JPS61143710A - Focus adjusting device - Google Patents

Focus adjusting device

Info

Publication number
JPS61143710A
JPS61143710A JP20780085A JP20780085A JPS61143710A JP S61143710 A JPS61143710 A JP S61143710A JP 20780085 A JP20780085 A JP 20780085A JP 20780085 A JP20780085 A JP 20780085A JP S61143710 A JPS61143710 A JP S61143710A
Authority
JP
Japan
Prior art keywords
sample
focus
image
optical system
objective optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20780085A
Other languages
Japanese (ja)
Inventor
Masashi Okada
正思 岡田
Yuji Akiyama
秋山 裕爾
Koji Kawada
河田 孝治
Atsushi Kawahara
河原 厚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP20780085A priority Critical patent/JPS61143710A/en
Publication of JPS61143710A publication Critical patent/JPS61143710A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)

Abstract

PURPOSE:To speed up focusing even to the surface of a sample having a different in height by providing a means for offsetting the prescribed value of a reference in such a manner that an objective optical system is focused to the face different from the surface in the prescribed region of a sample by a servocontrol device. CONSTITUTION:The information quantity of contrast exist most in a part C and the focus is consequently matched with the part C if there is a rugged difference to the sample 4. The device which permits automatic focusing to the part A or part B and observation thereof by applying an offset to a zero crossing point level thereby deviating the focal position toward the optical axis direction by as much as the prescribed distance corresponding to the step between the parts A and B with respect to the part C, i.e., an offset generating means 16 is provided to a comparing differential circuit 16 in this stage. The quick focusing even to the surface of the sample having the difference in height is thus made possible.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は焦点調節装置に係り、特に顕微鏡の焦点調節装
置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a focus adjustment device, and more particularly to an improvement in a focus adjustment device for a microscope.

(発明の背景) 従来の顕微鏡の焦点調節装置の例においては、結像点の
前後のインフォーカスとアウトフォーカスの位置に1次
元イメージセンサが配置されている。イメージセンサか
らの像出力のうち高周波成分が最大となるのはイメージ
センサ上に像が結像された時である。試料ステージの移
動に対するインフォーカス用とアウトフォーカス用イメ
ージセンサからの高周波成分出力が結像点に関して対称
的であるとすると、両出力の高周波成分の差をとればそ
のゼロ・クロッシングポイントが結像点であるといえる
(Background of the Invention) In an example of a conventional focus adjustment device for a microscope, one-dimensional image sensors are arranged at in-focus and out-of-focus positions before and after an imaging point. The high frequency component of the image output from the image sensor is at its maximum when an image is formed on the image sensor. Assuming that the high frequency component outputs from the in-focus and out-of-focus image sensors relative to the movement of the sample stage are symmetrical with respect to the imaging point, the zero crossing point is the imaging point by taking the difference between the high frequency components of both outputs. You can say that.

従ッてゼロ・クロッシングポイントが得られるように試
料ステージをサーボ装置によって上下動させれば、観察
している像に対して正確な合焦状態が得られる訳である
。ところが観察している試料の表面は必らずしも華1面
ではなく多かれ少なかれ凹凸が存在する。このため、ゼ
ロ・クロッシングポイントの得られるところが試料表面
の凹部、又は凸部に強く依存してしまうといった問題が
生じ、凹部の内にある凸部の表面を観察しようとしても
、凹部の表面にしか合焦されず、はなはだ不便であった
Therefore, if the sample stage is moved up and down by the servo device so as to obtain the zero crossing point, the image being observed can be accurately focused. However, the surface of the sample being observed is not necessarily a uniform surface, but has more or less irregularities. For this reason, the problem arises that the location where the zero crossing point can be obtained depends strongly on the concave or convex portions of the sample surface, and even if you try to observe the surface of the convex part inside the concave part, you can only observe the surface of the concave part. It wasn't in focus, which was extremely inconvenient.

(発明の目的) 本発明は上記欠点を解決し、高低差のある試料表面に対
しても迅速に焦点合わせのできる焦点調節装置を得るこ
とを目的とする。
(Objective of the Invention) An object of the present invention is to solve the above-mentioned drawbacks and to obtain a focusing device capable of quickly focusing even on a sample surface having height differences.

