JPS61142779A - Thin film material - Google Patents

Thin film material

Info

Publication number
JPS61142779A
JPS61142779A JP59264649A JP26464984A JPS61142779A JP S61142779 A JPS61142779 A JP S61142779A JP 59264649 A JP59264649 A JP 59264649A JP 26464984 A JP26464984 A JP 26464984A JP S61142779 A JPS61142779 A JP S61142779A
Authority
JP
Japan
Prior art keywords
thin film
film
doping
films
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264649A
Other languages
Japanese (ja)
Inventor
Juichi Shimada
嶋田 寿一
Shinichi Muramatsu
信一 村松
Haruo Ito
晴夫 伊藤
Sunao Matsubara
松原 直
Nobuo Nakamura
信夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59264649A priority Critical patent/JPS61142779A/en
Publication of JPS61142779A publication Critical patent/JPS61142779A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To prevent deterioration of doping characteristics in a semiconductor thin film, by doping impurities in a region, which is separated from the surface or the interface of each thin film layer of a single layer thin film or multilayer thin films by 10-300Angstrom . CONSTITUTION:On a glass substrate 13, amorphous silicon (a-Si:H) super thin films 11 and 11' including hydrogen, whose thickness is 100Angstrom , are formed. An a-Si:H film 12 including boron is formed by SiH4 gas, in which 0.5ppm diborane gas is mixed, between the films 11 and 11'. The thickness of the a-Si:H films 11 and 11' is 40Angstrom . The thickness of the a-Si:H film 12 including B is 20Angstrom . The a-Si:H film formed by doping B indicates P type conductivity. Activated energy is 0.4eV, which is not different from the case the film is thick. The conductivity is 3X10<-4>(OMEGA-cm)<-1>. This is higher than the following case by about 20%: B is doped in the thin film, whose thickness is the same as that of the all amorphous films 11, 11' and 12; the a-Si:H film 12 is formed by doping B; B is concentratedly inputted in the region of the film 12; and B, whose amount is equal to the amount of above described B, is uniformly inputted to the entire film thickness region.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、不純物のドーピング特性に優れた半導体薄膜
材料に関し、特に1μm以下の薄膜材料。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor thin film material with excellent impurity doping characteristics, particularly a thin film material of 1 μm or less.

さらには300 X以下の超薄膜材料に適用する場合に
おいて優れたドーピング特性を示す、結晶質あるいは非
晶質の薄膜材料に関するものである。
Furthermore, the present invention relates to crystalline or amorphous thin film materials that exhibit excellent doping properties when applied to ultra-thin film materials of 300X or less.

〔発明の背景〕[Background of the invention]

近年、結晶質薄膜成長技術や非晶質薄膜成長技術の著し
い進歩によって、半導体薄膜の成長を原子レベルの精度
で制御して、キャリヤのド・ブロイ波長と同程度の膜厚
10〜300Xを持ついわゆる超薄膜が形成できるよう
になり、バルク半導体には見られない二次元電気伝導性
や特異な光学特性が現われ、この超薄膜の特徴を利用す
ることが活発に研究開発されている(たとえば広瀬・宮
崎;半導体超格子とその光電プロセス、日本学術振興会
光電相互変換第125委員会第111回研究会資料第4
25号、 P、13〜18)0 上記の研究論文によれば9人工的に超薄膜を多層化して
いわゆる多層周期構造を持つ超格子を形成し、量子井戸
レーザ(多重量子井戸レーザ)。
In recent years, with remarkable advances in crystalline thin film growth technology and amorphous thin film growth technology, it is now possible to control the growth of semiconductor thin films with atomic-level precision and achieve a film thickness of 10 to 300X, which is comparable to the de Broglie wavelength of carriers. It has become possible to form so-called ultra-thin films, which have two-dimensional electrical conductivity and unique optical properties that are not found in bulk semiconductors, and active research and development is being conducted to utilize the characteristics of these ultra-thin films (for example, Hirose et al.・Miyazaki; Semiconductor superlattice and its photoelectric process, Japan Society for the Promotion of Science, 125th Committee on Photoelectric Interconversion, 111th Research Meeting Material No. 4
No. 25, P, 13-18) 0 According to the above research paper 9, ultra-thin films are artificially multilayered to form a superlattice with a so-called multilayer periodic structure, and a quantum well laser (multiple quantum well laser) is produced.

