Japanese (ja)
Inventor
Shuichiro Saito
斉藤 修一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59266323A priority Critical patent/JPS61144633A/en
Publication of JPS61144633A publication Critical patent/JPS61144633A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shutters For Cameras (AREA)

Abstract

PURPOSE:To obtain an image pickup device provided with a light shielding means having no possibility for failure by providing bent parts which are warped in the directions opposite from each other to avoid the collision of two sheets of shutter vanes to the positions where the shutter vanes are liable to collide against each other when driven. CONSTITUTION:The shutter vanes S3, S4 are respectively fixed to the shafts of the 1st and 2nd motors 17, 117. The shutter vanes S3, S4 are formed to a semi-disk shape and are provided with the bent parts S3a, S4a warped in the directions opposite from each other on the side parts thereof. The shutter vanes are formed into the shape provided with the bent parts S3a, S4a warped toward the outside to the sides S1a, S2a of two sheets of the convensional shutter vanes S1, S2 facing each other. The bent parts S3a, S4a contact slidingly with each other when the two shutter vanes S3, S4 rotate relatively in the stage of starting or stopping the shutter but said parts are warped to the outside and therefore there is no more possibility of the collision and therefore the failure of the shutter vanes S3, S4 is obviated.

Description

【発明の詳細な説明】 〔技術分野〕 この発明は、被写体を撮像する撮像装置、特に、像光を
遮光する遮光手段を備えた撮像装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an imaging device for imaging a subject, and particularly to an imaging device equipped with a light shielding means for shielding image light.

〔従来技術〕[Prior art]

従来より、同一方向に同一速度で回転し遮光部及び透光
部を有する2つのシャッター羽根を備え、2つのシャッ
ター羽根の透光部が重なった部分の開度を制御すること
Kより露光時間を制御する、いわゆるロータリーシャッ
ターを備えた撮像装置が知られている。
Conventionally, two shutter blades that rotate at the same speed in the same direction and have a light-blocking part and a light-transmitting part are provided, and the exposure time is controlled by controlling the opening degree of the part where the light-transmitting part of the two shutter blades overlaps. An imaging device equipped with a so-called rotary shutter is known.

第1図にそのロータリーシャッターの分解斜視図を示す
。同図で30はCCD z 8 M フィルム等の撮像
部、31は駆動用のモータ、32Fiモータ31のシャ
フトであり、溝328が設けられている。33.34は
薄板でできたシャッター羽根であり各々半円形をしてい
る。シャッター羽根33はシャフト32に固定されてお
り、モータ31が通電されると図中矢印の方向に回転す
る。35は開度調整軸であり貫通孔35aが設けられ、
シャフト32に回転自在に取り付けられる。また、一端
35cに於てシャッター羽根34に固定される。
FIG. 1 shows an exploded perspective view of the rotary shutter. In the figure, 30 is an imaging unit such as a CCD z 8 M film, 31 is a drive motor, and 32 is a shaft of the Fi motor 31, which is provided with a groove 328. 33 and 34 are shutter blades made of thin plates, each having a semicircular shape. The shutter blade 33 is fixed to the shaft 32, and rotates in the direction of the arrow in the figure when the motor 31 is energized. 35 is an opening adjustment shaft provided with a through hole 35a;
It is rotatably attached to the shaft 32. Further, it is fixed to the shutter blade 34 at one end 35c.

35bはカム溝である。36はスライダであり貫通孔3
6aにより、開度調整軸35に回転自在に取り付けられ
る。ビン3Tはスライダ36に植設。
35b is a cam groove. 36 is a slider and the through hole 3
6a, it is rotatably attached to the opening adjustment shaft 35. Bottle 3T is installed on slider 36.

されており、貫通孔36aの内径方向に伸びカム溝35
bを介して溝32aに入る。3Bは制御板であり穴38
a 、38bによりガイド軸40に沿つて移動する。ピ
ン39は制御板38に固定されておりスライダ36の外
周の溝36bに入る。
The cam groove 35 extends in the inner diameter direction of the through hole 36a.
It enters the groove 32a via b. 3B is a control board with hole 38
a, 38b to move along the guide shaft 40. The pin 39 is fixed to the control plate 38 and enters a groove 36b on the outer periphery of the slider 36.

次に作動説明を行なう。Next, the operation will be explained.

