JPS61142973A - Current type converter - Google Patents

Current type converter

Info

Publication number
JPS61142973A
JPS61142973A JP59263535A JP26353584A JPS61142973A JP S61142973 A JPS61142973 A JP S61142973A JP 59263535 A JP59263535 A JP 59263535A JP 26353584 A JP26353584 A JP 26353584A JP S61142973 A JPS61142973 A JP S61142973A
Authority
JP
Japan
Prior art keywords
voltage
power source
series
power supply
output transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59263535A
Other languages
Japanese (ja)
Inventor
Hiroyasu Oota
博康 太田
Naoyuki Ushiyama
牛山 直幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59263535A priority Critical patent/JPS61142973A/en
Publication of JPS61142973A publication Critical patent/JPS61142973A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To set the withstand voltage of a switching element to the same value as that of a power source voltage by connecting two switching elements and an energy storing reactor in series, and providing an output transformer between the neutral point of the reactor and one terminal of the power source. CONSTITUTION:A power source voltage Vin is divided by 1/2 by capacitors C1, C2 having large capacity, and transistors (Tr) Q1, Q2 and an energy storing reactor L are connected symmetrically with respect to a midpoint O in series with both terminals of a power source. Further, the primary winding N1 of an output transformer T is connected between the neutral point O and the connecting point P of the capacitors C1, C2. A reset winding NR and reset diode DR are connected in series with both terminals of the power source. Thus, the Trs Q1, Q2 are alternately turned ON and OFF by a drive signal from the exterior, the ON time is controlled to control the output voltage Vout.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、スイッチング電源等に使用されるDC−DC
コンバータ、特に出力トランスの1次側にエネルギ蓄積
用リアクトルをもつ電流型コンバータに関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to a DC-DC power supply used in a switching power supply, etc.
The present invention relates to a converter, particularly a current type converter having an energy storage reactor on the primary side of an output transformer.

〔従来の技術〕[Conventional technology]

従来、電流型コンバータとして、第5図に示すようなプ
ッシュプル構成のコンバータが知られている。同図にお
いて、Ql、Q2はスイッチング素子としてのトランジ
スタ、Lはエネルギ蓄積用リアクトル、NRはリセット
巻線、DRはリセット用ダイオード、Tは出力トランス
、N1はその1次巻線、N2はその2次巻線、vINは
電源(入力)電圧、Vouyは出力電圧を示す、かかる
電流型コンバータは、出力トランスの2次側に図示と同
様の回路を多数設ける場合これと同数のチョークコイル
を要せず、1個のりアクドルで多出力の安定化が可能で
あり、また動作が安定であるという特長をもっている。
Conventionally, as a current type converter, a converter having a push-pull configuration as shown in FIG. 5 is known. In the figure, Ql and Q2 are transistors as switching elements, L is an energy storage reactor, NR is a reset winding, DR is a reset diode, T is an output transformer, N1 is its primary winding, and N2 is its second winding. In the next winding, vIN is the power supply (input) voltage, and Vouy is the output voltage. In such a current type converter, if a large number of circuits similar to those shown in the figure are provided on the secondary side of the output transformer, the same number of choke coils are required. First, it has the feature that it is possible to stabilize multiple outputs with a single glue axle, and its operation is stable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

第5図において、トランジスタQ1.Q2は外部からの
駆動信号によって交互にオン・オフを繰返すが、トラン
スTの1次巻線N1によりオフしている側のトランジス
タに電源電圧VINに重畳された電圧が加わるので、電
源電圧の2倍以上の耐圧をもつスイッチング素子が必要
である。、また、エネルギ蓄積用リアクトルしに結合の
よいリセット巻線NRを要する。これらの点は、コスト
面からみて不利である。
In FIG. 5, transistor Q1. Q2 is alternately turned on and off by an external drive signal, but since the voltage superimposed on the power supply voltage VIN is applied to the transistor on the off side by the primary winding N1 of the transformer T, A switching element with a breakdown voltage more than double that is required. In addition, a reset winding NR with good coupling to the energy storage reactor is required. These points are disadvantageous from a cost standpoint.