(発明の概要〕 本発明は、試料を観察するための対物光学系と、試料の
所定領域の表面に対して対物光学系が合焦したとき所定
値(ゼロ・クロッシングポイント9になり、この所定値
を基準にして前記表面と対物光学系との間隔変化に応じ
て連続的に大きさが変化する電気信号を発生する゛電気
回路と、この電気信号が所定値になるように対物光学系
と試料との間隔を調節するサーボ装置とを有する装置に
おいて、サーボ装置によって試料の所定領域表面とはわ
ずかに異なる面に対して対物光学系が合焦するように、
前記所定値をオフセットさせる手段を設けることを技術
的要点としている。
(Summary of the Invention) The present invention provides an objective optical system for observing a sample, and a predetermined value (zero crossing point 9) when the objective optical system is focused on the surface of a predetermined area of the sample. an electric circuit that generates an electric signal whose magnitude changes continuously according to changes in the distance between the surface and the objective optical system based on the value; In an apparatus having a servo device that adjusts the distance from the sample, the objective optical system is focused by the servo device on a surface slightly different from the surface of a predetermined area of the sample.
The technical point is to provide means for offsetting the predetermined value.

(実施例) 第1図に本発明による焦点調節装置の構成の実施例10
0を示す。実施例iooは落射照明の金属顕微鏡に応用
したものであるが透過照明の場合でも同様の構成を得る
事は可能である。ステージ上下移動ハンドル2によって
ステージ1上の試料4が焦点を合わせるために上下に移
動される。落射照明装置3が試料4を照明している。試
料4から反射された照明光は対物レンズミ2により結像
され、ビームスプリッタ5を透過したものはAに、反射
したものはA′に結像する。第1図に示されたAとA′
の位置を焦点位置とすると、Aより後方に距離tの位置
のアウトフォーカスにアウトフォーカス用イメージセン
サ6そしてA′より前方に距離t′の位置のインフォー
カスにインフォーカス用イメージセンサ7が配置されて
いる。イメージセンサ6はイメージセンサ駆動回路11
により走査され、光像出力はサンプルホールド回路12
を経由しバンドパスフィルタ13を通される。このバン
ドパスフィルタ13により光像の高周波成分がとり出さ
れ、実効値積分回路14により所定の期間においてその
高周波成分の実効値が積分される。その実効値積分出力
は増幅器15により適当に増幅された後、差動増幅回路
16の一方の入力罠印加される。一方イメージセンサ7
上の光像出力も上述と全く同様の電気的処理を経て差動
増幅回路16の他方の入力に印加される。(第1図にお
いてはイメージセンサ7の電気信号処理系はイメージセ
ンサ6の電気信号処理系と同じであるので省略して示さ
れている。) 第2図にイメージセンサ上の光像とその電気的信号処理
の様子を示す。第2図(A)は一本の直線からなる試料
4を上下に移動させた時01次元イメージセンサ上の光
像を示すが、中央の光像でイメージセンサ上に結像して
いる。イメージセンサの走査は矢印で示されている方向
である。第2図(B)は光像の光−電気変換出力であり
、第2図(C)はバンドパスフィルタ13の出力で高周
波成分が抽出されたものであり、第2図(D)はその実
効値積分出力を示す。それは、図示のごとくイメージセ
ンサ上に結像した時、最大値となる曲線である。
(Example) FIG. 1 shows Example 10 of the configuration of a focus adjustment device according to the present invention.
Indicates 0. Although Example ioo is applied to a metallurgical microscope using epi-illumination, it is possible to obtain a similar configuration even in the case of transmitted illumination. A stage up and down movement handle 2 moves the sample 4 on the stage 1 up and down to focus. An epi-illumination device 3 illuminates the sample 4. The illumination light reflected from the sample 4 is imaged by the objective lens 2. The illumination light that passes through the beam splitter 5 is focused on A, and the reflected light is focused on A'. A and A' shown in Figure 1
Assuming that the position is the focal position, an out-of-focus image sensor 6 is placed in the out-of-focus position at a distance t behind A', and an in-focus image sensor 7 is placed in the in-focus position at a distance t' in front of A'. ing. The image sensor 6 is an image sensor drive circuit 11
The optical image output is scanned by the sample and hold circuit 12.
and is passed through a band pass filter 13. The bandpass filter 13 extracts high frequency components of the optical image, and the effective value integrating circuit 14 integrates the effective values of the high frequency components during a predetermined period. The effective value integrated output is appropriately amplified by an amplifier 15 and then applied to one input trap of a differential amplifier circuit 16. On the other hand, image sensor 7
The above optical image output is also applied to the other input of the differential amplifier circuit 16 through the same electrical processing as described above. (In Fig. 1, the electrical signal processing system of the image sensor 7 is omitted because it is the same as the electrical signal processing system of the image sensor 6.) Fig. 2 shows the optical image on the image sensor and its electrical signal processing system. This shows how the target signal processing works. FIG. 2(A) shows the optical image on the 01-dimensional image sensor when the sample 4, which is made up of a single straight line, is moved up and down, and the central optical image is focused on the image sensor. The scanning of the image sensor is in the direction indicated by the arrow. Figure 2 (B) shows the optical-to-electrical conversion output of the optical image, Figure 2 (C) shows the high frequency component extracted from the output of the band pass filter 13, and Figure 2 (D) shows the output of the bandpass filter 13. Shows the effective value integral output. This is a curve that has a maximum value when an image is formed on an image sensor as shown in the figure.