モータ31が通電されると、シャフト32に固定された
シャッター羽根33が図中矢印の方向に回転する。モー
タの回転は溝32a1ピン3T・カム溝35bを介して
開度調整軸35に伝達されシャッター羽根34が図中矢
印の方向に回転する。
When the motor 31 is energized, the shutter blade 33 fixed to the shaft 32 rotates in the direction of the arrow in the figure. The rotation of the motor is transmitted to the opening adjustment shaft 35 via the groove 32a1 pin 3T and the cam groove 35b, and the shutter blade 34 rotates in the direction of the arrow in the figure.

そして、制御板38を図中右方向に移動すると、ピン3
9.溝36bを介してピン37が図中右方向に動き、カ
ム溝35b、溝328を介してシャッター羽根34が3
3に対し相対的に左回転(図中矢印方向)し、開度が小
さくなりシャッター秒時が短かくなる。又、制御板38
を図中左方向に動かすと、上述と反対の作動によりシャ
ッター羽根34が33に対し相対的に右回転(図中矢印
方向)し、開度が大きくなりシャッター秒時が長くなる
。このようにして露光時間の制御を行っている。
Then, when the control board 38 is moved to the right in the figure, the pin 3
9. The pin 37 moves to the right in the figure through the groove 36b, and the shutter blade 34 moves to the right through the cam groove 35b and the groove 328.
3, the opening angle becomes smaller and the shutter time becomes shorter. Also, the control board 38
When the shutter blade 34 is moved to the left in the figure, the shutter blade 34 rotates clockwise relative to the shutter blade 33 (in the direction of the arrow in the figure) by an operation opposite to that described above, and the opening degree becomes larger and the shutter time becomes longer. In this way, the exposure time is controlled.

このように、従来のロータリーシャッターは、カムその
他の機構部品を多数必要とし部品点数が多くなるととも
に、機構的に複雑になるという欠点があった。上記の点
にも関連するが、これら機構部品に対し機械系のガタ・
摩耗等が加わり精度・信頼度・待命等の点で不十分な事
があった。
As described above, the conventional rotary shutter has disadvantages in that it requires a large number of cams and other mechanical parts, which increases the number of parts and makes it mechanically complex. This is also related to the above point, but there is no mechanical play in these mechanical parts.
Due to wear and tear, there were some issues with accuracy, reliability, longevity, etc.

このような欠点を除去するものとして第2図に示すよう
なシャッターが提案されている。
A shutter as shown in FIG. 2 has been proposed to eliminate these drawbacks.

図において、2は発光素子、4は受光素子、20はCC
D 、BBD等の固体撮像素子、Sl、S2はシャッタ
ー羽根i7,117はそれぞれ羽根Sl 、S2を回転
せしめる第1.第2のモータである。モータ17,11
7のシャフトとシャッター羽根S1.S2は各々固定さ
れており、夫々の回転中心は同軸上にある。両シャッタ
ー羽根S1、S2は僅かの間隔をおいて互に平行に取り
付けられていて、第1.第2のモータ17,117によ
って相対回転するようになっている。今、第1、第2の
モータ17,117に通電されると、シャッター羽根S
1.S2は図中矢印の方向に回転し、撮像素子20の露
光時間は辺S18と辺S2aのなす角度によって制御さ
れる。そして、シャッター羽根Sl、S2を挟んで配置
された発光素子21及び受光素子22で露光時間が測定
される。
In the figure, 2 is a light emitting element, 4 is a light receiving element, and 20 is a CC
Solid-state image pickup devices such as D and BBD, and shutter blades i7 and 117 are the first shutter blades i7 and 117 for rotating blades Sl and S2, respectively. This is the second motor. Motor 17, 11
7 shaft and shutter blade S1. S2 are each fixed, and their rotation centers are coaxial. Both shutter blades S1 and S2 are attached parallel to each other with a slight interval between them. The second motors 17 and 117 cause relative rotation. Now, when the first and second motors 17, 117 are energized, the shutter blade S
1. S2 rotates in the direction of the arrow in the figure, and the exposure time of the image sensor 20 is controlled by the angle formed by the side S18 and the side S2a. Then, the exposure time is measured by the light emitting element 21 and the light receiving element 22 arranged with the shutter blades Sl and S2 in between.

