JPS61144229A - Manufacture of super corrosion-resistant composite-alloy tool - Google Patents

Manufacture of super corrosion-resistant composite-alloy tool

Info

Publication number
JPS61144229A
JPS61144229A JP26583884A JP26583884A JPS61144229A JP S61144229 A JPS61144229 A JP S61144229A JP 26583884 A JP26583884 A JP 26583884A JP 26583884 A JP26583884 A JP 26583884A JP S61144229 A JPS61144229 A JP S61144229A
Authority
JP
Japan
Prior art keywords
alloy
shaped member
rod
hot
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26583884A
Other languages
Japanese (ja)
Inventor
Katsusato Fujiyoshi
藤好 克聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP26583884A priority Critical patent/JPS61144229A/en
Publication of JPS61144229A publication Critical patent/JPS61144229A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To obtain a super corrosion-resistant and high-toughness composite-alloy tool by providing prescribed hot hydrostatic extrusion and hot equidirectional press- working to a core stock of hard material covered with an outer-periphery stock of tough material, before heat-treating it through plastic working and outer-shape working. CONSTITUTION:A bar-shaped member formed by covering a core stock 2 consisting of hard material with an outer-periphery stock 3 of tough material is heated to a prescribed temperature in a furnace of inert-gas atmosphere, and is press-formed by hot extrusion with the aid of a die of sintered hard alloy. The obtained bar-shaped composite alloy is provided with hot equidirectional press-working in a vacuum Ar- atmosphere furnace under prescribed temperature, pressure and time to form the porous structure in the central part into a perfect close-packed one. The composite alloy provided with said workings are worked into a micropunch 14, an ejector 15 and a microdrill 16, etc. through plastic working and shape working, and then they are finished into final products by heat-treating them. In this way, a composite alloy tool super in corrosion-resistance and excellent in toughness is manufactured.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は直径が10 mrn以下の工具、例えばドリル
、パンチ、エンジニャプラスチック用のエジェクタービ
ン、入子ピン、エンドミルカッター、切削用チップカッ
ター、リーマ等を製造する超耐摩耗複合合金工具の製造
方法に関する。
Detailed Description of the Invention "Industrial Application Field" The present invention is applicable to tools having a diameter of 10 mrn or less, such as drills, punches, ejector turbines for engineering plastics, nesting pins, end mill cutters, cutting chip cutters, This invention relates to a method for manufacturing a super wear-resistant composite alloy tool for manufacturing reamers and the like.

「従来の技術」 従来、工具を製造する場合には、一体もののハイスまた
は超硬、サーメット等の材料を切削、研削等の加工によ
って、所定の工具形状に形成していた。このため、次に
列挙するような欠点があった。
"Prior Art" Conventionally, when manufacturing tools, a single piece of material such as high speed steel, carbide, cermet, etc. was formed into a predetermined tool shape by cutting, grinding, or other processing. For this reason, there were drawbacks as listed below.

(1)粉末ハイス、粉末タングステンカーバイド等、粉
末合金を成形し、焼結加工を一個ずつ行なっているので
、生産性が悪く、高度な加工手数がかかり、コスト高と
なる。
(1) Powder alloys such as powdered HSS and powdered tungsten carbide are molded and sintered one by one, resulting in poor productivity, high processing time, and high costs.

(2)全体を高価な粉末合金で形成しているので、材料
費が高価である。
(2) Since the entire structure is made of an expensive powder alloy, the material cost is high.

(3)工具製品に形成してから焼結し、研削等の礪械加
工等によって所定の形状に加工するため、じん性がもと
もと低い材質であるので、精密度を昂めるほど折れやす
くなる。
(3) Since the material is formed into a tool product, sintered, and processed into the specified shape by grinding or other machining processes, the toughness of the material is inherently low, so the higher the precision, the more likely it will break. .

「本発明の目的」 本発明は以上のような従来の欠点に鑑み、加工が容易で
、工具の刃となる部分は従来品に比べて硬度もHV 1
500以上の垣間摩耗であり、回転や振動の負荷がかか
る部分には強じん部材により長寿命となる、安価に製造
することのできる超耐摩耗複合合金工具の製造方法を得
るにある。
``Object of the present invention'' In view of the above-mentioned drawbacks of the conventional products, the present invention provides a tool that is easy to process and has a hardness of HV 1 in the part that becomes the blade of the tool compared to conventional products.
To provide a method for manufacturing a super wear-resistant composite alloy tool that can be manufactured at low cost and has a wear resistance of 500 degrees or more, has a long life due to the use of tough members in parts that are subjected to rotational and vibration loads.