第2図(E)にアウトフォーカス用イメージセンサ上と
インフォーカス用イメージセンサ上の実効値積分出力2
2と23を試料4の上下の移動に対する関数として示す
。アウトフォーカスとインフォーカスの位置は結像点の
上下に位置しているから、その出力は第2図(E)にお
いて結像位置の左右にその最大値を有する曲線となる。
Figure 2 (E) shows the effective value integral output 2 on the out-of-focus image sensor and the in-focus image sensor.
2 and 23 as a function of the vertical movement of sample 4. Since the out-of-focus and in-focus positions are located above and below the imaging point, the output becomes a curve having its maximum value on the left and right of the imaging position in FIG. 2(E).

出力曲線22と23は差動増幅回路16で差動的に加算
されるので、差信号は第2図(E)の実線21のように
なる。出力曲線22と23とが結像点に関して対称であ
るならば差信号曲線21のゼロ・クロッシングポイント
24は結像点位置に対応する。従って差信号をサーボモ
ータ17に帰還してステージ上下ハンドル2を駆動すれ
ば焦点制御が可能になる。
Since the output curves 22 and 23 are differentially added by the differential amplifier circuit 16, the difference signal becomes as shown by the solid line 21 in FIG. 2(E). If the output curves 22 and 23 are symmetrical with respect to the image point, the zero crossing point 24 of the difference signal curve 21 corresponds to the image point position. Therefore, if the difference signal is fed back to the servo motor 17 and the stage upper and lower handles 2 are driven, focus control becomes possible.

しかし、この制御方法はアウトフォーカスとインフォー
カス位置での光像出力が対称である事を前提としている
が、実際には第3図(A)のように結像点への前後のア
ウトフォーカスとインフォーカス上の像BとCはその大
きさが異なる。第3図(A)において4は試料、32は
対物レンズである。センサの長さが同じであればとらえ
る情報量はインフォーカス位置の方が多くなってしまう
。又対物レンズの性質上アウトフォーカス像の方がコン
トラストが悪いので結果として第3図(B)のような実
効値出力となる。即ち、アウトフォーカス用イメージセ
ンサ6の実効値出力曲線36はインフォーカス用イメー
ジセンサTの実効値出力曲線37より出力レベルが低く
、従ってその差信号曲線38は結像点でゼロ・クロッシ
ングしなくなる。第3図(B)において24と24′の
位置ずれが焦点誤差となる。
However, this control method assumes that the optical image output at the out-of-focus and in-focus positions is symmetrical, but in reality, the out-of-focus before and after the imaging point is symmetrical, as shown in Figure 3 (A). Images B and C on the in-focus have different sizes. In FIG. 3(A), 4 is a sample and 32 is an objective lens. If the length of the sensor is the same, the amount of information captured will be greater at the in-focus position. Furthermore, due to the nature of the objective lens, the out-of-focus image has poorer contrast, resulting in an effective value output as shown in FIG. 3(B). That is, the effective value output curve 36 of the out-of-focus image sensor 6 has a lower output level than the effective value output curve 37 of the in-focus image sensor T, and therefore the difference signal curve 38 does not zero-cross at the imaging point. In FIG. 3(B), the positional deviation between 24 and 24' becomes a focus error.

そこで本実施例においてはこの誤差を除くために第1図
においてインフォーカス用イメージセンサTの手前に像
拡大用凹レンズ8を挿入している。この部分についての
構成を第・3図(C)に示す。拡大される前のインフォ
ーカス位置の像をCとすると凹レンズ8により拡大され
た像をC′とする。そしてアウトフォーカス位置の像B
と像C′の大きさを同じようにすることにより、両イメ
ージセンサからの出力は結像点に関し対称となりそのゼ
ロ・クロッシングポイントが焦点位置に対応し精度のよ
い制御が可、能となる。
Therefore, in this embodiment, in order to eliminate this error, an image enlarging concave lens 8 is inserted in front of the in-focus image sensor T in FIG. 1. The configuration of this part is shown in Figure 3 (C). Let C be the image at the in-focus position before being magnified, and C' be the image magnified by the concave lens 8. And image B at out-of-focus position
By making the size of the image C' and the image C' the same, the outputs from both image sensors are symmetrical with respect to the image forming point, and the zero crossing point thereof corresponds to the focal position, making it possible to control with high precision.