しかしながら、このシャッターは、2枚のシャッター羽
根Sl 、S2が半円板状に形成されているので、それ
らの回転位相を制御する際、2枚のシャッター羽根Sl
 、S2同志がその辺Sta。
However, in this shutter, since the two shutter blades Sl and S2 are formed in the shape of a semicircular plate, when controlling their rotational phase, the two shutter blades Sl and
, S2 comrade is that side Sta.

Sza部分で互に衝突して破損し易い欠点があった0 〔目 的〕 この発明はこのような従来の欠点を除去しようとするも
ので、破損するおそれのない像光の遮光手段を備えた撮
像装置の提供を目的とするものである。
There was a drawback that the Sza portions collided with each other and were easily damaged. [Purpose] This invention aims to eliminate such conventional drawbacks, and provides an image light shielding means that is free from damage. The purpose is to provide an imaging device.

〔実施例〕〔Example〕

第3図はこの発明の実施例を示す。 FIG. 3 shows an embodiment of the invention.

図において、@Qffと同符号は同一部分を示す。In the figure, the same symbols as @Qff indicate the same parts.

S3.S4はシャッター羽根であり、それぞれ第1、第
2モータ17,117のシャフトに固定されている。こ
のシャッター羽根S3.S4は、半円板状に形成されて
いて、その辺部に互に反対方向へ反り返った折り曲げ!
S3a、S4aを設けたものである。丁度、従来の互に
向かい合う2枚ノシャッター羽根St、5217)辺S
la、S2a部分にそれぞれ外側へ反り返った折り曲げ
部S3a、S4aを設けた形状になっている。
S3. S4 is a shutter blade, which is fixed to the shafts of the first and second motors 17 and 117, respectively. This shutter blade S3. S4 is formed into a semi-disc shape, and its sides are bent in opposite directions!
S3a and S4a are provided. Just like the conventional two shutter blades facing each other St, 5217) Side S
It has a shape in which bent portions S3a and S4a which are bent outward are provided at portions la and S2a, respectively.

このような構成になっているので、シャッター起動時、
停止時に2枚のシャッター羽根33.S4が相対回転す
る場合、上記折り曲げt%s3a。
With this configuration, when the shutter is activated,
Two shutter blades when stopped 33. When S4 rotates relatively, the above bending t%s3a.

S4aで相互に摺接することはあっても、その部分が外
側へ反り返った形状になっているので、衝突するおそれ
はなくなり、したがって、シャッター羽根S3.S4が
破損するようなことはなくなる。
Even if the shutter blades S4a may come into sliding contact with each other, since those portions are curved outward, there is no risk of collision, and therefore the shutter blades S3. There will be no chance of S4 being damaged.

次に、第3図のロータリーシャッターを駆動する駆動回
路を第4図によって説明する。同図はその回路図を示し
たものである。
Next, a driving circuit for driving the rotary shutter shown in FIG. 3 will be explained with reference to FIG. 4. The figure shows the circuit diagram.