「本発明の目的を達成するための手段」本発明は芯材と
、この芯材の外周部を覆う外部材のいずれか一方にじん
性のある材料を用い他方に硬質材を用いて熱間静油圧押
出成形を行ない棒状部材を成形する棒状部材成形工程と
、この棒状部材成形工程で成形された棒状部材の組織密
度を100パーセントとする熱間等方加圧加工する熱間
等方加圧加工工程と、この熱間等方加圧加工工程を経た
ものを工具製品とするための所定の火造鍛造、ロール圧
延、線引加工等の塑性加工を行なう塑性加工工程と、こ
の塑性加工工程を経たものを切断、切削、研削等により
所定の外形形状に加工する外形形状加工工程と、この外
形形状加工工程を経たものを熱処理加工する熱処理加工
工程とを含むことを特徴としている。
"Means for Achieving the Object of the Invention" The present invention consists of a core material and an outer material covering the outer periphery of the core material, both of which are made of a tough material and the other of which is made of a hard material. A rod-shaped member forming process in which a rod-shaped member is formed by hydraulic extrusion molding, and a hot isostatic pressing process in which the rod-shaped member formed in this rod-shaped member forming process is subjected to hot isostatic pressing to achieve a tissue density of 100%. process, a plastic working process in which the product that has gone through this hot isostatic pressing process is subjected to plastic working such as prescribed fire forging, roll rolling, wire drawing, etc. to make a tool product, and this plastic working process. It is characterized by including an external shape processing step in which the processed material is processed into a predetermined external shape by cutting, cutting, grinding, etc., and a heat treatment processing step in which the processed product is subjected to heat treatment.

「本発明の実施例」 以下、図面に示す実施例により本発明の詳細な説明する
"Embodiments of the present invention" The present invention will be described in detail below with reference to embodiments shown in the drawings.

第1図の実施例において、1は硬質材を用いた芯材2と
、この芯材2の外周部をじん性のある材質を用いた円筒
状の外部材3で覆い、熱間静油圧押出成形を行ない棒状
部材4を成形する棒状部材成形工程で、この棒状部材成
形工程1は芯材2の外周部を円筒状の外部材3で覆うよ
うに複合させる複合工程5と、この複合工程5で複合さ
せた棒状部材4をアルゴン等の不活性ガス雰囲気の加熱
炉内で1000℃以上に加熱し、断面減少率20%以上
のリダクションをかけながら超硬金型ダイス6で押出加
圧成形させ、芯材2と外部材3の二種以上の111mを
接合拡散させて棒状の複合合金4Aに加工する複合合金
加工工程7とがらなっている。
In the embodiment shown in FIG. 1, 1 is a core material 2 made of a hard material, and the outer periphery of this core material 2 is covered with a cylindrical outer material 3 made of a tough material, which is then hot hydrostatically extruded. In the rod-shaped member forming process in which a rod-shaped member 4 is formed by molding, this rod-shaped member forming process 1 includes a composite process 5 in which the outer circumference of the core material 2 is covered with a cylindrical outer member 3; The composite rod-shaped member 4 is heated to 1000° C. or higher in a heating furnace with an inert gas atmosphere such as argon, and is extruded and pressure-molded using a carbide mold die 6 while applying a reduction with a cross-section reduction rate of 20% or more. , a composite alloy processing step 7 in which two or more types of 111 m of core material 2 and external material 3 are bonded and diffused and processed into a bar-shaped composite alloy 4A.

前記芯材2に用いる硬質材は例えば合金工具鋼、焼結高
速度鋼、サーメット合金、含窒化チタン焼結チタン合金
等が用いられる。また前記外部材3に用いるじん性のあ
る材料は、例えばマルテンサイト系ステンレス合金、炭
素工具鋼、合金工具鋼、含モリブデン高速度鋼、構造用
合金鋼等が用いられる。
As the hard material used for the core material 2, for example, alloy tool steel, sintered high-speed steel, cermet alloy, nitride-containing sintered titanium alloy, etc. are used. The tough material used for the external member 3 includes, for example, martensitic stainless steel alloy, carbon tool steel, alloy tool steel, molybdenum-containing high-speed steel, structural alloy steel, and the like.