ところで、本実施例のように像のコントラストに基づい
た焦点検出では、電気的出力の大小は又試料40反射率
又は透過率に依存する。そこで第1図に示すように出力
平均化回路1Bでイメージセンサの出力平均を取り、そ
の出力平均値でAGC回路19を制御して増幅器15の
利得を制御している。この場合は対物レンズの倍率の変
化に伴う光像強度の変化に対応することが可能である。
By the way, in focus detection based on image contrast as in this embodiment, the magnitude of the electrical output also depends on the reflectance or transmittance of the sample 40. Therefore, as shown in FIG. 1, an output averaging circuit 1B averages the output of the image sensor, and the AGC circuit 19 is controlled by the average output value to control the gain of the amplifier 15. In this case, it is possible to cope with changes in the light image intensity due to changes in the magnification of the objective lens.

さて、上記の如く構成された装置によって試料を試料4
に第6図で示すように凹凸の段差がある場合においては
、コントラストの情報量は0部に最も多くあるので0部
に焦点があうことになる。本発明においてはこのような
場合ゼロ−クロッシングポイントレベルにオフセットを
与える事により焦点位置を0部に対するA、B部の段差
に対応する所定の距離だけ光軸方向にずらすことにより
A部又はB部に自動的に焦点を合わせて観察することが
できる装置すなわちオフセット発生手段16aを比較差
動回路16に設ける。本装置を含まない時は、自動焦点
装置の動作を解除シテマニュアルに切り換え、手動で操
作しなければならないことになり、はなはだ不便である
Now, using the apparatus configured as described above, the sample 4 is
When there are uneven steps as shown in FIG. 6, the amount of contrast information is greatest in the 0th part, so the 0th part is in focus. In such a case, in the present invention, by giving an offset to the zero-crossing point level, the focal position is shifted in the optical axis direction by a predetermined distance corresponding to the step difference between parts A and B with respect to part 0. The comparison differential circuit 16 is provided with a device that can automatically focus and observe the image, that is, an offset generating means 16a. When this device is not included, the automatic focusing device must be switched to manual mode and operated manually, which is extremely inconvenient.

(発明の効果) 以上に開示された改良された焦点調節装置によって、様
々な試料に対してより精度の高い焦点合せが迅速に行な
えるという効果を得ることができた。
(Effects of the Invention) The improved focus adjustment device disclosed above has the effect that more accurate focusing can be quickly performed on various samples.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明を金属顕微鏡に応用した焦点調節装置
の実施例を示す構成図、第2図はステージの上下の移動
に対する電気・的出力の様子を示す図、第3図はインフ
ォーカス位置とアウトフォーカス位置の光像の大きさの
相違と、その補正手段を示す図、及び第4図は段差のあ
る試料を示す図である。 〔主要部分の符号の説明〕 対物光学系    ・・・・・・32 第1のイメージセンサ・・・・・・ 6第2のイメージ
センサ・・・・・・ T凹レンズ     ・・・・・
・ 8 電気回路・・・・・・11.12.13.14.15.
16.1B、19 サーボ装置 ・・・・・・17.2 オフセット発生手段・・・・・・16a出願人  日本
光学工業株式会社 第2図
Fig. 1 is a configuration diagram showing an embodiment of a focus adjustment device applying the present invention to a metallurgical microscope, Fig. 2 is a diagram showing the state of electrical output in response to the vertical movement of the stage, and Fig. 3 is an in-focus diagram. FIG. 4 is a diagram showing the difference in the size of the optical image between the position and the out-of-focus position and a means for correcting the difference, and FIG. 4 is a diagram showing a sample with a step. [Explanation of symbols of main parts] Objective optical system...32 First image sensor...6 Second image sensor...T-concave lens...
・ 8 Electric circuit...11.12.13.14.15.
16.1B, 19 Servo device...17.2 Offset generating means...16a Applicant Nippon Kogaku Kogyo Co., Ltd. Figure 2

Claims (1)