電源Eと並列に抵抗1とLID等の発光素子2の直列回
路、抵抗3と受光素子4の直列回路、抵抗5.6の直列
回路、コンパレータ7、キャパシタ12と定電流源11
の直列回路、演算増幅器13および16の並列回路が接
続される。コンパレータ7の反転入力端子は抵抗5.6
の接続点P2に接続され、その非反転入力端子は抵抗3
と受光素子4の接続点Pに接続される。コンパレータ7
の出力はキャパシタ8、抵抗9の直列回路を介して、ト
ランジスタ100ベースに接続される。トランジスタ1
0のエミッタは電源Eの陽極に、コレクタはキャパシタ
12と定電流源11の接続点に接続されるとともに、演
算増幅器13の非反転入力に接続される。演算増幅器1
3はその出力と反転入力が直結され、バッファとして働
く。演算増幅器13の出力はアナログスイッチ14を介
して演算増幅器16の非反転入力に接続される。演算増
幅器16の非反転入力と電源Eの陰極の間にキャパシタ
15が接続される。演算増幅器16は反転入力と出力が
直結され、これもバッファとして働く。演算増幅器16
の出力は第1のモータ17を介して電源Eの陰極に接続
されるつなお107〜117の回路はコンパレータ10
Tの反転入力とPlが接続され、非反転入力とP2が接
続される事以外7〜17の部品と100番台の番号がつ
くだけで全く同様の回路構成をとるため説明を省略する
。アナログスイッチ14,114はその制御端子14a
11148がハイレベルの時導通状態に、ローレベルの
時非導通状態となる。アナログスイッチ14,114が
導通の間演算増幅器13,113の出力1a王をキャパ
シタ15.115にサンプルされ、アナログスイッチ1
4.114が非導通の間キャパシタ15,115にはサ
ンプル時の電荷(すなわち電圧)が保持され、バッファ
16,116を介して低インピーダンスで出力される。
A series circuit of a resistor 1 and a light emitting element 2 such as an LID, a series circuit of a resistor 3 and a light receiving element 4, a series circuit of a resistor 5.6, a comparator 7, a capacitor 12 and a constant current source 11 are connected in parallel with the power supply E.
A series circuit of operational amplifiers 13 and 16 and a parallel circuit of operational amplifiers 13 and 16 are connected. The inverting input terminal of comparator 7 is resistor 5.6
is connected to the connection point P2, and its non-inverting input terminal is connected to the resistor 3
and the connection point P of the light receiving element 4. Comparator 7
The output of is connected to the base of the transistor 100 via a series circuit of a capacitor 8 and a resistor 9. transistor 1
The emitter of 0 is connected to the anode of the power source E, the collector is connected to the connection point between the capacitor 12 and the constant current source 11, and is also connected to the non-inverting input of the operational amplifier 13. Operational amplifier 1
3 has its output and inverted input connected directly, and functions as a buffer. The output of operational amplifier 13 is connected to the non-inverting input of operational amplifier 16 via analog switch 14 . A capacitor 15 is connected between the non-inverting input of the operational amplifier 16 and the cathode of the power source E. The operational amplifier 16 has its inverting input and output connected directly, and also functions as a buffer. Operational amplifier 16
The output of is connected to the cathode of the power source E via the first motor 17. The circuits 107 to 117 are connected to the comparator 10.
Except for the fact that the inverting input of T and P1 are connected, and the non-inverting input and P2 are connected, the circuit configurations are completely the same, except that parts 7 to 17 and numbers in the 100s are attached, so a description thereof will be omitted. The analog switches 14, 114 have their control terminals 14a
When 11148 is at a high level, it is in a conductive state, and when it is at a low level, it is in a non-conductive state. While the analog switches 14 and 114 are conductive, the output 1a of the operational amplifiers 13 and 113 is sampled to the capacitors 15 and 115, and the analog switches 1
While the capacitors 15 and 114 are in a non-conducting state, the charge (that is, the voltage) at the time of sampling is held in the capacitors 15 and 115, and is outputted at low impedance via the buffers 16 and 116.

すなわち14,15,16および114,115,11
6はサンプルホールド回路AおよびA′を形成する。な
おアナログスイッチ14,114の制御電極14,11
4は直結され、垂直同期信号18を入力する。
i.e. 14, 15, 16 and 114, 115, 11
6 forms sample and hold circuits A and A'. Note that the control electrodes 14 and 11 of the analog switches 14 and 114
4 is directly connected and inputs the vertical synchronization signal 18.

前述した様に、発光素子2と受光素子40間にはそれぞ
れモータ1Tおよび117の軸に取付けられた半円形の
シャッター羽根S3.S4が置かれ受光素子4の出力に
より露光時間が測定される。
As described above, between the light emitting element 2 and the light receiving element 40, there are semicircular shutter blades S3. attached to the shafts of the motors 1T and 117, respectively. S4 is placed, and the exposure time is measured based on the output of the light receiving element 4.

即ち、発光素子2からの光がS3.S4にさえぎられて
受光素子4に到達しない間は受光素子4に電流が流れず
、点P1の電圧はほぼ電源電圧に等しい。モータの回転
によって時刻T1にシャッター羽根S3が発光素子2と
受光素子4をさえぎっていた状態から光を・通す状態に
変化すると発光素子2の光が受光素子4に到達して受光
素子4が導通状態になってPlの電位はゼロ近くまで低
下する。さらにモーターが回転して時刻T2にシャッタ
ー羽根S4によって再び発光素子2からの光がさえぎら
れると受光素子4には光が到達せず非導通状態となりP
lの電圧はほぼ電源電圧まで上昇する。この状態はモー
タが回転して時刻T′1に羽根S3によって光がさえぎ
られた状態からさえぎられない状態に変化するまで持続
する。Plの電位の時間変化を第5図(a)に示す。
That is, the light from the light emitting element 2 is S3. While the current does not reach the light receiving element 4 because it is blocked by S4, no current flows through the light receiving element 4, and the voltage at point P1 is approximately equal to the power supply voltage. When the shutter blade S3 changes from blocking the light emitting element 2 and light receiving element 4 to passing light at time T1 due to the rotation of the motor, the light from the light emitting element 2 reaches the light receiving element 4 and the light receiving element 4 becomes conductive. In this state, the potential of Pl drops to near zero. Furthermore, when the motor rotates and the light from the light emitting element 2 is blocked again by the shutter blade S4 at time T2, the light does not reach the light receiving element 4 and becomes a non-conducting state P
The voltage of l rises almost to the power supply voltage. This state continues until the motor rotates and the light changes from the state where it is blocked by the blade S3 to the state where it is not blocked at time T'1. FIG. 5(a) shows the change in the potential of Pl over time.