8は前記棒状部材成形工程1で成形された棒状の複合合
金4Aの組織密度を100パーセントとする熱間等方加
圧加工する熱間等方加圧加工工程で、この熱間等方加圧
加工工程8は、棒状の複合合金4Aを真空アルゴンガス
雰囲気中の炉内9で1000℃以上で1500気圧以上
の熱間等方加圧加工を15分以上行ない、熱間押出加圧
成形加工時に表面加工によって生じた中心部のポーラス
な組織を100%密度の組織にするものである。
8 is a hot isostatic pressing step in which the rod-shaped composite alloy 4A formed in the rod-shaped member forming step 1 is subjected to hot isostatic pressing to bring the tissue density to 100%; In the processing step 8, the rod-shaped composite alloy 4A is subjected to hot isostatic pressing at 1000°C or higher and 1500 atm or higher for 15 minutes or more in a furnace 9 in a vacuum argon gas atmosphere, and during hot extrusion pressure forming processing. The porous structure in the center created by surface processing is made into a 100% dense structure.

10は前記熱間等方加圧加工工程8を経たものを工具製
品とするための所定の人造鍛造、ロール圧延、線引加工
等の塑性加工を行なう塑性加工工程である。
Reference numeral 10 denotes a plastic working step in which a predetermined plastic working process such as artificial forging, roll rolling, wire drawing, etc. is performed to produce a tool product from the product that has passed through the hot isostatic pressing step 8.

11は前記塑性加工工程10を経たものを切断、切削、
研削等により所定の外形形状、例えば第2図および第3
図に示すマイクロパンチ14、第4図および第5図ある
いは第6図および第7図に示すエジェクタービン15.
15A1第8図および第9図に示すマイクロドリル16
等に加工する外形形状加工工程である。
11 is cutting the material that has undergone the plastic working step 10;
By grinding etc., a predetermined external shape, for example, Figs. 2 and 3
The micro punch 14 shown in the figure, the ejector turbine 15 shown in FIGS. 4 and 5 or 6 and 7.
15A1 Micro drill 16 shown in Figs. 8 and 9
This is an external shape processing process.

12は前記外形形状加工工程11を経たものを熱処理加
工する熱処理加工工程で、この熱処理加工工程12は熱
処理炉内で1180℃以上で直径1cjIに対して1分
を基準として真空またはアルゴンガス雰囲気中で温度保
持を行なった後、100℃〜120℃になるまで、急冷
却焼入れを行なう急冷却焼入れ工程12Aと、この急冷
却焼入れ工程12Aを経たものを焼戻し用窒素ガス雰囲
気炉内へ入れ、500℃〜600℃で60分以上を保持
する焼戻し工程123とからなっている。
Reference numeral 12 denotes a heat treatment process in which the material that has passed through the external shape process 11 is heat treated, and this heat treatment process 12 is performed in a vacuum or argon gas atmosphere at 1180°C or higher in a heat treatment furnace for 1 minute per diameter 1cjI. After the temperature is maintained at 100°C to 120°C, a rapid cooling and quenching process 12A is performed in which the temperature is rapidly cooled and quenched, and the product that has gone through this rapid cooling and quenching process 12A is placed in a nitrogen gas atmosphere furnace for tempering, and heated at 500°C. ℃~600℃ for 60 minutes or more.

「本発明の異なる実施例丁 次に第10図ないし第14図に示す本発明の異なる  
   1実施例につき説明する。なお、この実施例の説
明に当って、前記本発明の実施例と同一構成部分には同
一符号を付して重複する説明を省略する。
"Different Embodiments of the Invention Different Embodiments of the Invention"
One example will be explained. In the description of this embodiment, the same components as those in the embodiment of the present invention will be denoted by the same reference numerals and redundant explanation will be omitted.

第10図の実施例において、前記本発明の実施例と主に
異なる点は、棒状部材4で、この棒状部材4は芯材2A
としてじん性のある材料を用い、外部材3Aとして硬質
材を用いて形成した点で、このように構成することによ
り、第11図および第12図に示すマイクロドリル18
や第13図および第14図に示すようなビン19に加工
することができる。
In the embodiment shown in FIG. 10, the main difference from the embodiment of the present invention is a rod-shaped member 4, which has a core material 2A.
By using such a structure, the micro drill 18 shown in FIGS.
Alternatively, it can be processed into a bottle 19 as shown in FIGS. 13 and 14.