量子井戸光双安定スイッチ、多重へテロ接合アバランシ
ェ・フォトダイオード、およびn1pi型超格子構造受
光素子等の光電変換デバイス、薄膜電界効果トランジス
タ、高輝度の発光素子などへ、超格子構造の特徴を利用
する種々の応用が試みられている。そしてこの研究論文
において、不純物ド−ピングによる超格子構造の形成や
、超格子構造への電導型制御用不純物、深い準位形成用
不純物。
Utilizing the characteristics of superlattice structures for photoelectric conversion devices such as quantum well optical bistable switches, multiple heterojunction avalanche photodiodes, and n1pi type superlattice structure photodetectors, thin film field effect transistors, and high-brightness light emitting devices. Various applications have been attempted. In this research paper, we discuss the formation of a superlattice structure by doping impurities, impurities for controlling the conductivity type of the superlattice structure, and impurities for forming deep levels.

発光中心形成用不純物のドーピングが活用されている。Doping with impurities to form luminescent centers is utilized.

しかし、超薄膜内や超格子各層内での不純物の分布の最
適化については配慮されておらず。
However, no consideration has been given to optimizing the impurity distribution within the ultrathin film or within each layer of the superlattice.

せいぜい薄膜の膜厚方向のバンド構造での電位分布を制
御するための不純物分布を考慮するものがすべてであり
、空乏層の制御等が主目的である。
At most, all of them consider the impurity distribution to control the potential distribution in the band structure in the thickness direction of the thin film, and the main purpose is to control the depletion layer.

また、せいぜい超薄膜や超格子構造のポテンシャル井戸
内での量子化準位の制御が行なわれている程度に過ぎな
い。
Furthermore, at most, the quantization level within the potential well of an ultra-thin film or superlattice structure is controlled.

従来、結晶のエピタキシャル成長法やアモルファス材料
の化学気相成長法による単層の薄膜または多層薄膜材料
において、導電型制御のための不純物のドーピングによ
って生ずるドナーやアクセプタの有効半径は、薄膜材料
や不純物の種類によって異なるかだ(・たい50〜50
0X程度である。また2発光中心形成用不純物ではlO
〜50X程度の有効半径を持つものもある。いずれにし
ろ、それらの不純物の有効半径以下の膜厚の薄膜や薄膜
の表面または界面から、この有効半径以内の領域にドー
ピングされた不純物は、十分に厚い薄膜材料の表面また
は界面から離れた領域にドーピングされた不純物とは異
なった電子状態を形成する。そのために、上述の不純物
のドーピングによって生ずるドナーやアクセプタの有効
半径程度に薄い超薄膜や超格子構造においては、ドーピ
ング特性が厚膜の半導体薄膜の場合とは異なり、エネル
ギー準位の変化、活性化率の低下、再結合速度の増大と
いった特性劣化を引き起こし易いことが判明した。
Conventionally, in single-layer thin films or multilayer thin film materials produced by epitaxial growth of crystals or chemical vapor deposition of amorphous materials, the effective radius of donors and acceptors produced by doping with impurities to control the conductivity type depends on the thickness of the thin film material and impurities. Rafts vary depending on the type (・Tai 50-50
It is about 0X. In addition, in the case of impurities for forming two emission centers, lO
Some have an effective radius of ~50X. In any case, impurities doped in a region within this effective radius from the surface or interface of a thin film or thin film whose thickness is less than or equal to the effective radius of those impurities will be removed from a region far from the surface or interface of a sufficiently thick thin film material. forms an electronic state different from that of impurities doped with For this reason, in ultra-thin films or superlattice structures that are as thin as the effective radius of donors and acceptors caused by doping with the impurities mentioned above, doping characteristics differ from those of thick semiconductor thin films, and energy level changes and activation It has been found that this tends to cause characteristic deterioration such as a decrease in the rate of recombination and an increase in the recombination rate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、上述した従来技術の問題点を解消し、
半導体薄膜において薄膜が十分に厚くバルク材料として
のドーピング特性を示す膜厚領域から、量子井戸として
表現できる超薄膜領域の中間領域で生ずるドーピング不
純物の表面または界面での相互作用による特性劣化を防
止し、ドーピング特性の優れた薄膜材料を提供すること
にある。
The purpose of the present invention is to solve the problems of the prior art described above,
In semiconductor thin films, it is possible to prevent characteristic deterioration due to interaction of doping impurities at the surface or interface, which occurs in the intermediate region between the film thickness region where the thin film is sufficiently thick and exhibits doping characteristics as a bulk material, and the ultra-thin film region that can be expressed as a quantum well. The object of the present invention is to provide a thin film material with excellent doping characteristics.