抵抗5,6の抵抗値を等しくとっておくとすると82点
の電位は電源電圧のほぼ1/2である。
Assuming that the resistance values of the resistors 5 and 6 are equal, the potential at the 82 points is approximately 1/2 of the power supply voltage.

第5図(a) において明らかな様にPlの電位が電源
電圧からほぼゼロボルトに変わる、即ち受光素子4に光
が照射された時刻T1で、82点との高低関係が逆転し
、コンパレータTの出力がハイレベルからローレベルに
変化する。この時、キャパシタ8、抵抗9の直列回路を
通してトランジスタ10にベース電流が流れ、トランジ
スタ10はオンする。tランジスタ100オンによりキ
ャパシタ12の両端が短絡され、キャパシタ12は放電
する。トランジスタ10にベース電流が流れるのは抵抗
9によってキャパシタ8が充電される間だけである。従
って、この充電時定数を十分短かくとっておけば、トラ
ンジスタ10は一時オンしてキャパシタ12を短絡しそ
の充電電荷を放電した後再びオフになる。すると定電流
源11によってキャパシタ12が充電される。ここで時
刻tでのキャパシタ12の端子間電圧vc(t)は、V
C(t)’ I  X (t−T、 )/C,2+11
1ま ただし ■0.:定電流源11の電流値 C1,:キャパシタ12の静電容量 とあられせるから演算増幅器13の非反転入力端子の端
子電圧v*5(t)は ただし Vcc:電#i電圧 である。演算増幅器13は反転入力と出力を直結してバ
ッファ構@(ボルテージ7オロワ)をしているから、演
算増幅器の出力電圧は非反転入力電圧と同じである。即
ち(2)式であられせる。これを第5図(b)に示す。
As is clear from FIG. 5(a), at time T1, when the potential of Pl changes from the power supply voltage to almost zero volts, that is, when the light receiving element 4 is irradiated with light, the height relationship with the 82 point is reversed, and the voltage of the comparator T changes. The output changes from high level to low level. At this time, a base current flows to the transistor 10 through the series circuit of the capacitor 8 and the resistor 9, and the transistor 10 is turned on. By turning on the t transistor 100, both ends of the capacitor 12 are short-circuited, and the capacitor 12 is discharged. The base current flows through the transistor 10 only while the capacitor 8 is being charged by the resistor 9. Therefore, if this charging time constant is kept short enough, the transistor 10 will be turned on temporarily, short-circuiting the capacitor 12, discharging its charge, and then turned off again. Then, the capacitor 12 is charged by the constant current source 11. Here, the voltage vc(t) between the terminals of the capacitor 12 at time t is V
C(t)' I X (t-T, )/C,2+11
1 Madashi■0. : The current value C1 of the constant current source 11, : The capacitance of the capacitor 12. Therefore, the terminal voltage v*5(t) of the non-inverting input terminal of the operational amplifier 13 is Vcc: the voltage #i. Since the operational amplifier 13 has a buffer structure with its inverting input and output directly connected (voltage 7 lower), the output voltage of the operational amplifier is the same as the non-inverting input voltage. That is, it is calculated using equation (2). This is shown in FIG. 5(b).