なお、前記芯材2.2A外部材3.3Aを複数の層状に
形成したものを用いても良い。
Note that the core material 2.2A and the outer material 3.3A may be formed into a plurality of layers.

「本発明の効果」 以上の説明から明らかなように、本発明にあっては、次
に列挙する効果がある。
"Effects of the Present Invention" As is clear from the above description, the present invention has the following effects.

(1)芯材と外部材のいずれか一方にじん性のある材料
を用い、他方に硬質材を用いているので、十分な硬度と
じん性を備えた工具が得られる。
(1) Since a tough material is used for either the core material or the outer material, and a hard material is used for the other, a tool with sufficient hardness and toughness can be obtained.

(2)外部材をじん性のある材質にすることによって、
硬質材を加工するものに比べ、外形形状の加工が容易と
なり、生産性の向上を図ることができる。
(2) By making the external material a tough material,
Compared to those that process hard materials, machining of the external shape is easier and productivity can be improved.

く3)芯材あるいは外部材の一方に硬質材よりも材料費
の安いしん性のある材質を用いているので、材料費が安
価である。
3) The material cost is low because either the core material or the external material is made of a tough material that is cheaper than a hard material.

(4)前記(2)、(3)によってコストの低減を図る
ことができる。
(4) Costs can be reduced by the above (2) and (3).

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す工程図、第2ずおよび
第3図はマイクロパンチの説明図、第4図および第5図
、第6図および第7図はそれぞれエジェクタービンの説
明図、第8図および第9図はマイクロドリルの説明図、
第10図は本発明の異なる実施例を示す工程図、第11
図および第12図はマイクロドリルの説明図、第13図
および第14図はビンの説明図である。 1:棒状部材成形工程、2.2A:芯材、3.3A:外
部材、  4:棒状部材、4A:複合合金、   5:
複合工程、6:超硬金型ダイス、 7:複合合金加工工
程、8:熱間等方加圧加工工程、 9:炉内、      10:l!7性加工工程、11
:外形形状加工工程、12:熱処理加工工程、12A:
急冷却焼入れ工程、 12B:焼戻し工程、  14:マイクロパンチ、15
.15A:エジェクタービン、 16:マイクロドリル、 18:マイクロドリル、19
:ピン。 特許出願人   藤 好 克 聡 第8図 第11図 A 第13図 A 第9図 第12図 簡14図
Fig. 1 is a process diagram showing one embodiment of the present invention, Figs. 2 and 3 are explanatory diagrams of a micro punch, Figs. 4 and 5, and Figs. 6 and 7 are explanatory diagrams of an ejector turbine, respectively. Figures 8 and 9 are explanatory diagrams of the micro drill;
FIG. 10 is a process diagram showing different embodiments of the present invention, and FIG.
1 and 12 are explanatory diagrams of a micro drill, and FIGS. 13 and 14 are explanatory diagrams of a bottle. 1: Rod-shaped member forming process, 2.2A: Core material, 3.3A: External material, 4: Rod-shaped member, 4A: Composite alloy, 5:
Composite process, 6: Carbide mold die, 7: Composite alloy processing process, 8: Hot isostatic pressing process, 9: Inside the furnace, 10: l! 7 sex processing process, 11
: External shape processing step, 12: Heat treatment processing step, 12A:
Rapid cooling quenching process, 12B: Tempering process, 14: Micro punch, 15
.. 15A: Eject turbine, 16: Micro drill, 18: Micro drill, 19
:pin. Patent Applicant: Yoshikatsu Satoshi Fuji Figure 8 Figure 11 A Figure 13 A Figure 9 Figure 12 Simplified Figure 14

Claims (1)