したがって、本発明は、スイッチング素子の耐圧が電源
電圧と同一でよく、エネルギ蓄積用リアクトルに結合す
るリセット巻線を不要とする構成も可能な電流型コンバ
ータを提供することが目的である。
Therefore, an object of the present invention is to provide a current type converter that allows the switching element to have the same breakdown voltage as the power supply voltage, and that can be configured to eliminate the need for a reset winding coupled to the energy storage reactor.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の目的を達成するため、電源の両端に、
交互にオン・オフを繰返す2つのスイッチング素子とエ
ネルギ蓄積用リアクトルとを直列に且つ中点に対して対
称的に接続すると共に、この中点と電源の一端の間に出
力トランスの1?!!?、巻線とコンデンサとを直列に
接続し、出力トランスの2次巻線側より出力電圧を取出
すように構成した。
In order to achieve the above object, the present invention provides
Two switching elements that alternately turn on and off and an energy storage reactor are connected in series and symmetrically with respect to a midpoint, and an output transformer 1? is connected between this midpoint and one end of the power supply. ! ! ? The winding and the capacitor are connected in series, and the output voltage is taken out from the secondary winding side of the output transformer.

〔作用〕[Effect]

2つのスイッチング素子の一方がオンのときコンデンサ
に電源電圧が充電され、他方のスイッチング素子がオン
のときその電荷が放電される。したがって、スイッチン
グ素子がオフのときその両端に加わる電圧は、電源電圧
を超えない。
When one of the two switching elements is on, the capacitor is charged with the power supply voltage, and when the other switching element is on, the charge is discharged. Therefore, the voltage applied across the switching element when it is off does not exceed the power supply voltage.

〔実施例〕〔Example〕

第1〜第3図は、本発明の3つの実施例を示す回路図で
ある。第4図は、これらの実施例の動作を示す波形図で
ある。これらの図において、第5図と対応する部分には
同一の符号を付しである。
1 to 3 are circuit diagrams showing three embodiments of the present invention. FIG. 4 is a waveform diagram showing the operation of these embodiments. In these figures, parts corresponding to those in FIG. 5 are given the same reference numerals.

C1,C2はトランジスタQl、Q2のオン、オフによ
る電荷移動量に対し充分大きな容量のコンデンサで、電
源電圧VINはこれら2つのコンデンサCz、C2によ
って1/2に分圧される。トランジスタQl、Q2とエ
ネルギ蓄積用リアクトルLとは、電源VINの両端に、
直列に且つ中点Oに対して対称的に接続される。また、
この中点0とコンデンサC工、C2の接続点Pの間に、
出力トランスTの1次巻線N1が接続される。リセット
巻線NRとリセット用ダイオードDRは、従来と同様電
源VINの両端に直列に接続される。■+iL2は、ト
ランジスタQ2のエミッタ・コレクタ間電圧を示す、ト
ランジスタQ1とC2は外部からの駆動信号により第4
図に示すように交互にオン・オフされ、これらのオン時
間を制御することにより出力電圧VolJTが制御され
る。2つのスイッチング素子がこのように交互にオン・
オフする場合は、出力トランスTに偏った直流が印加さ
れることによる偏磁現象が起こらない。
C1 and C2 are capacitors having a sufficiently large capacity for the amount of charge transferred by turning on and off the transistors Ql and Q2, and the power supply voltage VIN is divided into 1/2 by these two capacitors Cz and C2. The transistors Ql and Q2 and the energy storage reactor L are connected to both ends of the power supply VIN,
They are connected in series and symmetrically about the midpoint O. Also,
Between this midpoint 0 and the connection point P of capacitor C, C2,
The primary winding N1 of the output transformer T is connected. The reset winding NR and the reset diode DR are connected in series across the power supply VIN as in the conventional case. ■+iL2 indicates the emitter-collector voltage of transistor Q2.Transistors Q1 and C2 are driven by an external drive signal
As shown in the figure, they are turned on and off alternately, and by controlling these on-times, the output voltage VolJT is controlled. The two switching elements are turned on and off alternately in this way.
When the output transformer T is turned off, a biased magnetism phenomenon due to biased direct current being applied to the output transformer T does not occur.