垂直同期信号18が到来するとサンプルホールド回路A
が作動して、垂直同期信号到来時の演算増幅器13の出
力電圧をサンプルしてその時刻以後そのサンプルした電
圧をサンプルホールド回路Aの出力に保持してモータ1
7t−駆動する。垂直同期信号の到来時刻を■、とする
と、■、における(2)式の電圧が保持される。時刻T
、以後のサンプルホールド回路Aの出力電圧Vムは次の
様に表わせる。
When the vertical synchronization signal 18 arrives, the sample and hold circuit A
is activated, samples the output voltage of the operational amplifier 13 when the vertical synchronization signal arrives, and after that time, the sampled voltage is held at the output of the sample and hold circuit A, and the motor 1 is
7t-drive. If the arrival time of the vertical synchronization signal is ``■'', then the voltage of equation (2) at ``■'' is held. Time T
, the subsequent output voltage Vm of the sample-and-hold circuit A can be expressed as follows.

シャッター羽根S3の位相が正しい状態よりも遅れた場
合、即ち、時刻T1が同期信号到来時刻TIを中心に考
えるよりも遅れ、(TI+ΔT、 )の値をとった時の
サンプルホールド電圧VA’i!、次の様に表わせる。
When the phase of the shutter blade S3 is delayed from the correct state, that is, when the time T1 is delayed from the synchronization signal arrival time TI and takes the value of (TI+ΔT, ), the sample and hold voltage VA'i! , can be expressed as follows.

と正しい状態の時より高い電圧でモータを駆動して位相
を進ませて正しい位相にもどそうとする。
When the motor is in the correct state, the motor is driven at a higher voltage to advance the phase and return to the correct phase.

シャッター羽根S3の位相が正しい状態よりも進んだ場
合には上と全く逆の理由により正しい位相の状態よりも
低い電圧でモータを駆動して位相を遅らせて正しい位相
にもどそうとする。
If the phase of the shutter blade S3 is ahead of the correct phase, the motor is driven at a voltage lower than that of the correct phase for the exact opposite reason to the above to delay the phase and return to the correct phase.

なお時刻T、においてコンパレータ7の出力がローレベ
ルからハイレベルに反転するがこの時はキャパシタ8、
抵抗9を通してトランジスタ10にベース電流が流れる
ことはない。従ってトランジスタ10はオフしたままだ
から第5図(b)に示す通りキャパシタ12の充電への
影響はない。
Note that at time T, the output of the comparator 7 is inverted from low level to high level, but at this time, the capacitor 8,
No base current flows to the transistor 10 through the resistor 9. Therefore, since the transistor 10 remains off, there is no effect on the charging of the capacitor 12, as shown in FIG. 5(b).

上述の如くしてシャッター羽根S3の回転位相を垂直同
期信号に対して常に一定の関係に制御できる。
As described above, the rotational phase of the shutter blade S3 can be controlled to always maintain a constant relationship with respect to the vertical synchronization signal.

次に107〜117よりなる第4図の下半分の回路につ
いて考える。この部分で上半分と違うのはPlがコンパ
レータ117の反転入力に接続され、P2がコンパレー
タ117の非反転入力に接続されている。つまりコンパ
レータ17に対して反転・非反転入力の接続関係が逆に
なっている。
Next, consider the circuit in the lower half of FIG. 4 consisting of circuits 107 to 117. This part is different from the upper half in that Pl is connected to the inverting input of the comparator 117, and P2 is connected to the non-inverting input of the comparator 117. In other words, the connection relationship between the inverting and non-inverting inputs of the comparator 17 is reversed.

従ってフンパレータ107の出力は11点の電位がほぼ
OvからほぼVccに変化する時刻T、にハイレベルか
らローレベルに変化する。この時トランジスタ110が
一時オンしてキャパシタ112の両端を短絡し、その後
上半分の回路と同様にして定電流回路111によってキ
ャパシタ112を充電する。サンプルホールド回路日の
出力にあられれる電圧v1は であり、シャッター羽根S4の回転位相を垂直同期信号
に対しである一定の関係に制御することができる。尚、
演算増幅器113の出力変化特性を第5図(e)に、垂
直同期信号を第5図(d)に示す。
Therefore, the output of the humpator 107 changes from high level to low level at time T when the potential at 11 points changes from approximately Ov to approximately Vcc. At this time, the transistor 110 is temporarily turned on to short-circuit both ends of the capacitor 112, and then the capacitor 112 is charged by the constant current circuit 111 in the same manner as the upper half circuit. The voltage v1 applied to the output of the sample and hold circuit is , and the rotational phase of the shutter blade S4 can be controlled to have a certain constant relationship with respect to the vertical synchronization signal. still,
The output change characteristics of the operational amplifier 113 are shown in FIG. 5(e), and the vertical synchronizing signal is shown in FIG. 5(d).