【特許請求の範囲】 試料を観察するための対物光学系と、試料 の所定領域の表面に対して前記対物光学系が合焦したと
き所定値になり、該所定値を基準にして前記表面と対物
光学系との間隔変化に応じて連続的に大きさが変化する
電気信号を発生する電気回路と、該電気信号が前記所定
値になるように前記対物光学系と試料との間隔を調節す
るサーボ装置とを有する装置において、前記サーボ装置
によつて前記試料の所定領域表面とは異なる面に対して
前記対物光学系が合焦するように、前記所定値をオフセ
ットさせるオフセット発生手段を含むことを特徴とする
焦点調節装置。
[Scope of Claims] An objective optical system for observing a sample, and a predetermined value when the objective optical system is focused on the surface of a predetermined region of the sample, and a distance between the surface and the surface based on the predetermined value. an electric circuit that generates an electrical signal whose magnitude continuously changes according to a change in the distance between the objective optical system and the sample; and an electric circuit that adjusts the distance between the objective optical system and the sample so that the electric signal reaches the predetermined value. and a servo device, further comprising an offset generating means for offsetting the predetermined value so that the objective optical system is focused by the servo device on a surface different from the surface of the predetermined region of the sample. A focusing device featuring:
JP20780085A 1985-09-21 1985-09-21 Focus adjusting device Pending JPS61143710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20780085A JPS61143710A (en) 1985-09-21 1985-09-21 Focus adjusting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20780085A JPS61143710A (en) 1985-09-21 1985-09-21 Focus adjusting device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14968678A Division JPS5576310A (en) 1978-12-05 1978-12-05 Automatic focusing device

Publications (1)

Publication Number Publication Date
JPS61143710A true JPS61143710A (en) 1986-07-01

Family

ID=16545702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20780085A Pending JPS61143710A (en) 1985-09-21 1985-09-21 Focus adjusting device

Country Status (1)

Country Link
JP (1) JPS61143710A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235375A (en) * 1990-04-12 1993-08-10 Olympus Optical Co., Ltd. Focusing position detecting and automatic focusing apparatus with optimal focusing position calculation method
JPH09197251A (en) * 1996-01-23 1997-07-31 Olympus Optical Co Ltd Automatic focusing device
US6052223A (en) * 1996-01-09 2000-04-18 Olympus Optical Co., Ltd. Microscope with chromatic aberration correcting function

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356047A (en) * 1976-10-30 1978-05-22 Nippon Chemical Ind Automatic focus detection device of phase contrast microscope
JPS53123945A (en) * 1977-04-05 1978-10-28 Commissariat Energie Atomique Method of checking automatic focusing system of microscope and its apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5356047A (en) * 1976-10-30 1978-05-22 Nippon Chemical Ind Automatic focus detection device of phase contrast microscope
JPS53123945A (en) * 1977-04-05 1978-10-28 Commissariat Energie Atomique Method of checking automatic focusing system of microscope and its apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5235375A (en) * 1990-04-12 1993-08-10 Olympus Optical Co., Ltd. Focusing position detecting and automatic focusing apparatus with optimal focusing position calculation method
US6052223A (en) * 1996-01-09 2000-04-18 Olympus Optical Co., Ltd. Microscope with chromatic aberration correcting function
JPH09197251A (en) * 1996-01-23 1997-07-31 Olympus Optical Co Ltd Automatic focusing device

Similar Documents

Publication Publication Date Title
US4958920A (en) Process and apparatus for the automatic focusing of microscopes
US5530237A (en) Apparatus for focusing on transparent objects
JPS6113722B2 (en)
US4686360A (en) Device for the automatic focussing of optical instruments with complementary measuring and detecting diaphragms
JPH0364044B2 (en)
US4935612A (en) Autofocus system and method of using the same
JPH08211281A (en) Automatic focus detecting method
JPH08320430A (en) Automatic focus detector
JP3290606B2 (en) Autofocus device for microscope
JPS61143710A (en) Focus adjusting device
JPH10239037A (en) Observation device
JP3695818B2 (en) Microscope focus detector
JP2001311866A (en) Automatic focusing method and device for microscope
JP3376680B2 (en) Microscope equipment
JP4007643B2 (en) Microscope focus detection apparatus and microscope focus detection method
JPS61143709A (en) Focus adjusting device
JPH11337812A (en) Autofocus device
JPH06205269A (en) Automatic focus adjustment device and video camera
JP2828145B2 (en) Optical section microscope apparatus and method for aligning optical means thereof
JPH09127403A (en) Automatic focus detector
JPH10307252A (en) Automatic focusing optical television camera microscope
JPH08122623A (en) Autofocusing device
JP3709238B2 (en) Automatic focus detection device and microscope using the same
JPH04113305A (en) Focusing device
JP2000195095A (en) Objective lens inclination-inspecting device, method for manufacturing optical disk pick-up, and optical disk pick- up manufactured by manufacturing method