第1図の実施例は、電流型コンバータの原理をハーフブ
リフジ型のコンバータ回路に適用した基本的なものであ
る。第2図の実施例は、第1図のエネルギ蓄積用リアク
トルLの巻線を2つに分割して変形したものであり、動
作は第1図のものと同一である。第3図の実施例は、リ
セット巻線NRを除去しリセット用ダイオードDRを2
個にしたものである。本例は、専用のリセット巻線NR
が不要のためリアクトルLの巻線構造が簡単になるうえ
、スイッチング素子に過渡的なスパイク状電圧が加わる
のを防止できるものである。すなわち、出力トランスT
の1次側電圧がリンギング等によって変動することによ
り過渡的なスパイク状電圧が発生するが、ダイオードD
Rがこの電圧を電源に吸収させるためこのスパイク状電
圧を防ぐことができる。
The embodiment shown in FIG. 1 is a basic one in which the principle of a current type converter is applied to a half bridge type converter circuit. The embodiment shown in FIG. 2 is a modification in which the winding of the energy storage reactor L shown in FIG. 1 is divided into two parts, and the operation is the same as that shown in FIG. 1. In the embodiment of FIG. 3, the reset winding NR is removed and the reset diode DR is replaced with 2.
It is made into individual pieces. In this example, a dedicated reset winding NR
Since this is not necessary, the winding structure of the reactor L is simplified, and it is possible to prevent transient spike voltages from being applied to the switching elements. That is, the output transformer T
A transient spike-like voltage is generated when the primary voltage of the diode D fluctuates due to ringing, etc.
Since R absorbs this voltage into the power supply, this spike voltage can be prevented.

これらの実施例回路において、コンデンサCi +02
はトランジスタQ2.QLのオン時に電源電圧VINに
よって交互に充電され、トランジスタQllQ2のオン
時に放電されるので、トランジスタQ1゜C2のオフ時
にその両端にかかる電圧が電源電圧VINを超えること
ばない。第4図のV&2の波形は、スイッチング素子Q
2について動作中その両端の電圧V&2が入力電圧Vo
wを超えないことを示す。
In these example circuits, capacitor Ci +02
is transistor Q2. Since QL is alternately charged by the power supply voltage VIN when QL is on and discharged when transistor QllQ2 is on, the voltage applied across the transistor Q1°C2 never exceeds the power supply voltage VIN when it is off. The waveform of V&2 in Figure 4 is the switching element Q
2. During operation, the voltage V&2 across it is the input voltage Vo.
Indicates that it does not exceed w.

すなわち、従来より耐圧の低いスイッチング素子で電流
型コンバータを構成することができ、前述の電流型コン
バータの特長(1個のりアクドルで多出力の安定化が可
能であること、また動作が安定であること、)を生かす
ことができる。なお、上記の実施例ではコンデンサを2
個用いたが、そのうちどちらか一方を省略することも可
能である。
In other words, it is possible to configure a current-type converter with a switching element that has a lower withstand voltage than conventional converters, and the above-mentioned features of current-type converters (the ability to stabilize multiple outputs with a single glue handle, stable operation, etc.) ). In addition, in the above embodiment, the capacitor is 2
Although both are used, it is also possible to omit one of them.

この場合は、1つのコンデンサに対し充放電が行われ、
充放電を繰返しながら次第にバランス点に到達する。ま
た、スイッチング素子は必ずしもトランジスタに限られ
ない。
In this case, one capacitor is charged and discharged,
By repeating charging and discharging, a balance point is gradually reached. Furthermore, the switching element is not necessarily limited to a transistor.

〔発明の効果〕〔Effect of the invention〕

以上説明したとおり、本発明によれば、従来より耐圧の
低いスイッチング素子で電流型コンバータを実現するこ
とができる。また、ハーフブリッジ本来の特長であるト
ランスの偏磁がないという特長を生かすことができる。
As explained above, according to the present invention, a current type converter can be realized using a switching element having a lower breakdown voltage than the conventional one. In addition, it is possible to take advantage of the original feature of a half bridge, which is that there is no unbalanced magnetism in the transformer.