〔発明の概要〕[Summary of the invention]

本発明者らは、半導体薄膜において、単層の薄膜または
多層構造薄膜の各薄膜層の表面または界面から所定の距
離だけ離れた領域に不純物をドーピングすると、半導体
薄膜におけるドーピング特性の劣化を防ぐことができ9
本来の量子井戸効果や多層構造効果を十分に発揮させる
ことができる有効な手段となることを発見し本発明を完
成するに至った。
The present inventors have discovered that doping an impurity in a region separated by a predetermined distance from the surface or interface of each thin film layer of a single-layer thin film or a multilayer structure thin film prevents deterioration of doping characteristics in the semiconductor thin film. Can be done 9
The present invention was completed after discovering that this is an effective means for fully utilizing the original quantum well effect and multilayer structure effect.

本発明は、半導体薄膜において、単層の薄膜または多層
構造薄膜の各薄膜層の表面または界面からlO〜300
Xの範囲を除く領域に、p型、n型。
The present invention provides semiconductor thin films with lO to 300
P type and n type in the area excluding the range of X.

および発光中心となる不純物の群の中から選択された少
なくとも一種の不純物を含有させることを特徴とする薄
膜材料である。
and a thin film material containing at least one kind of impurity selected from the group of impurities that serve as luminescent centers.

そして本発明は、単層の薄膜または多層構造薄膜の各薄
膜層の表面または界面から10〜300Xの範囲を除く
領域に、p型、n型、および発光中心となる不純物の群
より選択された少なくとも一種の不純物を含有させた薄
膜層の一種を少なくとも含む積層(多層)構造の半導体
薄膜材料である。
In addition, the present invention provides an impurity selected from the group consisting of p-type, n-type, and luminescent center impurities in a region excluding a range of 10 to 300X from the surface or interface of each thin film layer of a single-layer thin film or a multilayer structure thin film. It is a semiconductor thin film material having a laminated (multilayer) structure including at least one kind of thin film layer containing at least one kind of impurity.

本発明による単層または多層構造の薄膜材料において、
薄膜層の片面もしくは両面の表面あるいは界面から所定
の領域を除く範囲に、p型、n型。
In the thin film material having a single layer or multilayer structure according to the present invention,
P-type, n-type in the range excluding a predetermined area from the surface or interface of one or both sides of the thin film layer.