【特許請求の範囲】 1)芯材と、この芯材の外周部を覆う外部材のいずれか
一方にじん性のある材料を用い他方に硬質材を用いて熱
間静油圧押出成形を行ない棒状部材を成形する棒状部材
成形工程と、この棒状部材成形工程で成形された棒状部
材の組織密度を100パーセントとする熱間等方加圧加
工する熱間等方加圧加工工程と、この熱間等方加圧加工
工程を経たものを工具製品とするための所定の火造鍛造
、ロール圧延、線引加工等の加工の内すくなくとも1個
以上の塑性加工を行なう塑性加工工程と、この塑性加工
工程を経たものを切断、切削、研削等の加工の内すくな
くとも1個以上の加工により所定の外形形状に加工する
外形形状加工工程と、この外形形状加工工程を経たもの
を熱処理加工する熱処理加工工程とを含むことを特徴と
する超耐摩耗複合合金工具の製造方法。 2)じん性のある材料としてマルテンサイト系ステンレ
ス合金、炭素工具鋼、合金工具鋼、含モリブデン高速度
鋼、構造用合金鋼等が用いられていることを特徴とする
特許請求の範囲第1項記載の超耐摩耗複合合金工具の製
造方法。 3)硬質材として合金工具鋼、焼結高速度鋼、サーメッ
ト合金、含窒化チタン、焼結チタン合金等が用いられて
いることを特徴とする特許請求の範囲第1項または第2
項記載の超耐摩耗複合合金工具の製造方法。 4)棒状部材成形工程は芯材の外周部を外部材で覆うよ
うに複合させる複合工程と、この複合工程で複合された
ものをアルゴン等の不活性ガス雰囲気の加熱炉内で10
00℃以上に加熱し、断面減少率20%以上のリダクシ
ョンをかけながら超硬金型ダイスで押出加圧成形させて
芯材と外部材の二種以上の組織を接合拡散させて複合合
金に加工する複合合金加工工程とからなることを特徴と
する特許請求の範囲第1項ないし第3項いずれかに記載
の超耐摩耗複合合金工具の製造方法。 4)熱間等方加圧加工工程は棒状部材成形工程を経た棒
状部材を真空アルゴンガス雰囲気中の炉内で1000℃
以上で1500気圧以上の熱間等方加圧加工を15分以
上行ない、熱間押出加圧成形加工時の表面加工によつて
生じた中心部のポーラスな組織を100%密度の組織に
するものであることを特徴とする特許請求の範囲第1項
ないし第4項いずれかに記載の超耐摩耗複合合金工具の
製造方法。 6)熱処理加工工程は外形形状加工工程を経たものを熱
処理炉内で1180℃以上で直径1cmに対して1分を
基準として真空またはアルゴンガス雰囲気中で温度保持
を行なった後、100℃〜120℃になるまで急冷却焼
入れを行なう急冷却焼入れ工程と、この急冷却焼入れ工
程を経たものを焼戻し用窒素ガス雰囲気炉内へ入れ50
0℃〜600℃で60分以上を保持する焼戻し工程とか
らなることを特徴とする特許請求の範囲第1項ないし第
5項いずれかに記載の超耐摩耗複合合金工具の製造方法
[Scope of Claims] 1) A rod-shaped member formed by hot hydrostatic extrusion using a tough material for one of a core material and an external material covering the outer periphery of the core material and a hard material for the other. A rod-shaped member forming step in which the rod-shaped member is formed, a hot isostatic pressing step in which the rod-shaped member formed in this rod-shaped member forming step is subjected to hot isostatic pressing to achieve a tissue density of 100%, and this hot, etc. A plastic working process in which plastic working is performed on at least one of the prescribed processes such as fire forging, roll rolling, wire drawing, etc. in order to make a tool product from a product that has undergone a pressure working process, and this plastic working process. an external shape processing process in which the product that has undergone the above process is processed into a predetermined external shape by at least one or more processes such as cutting, cutting, grinding, etc.; and a heat treatment process in which the product that has undergone this external shape processing process is heat treated. A method for manufacturing a super wear-resistant composite alloy tool, comprising: 2) Claim 1, characterized in that martensitic stainless steel alloy, carbon tool steel, alloy tool steel, molybdenum-containing high-speed steel, structural alloy steel, etc. are used as the tough material. The method for manufacturing the super wear-resistant composite alloy tool described above. 3) Claim 1 or 2, characterized in that alloy tool steel, sintered high-speed steel, cermet alloy, nitride-containing titanium, sintered titanium alloy, etc. are used as the hard material.
A method for manufacturing a super wear-resistant composite alloy tool as described in . 4) The rod-shaped member forming process includes a composite process in which the outer periphery of the core material is covered with an external material, and the composite product in this composite process is heated for 10 minutes in a heating furnace in an inert gas atmosphere such as argon.
The material is heated to 00°C or higher and is extruded and pressure-formed using a carbide mold die while applying a reduction with a cross-section reduction rate of 20% or more to bond and diffuse the two or more structures of the core material and external material to form a composite alloy. A method for manufacturing a super wear-resistant composite alloy tool according to any one of claims 1 to 3, characterized in that the method comprises a composite alloy processing step of: 4) In the hot isostatic pressing process, the rod-shaped member that has undergone the rod-shaped member forming process is heated to 1000°C in a furnace in a vacuum argon gas atmosphere.
The above is subjected to hot isostatic pressing at 1500 atmospheres or more for 15 minutes or more to transform the porous structure in the center created by surface processing during hot extrusion pressure molding into a 100% dense structure. A method for manufacturing a super wear-resistant composite alloy tool according to any one of claims 1 to 4, characterized in that: 6) In the heat treatment process, the product that has undergone the external shape processing process is kept at a temperature of 1180℃ or higher in a vacuum or argon gas atmosphere for 1 minute per 1cm diameter in a heat treatment furnace, and then heated to 100℃ to 120℃. There is a rapid cooling and quenching process in which the product is rapidly cooled and quenched to a temperature of
6. The method for manufacturing a super wear-resistant composite alloy tool according to any one of claims 1 to 5, comprising a tempering step of holding at 0°C to 600°C for 60 minutes or more.
JP26583884A 1984-12-17 1984-12-17 Manufacture of super corrosion-resistant composite-alloy tool Pending JPS61144229A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26583884A JPS61144229A (en) 1984-12-17 1984-12-17 Manufacture of super corrosion-resistant composite-alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26583884A JPS61144229A (en) 1984-12-17 1984-12-17 Manufacture of super corrosion-resistant composite-alloy tool