更に、第3実施例のように、専用のりセンl−8線を省
略することによりリアクトルの巻線構造を簡単にし、リ
セット用ダイオードを2個用いることによりスイッチン
グ素子に過渡的なスパイク状電圧が加わるのを防ぐこと
ができる。
Furthermore, as in the third embodiment, the winding structure of the reactor is simplified by omitting the dedicated glue sensor l-8 wire, and by using two reset diodes, transient spike-like voltage is not generated in the switching element. can be prevented from joining.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の(基本的)実施例を示す回路図
、第2図は第2の(変形)実施例を゛示す回路図、第3
図は第3の実施例を示す回路図、第4図はこれらの実施
例の動作を示す波形図、第す図は従来例を示す回路図で
ある。 VIN・・・電源(入力)電圧、Ql、Q2  ・・・
スイッチング素子、L・・・エネルギ蓄積用リアクトル
、0・・・中点、T・・・出力トランス、N1 ・・・
その1次巻線、N2・・・その2次巻線、C1,C2・
・・コンデンサ、VOIJT・・・出力電圧。
FIG. 1 is a circuit diagram showing a first (basic) embodiment of the present invention, FIG. 2 is a circuit diagram showing a second (modified) embodiment, and FIG.
FIG. 4 is a circuit diagram showing the third embodiment, FIG. 4 is a waveform diagram showing the operation of these embodiments, and FIG. 2 is a circuit diagram showing a conventional example. VIN...Power supply (input) voltage, Ql, Q2...
Switching element, L... Energy storage reactor, 0... Midpoint, T... Output transformer, N1...
Its primary winding, N2... its secondary winding, C1, C2...
...Capacitor, VOIJT...Output voltage.

Claims (1)

【特許請求の範囲】[Claims] 電源の両端に、駆動信号により交互にオン・オフを繰返
す2つのスイッチング素子とエネルギ蓄積用リアクトル
とを直列に且つ中点に対して対称的に接続すると共に、
この中点と上記電源の一端の間に、出力トランスの1次
巻線とコンデンサとを直列に接続し、上記出力トランス
の2次巻線側より出力電圧を取出すようにした電流型コ
ンバータ。
Two switching elements that are alternately turned on and off by a drive signal and an energy storage reactor are connected to both ends of the power supply in series and symmetrically with respect to the midpoint,
A current type converter, in which a primary winding of an output transformer and a capacitor are connected in series between this midpoint and one end of the power supply, and an output voltage is taken out from the secondary winding side of the output transformer.
JP59263535A 1984-12-13 1984-12-13 Current type converter Pending JPS61142973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59263535A JPS61142973A (en) 1984-12-13 1984-12-13 Current type converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59263535A JPS61142973A (en) 1984-12-13 1984-12-13 Current type converter

Publications (1)

Publication Number Publication Date
JPS61142973A true JPS61142973A (en) 1986-06-30

Family

ID=17390886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59263535A Pending JPS61142973A (en) 1984-12-13 1984-12-13 Current type converter

Country Status (1)

Country Link
JP (1) JPS61142973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119574A (en) * 1988-10-26 1990-05-07 Kyushu Univ Switching power supply

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02119574A (en) * 1988-10-26 1990-05-07 Kyushu Univ Switching power supply

Similar Documents

Publication Publication Date Title
US10256729B1 (en) Switched-capacitor converter with interleaved half bridge
US6479970B2 (en) Un-interruptible power supply
US5514921A (en) Lossless gate drivers for high-frequency PWM switching cells
JPH0746823A (en) Power conversion apparatus
US20080225560A1 (en) Switching controller for parallel power converters
US4811185A (en) DC to DC power converter
CA1265843A (en) Voltage divider circuit
JP2002315331A (en) Power supply equipped with dc-dc converter
JPS61142973A (en) Current type converter
US10263516B1 (en) Cascaded voltage converter with inter-stage magnetic power coupling
JPH01231661A (en) Switching power supply
US11705823B2 (en) Double-ended dual magnetic DC-DC switching power converter with stacked secondary windings and an AC coupled output
JPH1198829A (en) Switching power source
JP2538699Y2 (en) Full bridge type inverter
KR200337815Y1 (en) Output compensation circuit of trans
JPS6035308Y2 (en) transistor switching circuit
JPS62260562A (en) Series resonance converter
KR200250640Y1 (en) Output compensation circuit of trans
JPH02197251A (en) Dc-dc converter
JPS6154873A (en) Transformerless dc/dc converter
JPH0714260B2 (en) Rechargeable power supply
SU1624639A1 (en) Gate converter
JPH0295165A (en) Dc/dc converter
SU1453561A1 (en) D.c. voltage converter
SU905965A1 (en) Dc-to-ac voltage converter