もしくは発光中心型不純物を導入する場合において、薄
膜層の表面または界面からの各不純物を導入しない距離
が10λ未満であると、ドーピング不純物の原子半径程
度となり、薄膜全体に不純物をドーピングした場合とほ
ぼ同じ状態となって、ドーピング不純物の表面または界
面での相互作用によるドーピング特性の劣化が生じるの
で好ましくなく、また300λを超えると、不純物のド
ーピングによって生ずるドナーやアクセプタの有効半径
よりも大きくなるので、十分なドーピング特性が得られ
なくなり、不純物をドーピングしない領域は10〜:3
00λの範囲が好ましい。
Alternatively, when introducing emission center type impurities, if the distance at which each impurity is not introduced from the surface or interface of the thin film layer is less than 10λ, it will be about the atomic radius of the doping impurity, and it will be approximately the same as when the entire thin film is doped with the impurity. In the same state, the doping characteristics will deteriorate due to the interaction of the doping impurity at the surface or interface, which is undesirable, and if it exceeds 300λ, it will become larger than the effective radius of the donor or acceptor produced by doping with the impurity. The region where sufficient doping characteristics cannot be obtained and no impurity is doped is 10 to 3.
A range of 00λ is preferred.

〔発明の実施例〕[Embodiments of the invention]

以下に本発明の実施例をあげ、さらに詳細に説明する。 Examples of the present invention will be given below and will be explained in more detail.

(実施例1) 第1図はガラス基板13の上に2本発明による厚す10
0^の水素ヲ含むアモルファスシリコン(a−Sl:I
I)超薄膜を形成した場合の断面図である。
(Example 1) FIG. 1 shows two thick plates 10 according to the present invention on a glass substrate 13.
Amorphous silicon containing 0^ hydrogen (a-Sl:I
I) It is a sectional view when an ultra-thin film is formed.

a−81:H膜である11および11′は、100%0
’)−E−/’7ラン(5il(4)ガスの高周波プラ
ズマ分解法によって形成した超薄膜であり、このa−8
i:I(膜11と11′との間には、ジボラン(B2H
a )ガスを0.5 ppm混合したS iH4ガスに
よりボロン(B)を含むa−8i : H膜12を形成
した。a−8i:H膜である11および11′の膜厚は
それぞれ40X、Bを含むa−8i:H膜12の膜厚は
20λとした。このようにBをドーピングして形成した
a−81:H膜はp型の導電性を示し、活性化エネルギ
は0.4 eVと膜厚の厚い場合と変らなかった。また
、導電度も3 X 1o−’ (Ω−cm)’で。
a-81:H films 11 and 11' are 100% 0
')-E-/'7 run
i: I (diborane (B2H) is present between the films 11 and 11'
a) An a-8i:H film 12 containing boron (B) was formed using SiH4 gas mixed with 0.5 ppm of gas. The film thicknesses of the a-8i:H films 11 and 11' were each 40X, and the film thickness of the a-8i:H film 12 containing B was 20λ. The a-81:H film formed by doping B in this manner exhibited p-type conductivity, and the activation energy was 0.4 eV, which was the same as in the case of a thick film. Also, the conductivity is 3 x 1o-'(Ω-cm)'.

11、11’、 12に示すアモルファス膜の全膜厚と
同じ薄膜中に、Bをドーピングして形成したa−8i:
H膜12の領域に集中して入れたBと等量のBを。
a-8i formed by doping B into a thin film having the same total thickness as the amorphous film shown in 11, 11', and 12:
The same amount of B was concentrated in the H film 12 area.

全膜厚領域にわたって均一に入れた場合に比べて約20
%導電度が高かった。この場合膜厚方向に電導塵を測定
してもドーピングしていないa−8i:H膜11および
11′の領域によるバリヤ効果も現われなかった。この
ことは9本発明による新構造の薄膜材料が単一の構造の
すぐれた半導体薄膜材料としての特性を備えていること
を明らかにしている。
Approximately 20
% conductivity was high. In this case, even when conductive dust was measured in the film thickness direction, no barrier effect was found due to the undoped regions of the a-8i:H films 11 and 11'. This makes it clear that the thin film material with the new structure according to the present invention has characteristics as an excellent semiconductor thin film material with a single structure.