モータ17と117として同じものを用いるとすると位
相が正しく制御された状態でのサンプルホールド電圧は
等しくならなければならないからVム=V馳     
       (6)即ち、 すなわち、定電流源11、或は111の電流値を変化さ
せる事によってT、とT、の関係、すなわち露光時間T
、−TIを制御できる。
If the same motors 17 and 117 are used, the sample and hold voltages must be equal when the phase is properly controlled, so Vmu = Vchi
(6) That is, by changing the current value of the constant current source 11 or 111, the relationship between T and T, that is, the exposure time T
, -TI can be controlled.

このように2枚の羽根にそれぞれ電動機を取りつけ、そ
の回転位相を独立に制御している。かかる構成をとる事
により機構部品点数を大幅に減少し、機構的な構造を極
めて単純なものにできる。
In this way, an electric motor is attached to each of the two blades, and their rotational phases are controlled independently. By adopting such a configuration, the number of mechanical parts can be greatly reduced and the mechanical structure can be made extremely simple.

更に実際の開度<m光時間)を機械的な接触を全く使わ
ずに検出しこれをもとに帰還制御するために従来装置に
あったガタ・摩耗等に起因する精度や信頼性の低下を全
く心配しなくてよく、接触が伴なわない事はガタ・摩耗
からくる寿命の低下も大幅に改善できる。
Furthermore, since the actual opening < m light time) is detected without any mechanical contact and feedback control is performed based on this, accuracy and reliability deteriorate due to play and wear that existed in conventional devices. There is no need to worry about this at all, and since there is no contact, the reduction in life caused by looseness and wear can be greatly reduced.

尚、第6図に定電流値可変の定電流回路の一例を示す。Incidentally, FIG. 6 shows an example of a constant current circuit with variable constant current value.

図において21は電圧■1の電源、22は演算増幅器、
23はトランジスタ、24は可変抵抗である。
In the figure, 21 is a power supply with a voltage of 1, 22 is an operational amplifier,
23 is a transistor, and 24 is a variable resistor.

演算増幅器2の非反転入力端子に電圧■1が与えられる
と、反転入力端子も同電位となる。即ち、抵抗24の端
子間電圧も常に■1に維持されるので、可変抵抗24を
流れる電流値は抵抗値R4とすれば、 1丁   ・・・・・・・・・・・・(1)と表わせ、
トランジスタ23のコレクタには負荷インピーダンスに
依らず(1)の値に等しい電流が流れる。
When the voltage ■1 is applied to the non-inverting input terminal of the operational amplifier 2, the inverting input terminal also has the same potential. In other words, since the voltage between the terminals of the resistor 24 is always maintained at ■1, the current value flowing through the variable resistor 24 is 1 to 1, assuming the resistance value R4. Let it be expressed as,
A current equal to the value (1) flows through the collector of the transistor 23 regardless of the load impedance.

従って、第4図の定電流回路111に第5図の回路を用
いた場合、可変抵抗24の抵抗値を可変することにより
任意の開度、即ち露光時間を得ることができる。
Therefore, when the circuit shown in FIG. 5 is used for the constant current circuit 111 shown in FIG. 4, by varying the resistance value of the variable resistor 24, an arbitrary opening degree, that is, an arbitrary exposure time can be obtained.

尚、本実施例においては固体撮像素子を用いた撮像装置
を例に説明したが、銀塩フィルムを用いたカメラにも勿
論適用可能である。
Although this embodiment has been described using an example of an imaging device using a solid-state imaging device, it is of course applicable to a camera using a silver halide film.