Publications (1)

Publication Number Publication Date
JPS61144229A true JPS61144229A (en) 1986-07-01

Family

ID=17422762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26583884A Pending JPS61144229A (en) 1984-12-17 1984-12-17 Manufacture of super corrosion-resistant composite-alloy tool

Country Status (1)

Country Link
JP (1) JPS61144229A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733081C1 (en) * 2020-02-11 2020-09-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный университет» Method for thermal treatment of cutting tools from carbide-containing hard alloys
US11471943B2 (en) 2020-12-16 2022-10-18 Mtc Powder Solutions Ab Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
US11919086B2 (en) 2020-12-16 2024-03-05 Schlumberger Technology Corporation Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2733081C1 (en) * 2020-02-11 2020-09-29 федеральное государственное бюджетное образовательное учреждение высшего образования «Оренбургский государственный университет» Method for thermal treatment of cutting tools from carbide-containing hard alloys
US11471943B2 (en) 2020-12-16 2022-10-18 Mtc Powder Solutions Ab Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
US11919086B2 (en) 2020-12-16 2024-03-05 Schlumberger Technology Corporation Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment
US11919087B2 (en) 2020-12-16 2024-03-05 Schlumberger Technology Corporation Hot isostatic pressing (HIP) fabrication of multi-metallic components for pressure-controlling equipment

Similar Documents

Publication Publication Date Title
JP3309344B2 (en) Manufacturing method of gear with center hole
KR20160028469A (en) Methods for producing forged products and other worked products
CN105269270B (en) Production process for disc cutter ring of tunnel boring machine (TBM)
CN101422861A (en) Precision forming method for special-shaped deep hole parts
CN106670359B (en) A kind of GH4169 alloy rings and preparation method thereof
CN110369654B (en) Forging method of titanium alloy tibial plateau artificial joint implant
CN103659186A (en) Medical titanium alloy artificial joint precise forging method
KR20010072609A (en) Working and annealing liquid phase sintered tungsten heavy alloy
KR20060066629A (en) A large profile ring and method
CN112872261A (en) Forging method of titanium alloy flange plate forge piece
JP2008229680A (en) PROCESS FOR PRODUCING MOLDED PRODUCT OF TiAl-BASED ALLOY
US4860567A (en) Ring forging process
JPH0557323B2 (en)
JP2001524606A (en) Densification of sintered metal powder by point contact
JPS61144229A (en) Manufacture of super corrosion-resistant composite-alloy tool
JPH0555202B2 (en)
JPH0592329A (en) Manufacture of drill material
CN113941678B (en) Forging process for hub sleeve warm forging and cold extrusion and die thereof
CN115488342A (en) Dissimilar metal blisk equal-material-increasing short-process preparation method
CN111570606B (en) Fine blanking die with integral strength and work hardening of blanking surface and fine blanking method
JPH0327296B2 (en)
US3987658A (en) Graphite forging die
JP5081177B2 (en) Manufacturing method of extrusion die
CN113260473A (en) 3D printed high-carbon-content steel and preparation method thereof
CN111644628A (en) Method for manufacturing powder metallurgy parts