〔効 果〕〔effect〕

以上説明したように、この発明によれば、2枚のシャッ
ター羽根を駆動するとき互に衝突し易い部位に、その衝
突を避けられるような互に反対方向に反り返った折り曲
げ部を設けたから、破損のおそれのない遮光手段を備え
た撮像装置を得ることができる。
As explained above, according to the present invention, bent portions that are curved in opposite directions to avoid collision are provided in the portions where two shutter blades are likely to collide with each other when driven, so that damage to the shutter blades can be avoided. Accordingly, it is possible to obtain an imaging device equipped with a light shielding means that is free from the risk of shading.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のロータリーシャッターの分解斜視図、第
2図は他の従来例を示す斜視図、第3図はこの発明の実
施例の斜視図、第4図は第3図のロータリーシャッター
の制御回路図、第5図は第4v!J各部の信号波形図、
第6図は定電流回路の一例を示す回路図である。 2・・・・・・・・・発光素子 4・・・・・・・・・受光素子 S3.S4・・・・・・シャッター羽根S3a、S4a
・・・・・・折り曲げ部7.107・・・・・・フンパ
レータ 11.111・・・・・・定電流源 13.16,113,116・・・・・・演算増幅器1
4.114・・・・・・アナログスイッチ17.117
・・・・・・モータ 18・・・・・・垂直同期信号
Fig. 1 is an exploded perspective view of a conventional rotary shutter, Fig. 2 is a perspective view showing another conventional example, Fig. 3 is a perspective view of an embodiment of the present invention, and Fig. 4 is an exploded perspective view of the rotary shutter of Fig. 3. Control circuit diagram, Figure 5 is 4v! Signal waveform diagram of each part of J,
FIG. 6 is a circuit diagram showing an example of a constant current circuit. 2... Light emitting element 4... Light receiving element S3. S4... Shutter blade S3a, S4a
...Bend portion 7.107...Funparator 11.111...Constant current source 13.16, 113, 116...Operation amplifier 1
4.114...Analog switch 17.117
...Motor 18...Vertical synchronization signal

Claims (1)

【特許請求の範囲】[Claims] 被写体を撮像する撮像手段と、この撮像手段への像光を
遮光するための、その辺部に互に反対方向へ反り返つた
折り曲げ部を備えた2枚のシャッター羽根から成る遮光
手段と、この2枚のシャッター羽根をそれぞれ駆動する
2つの駆動手段と、この2つの駆動手段の駆動位相を制
御する露光時間制御手段とを有する撮像装置。
An image capturing means for capturing an image of a subject; a light shielding means consisting of two shutter blades each having a bent portion curved in opposite directions on the side thereof for blocking image light to the image capturing means; An imaging device that has two drive means that drive two shutter blades, respectively, and an exposure time control means that controls the drive phase of these two drive means.
JP59266323A 1984-12-19 1984-12-19 Image pickup device Pending JPS61144633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59266323A JPS61144633A (en) 1984-12-19 1984-12-19 Image pickup device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59266323A JPS61144633A (en) 1984-12-19 1984-12-19 Image pickup device

Publications (1)

Publication Number Publication Date
JPS61144633A true JPS61144633A (en) 1986-07-02

Family

ID=17429323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59266323A Pending JPS61144633A (en) 1984-12-19 1984-12-19 Image pickup device

Country Status (1)

Country Link
JP (1) JPS61144633A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033178A (en) * 2009-08-05 2011-02-17 Nidec Sankyo Corp Rotary plate driving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011033178A (en) * 2009-08-05 2011-02-17 Nidec Sankyo Corp Rotary plate driving device

Similar Documents

Publication Publication Date Title
US4576456A (en) Image sensing system
KR930007174B1 (en) Pick-up transferring device
US3729728A (en) Capacitive switching device
US4989030A (en) Program shutter drive system
JPS61144633A (en) Image pickup device
US2935674A (en) Motor control
JPS6183525A (en) Exposure controller
CN115499573B (en) Video camera
JPS61133927A (en) Shutter device
TW451543B (en) Brushless motor system with capacitors
JP3980266B2 (en) DC motor rotation control device, electrical equipment and camera
JP3911155B2 (en) DC motor rotation detection device and rotation control device
JP3980273B2 (en) DC motor rotation control device and camera
JPH0251389A (en) Driving circuit for brushless motor
JP3812712B2 (en) DC motor rotation control device
CN111600516B (en) Drive control system for motor, automobile and control method
US5819122A (en) Camera
JPS6023361B2 (en) sequence switch
JP2002010666A (en) Rotation-control unit for dc motor
JP3328452B2 (en) Camera shutter position detection device
JP2024140993A (en) Detection device
KR880000673B1 (en) Controlling circuit of stepping motor
JP2553856B2 (en) Speed servo controller for camera mechanical member
JPS60164818A (en) Stop position control method of linear motor
JPS5910818Y2 (en) Automatic reversing device for tuning motor in automatic tuning tuner