(実施例2) 第2図は本発明の実施例の他の一例で、 GaAS単結
晶基板4の上にGaAIAS 1 +  1′、1“〜
II″およびGaAs 2. 2’〜2nを交互に多層
にエピタキシャル成長させた多層構造薄膜の断面を示す
図である。
(Example 2) FIG. 2 shows another example of the embodiment of the present invention, in which GaAIAS 1 + 1', 1''~ is formed on a GaAS single crystal substrate 4.
FIG. 2 is a diagram showing a cross section of a multilayer structure thin film in which multilayers of GaAs II'' and GaAs 2.2' to 2n are epitaxially grown alternately.

1〜1nノGaAIAS薄膜ノ厚サバ約12OA、2〜
2nのGaAs薄膜の厚さは約150人とした。本実施
例では2〜2I]のGaAs薄膜の中心領域3(約30
X)にZnをto”cm−3ドーピングした。このよう
にして形成した超格子構造材料はp型の導電特性を示し
1-1n GaAIAS thin film thickness approximately 12OA, 2-
The thickness of the 2n GaAs thin film was approximately 150. In this example, the central region 3 of the GaAs thin film (about 30
X) was doped with Zn to cm-3. The superlattice structure material thus formed exhibited p-type conductivity.

2〜2nのGa As薄膜内に均一に同量のZnをドー
ピングした場合と電気的には同等の特性を示した。
Electrical characteristics were shown to be equivalent to those obtained by uniformly doping the same amount of Zn into a 2-2n GaAs thin film.

しかしながら、この本発明による新構造の超格子構造材
料を用いてp−n接合を形成し2発光ダイオードとして
その発光強度を測定したところ、同一条件で均一にZn
をドーピングしたp型材料を用いた場合に比べて約3倍
も強かった。これはGaAlAs薄膜1〜1nとGaA
s薄膜2〜2nとの界面での非発光中心が減少したもの
と考えられ、界面近傍へのZnρドーピングによる非発
光中心の生成が。
However, when a p-n junction was formed using the superlattice structure material with the new structure according to the present invention and the emission intensity was measured as a two-light emitting diode, it was found that Zn uniformly formed under the same conditions.
It was about three times stronger than when using a p-type material doped with . This is GaAlAs thin film 1~1n and GaA
It is thought that the number of non-luminescent centers at the interface with the s thin films 2 to 2n is reduced, and the non-luminescent center is generated by Znρ doping near the interface.

界面近傍から離れた領域にドーピングした場合より起こ
り易いことを示していると考えられる。そして、このよ
うな多層構造は、1〜1n薄膜の広バンドギヤツプ材料
への適用についても有効であることはいうまでもない。
This is considered to indicate that this phenomenon is more likely to occur when doping is performed in a region away from the vicinity of the interface. It goes without saying that such a multilayer structure is also effective in application to wide band gap materials of 1 to 1n thin films.

(発明の効果) 以上詳細に説明したごとく本発明による半導体薄膜は、
単層の薄膜または多層構造薄膜の各薄膜層の表面または
界面近傍における不純物のドーピング効果の低下を防ぐ
ことができると共に9表面または界面近傍での不用な準
位の発生をも防止することが可能で9本来の量子井戸効
果や多層構造効果を有効に発揮させることができ、優れ
たドーピング特性を持つ半導体薄膜材料が得られる効果
がある。
(Effects of the Invention) As explained in detail above, the semiconductor thin film according to the present invention has
It is possible to prevent the deterioration of the doping effect of impurities near the surface or interface of each thin film layer of a single-layer thin film or a multilayer structure thin film, and also to prevent the generation of unnecessary levels near the surface or interface. With this method, the quantum well effect and multilayer structure effect inherent in 9 can be effectively exhibited, and a semiconductor thin film material with excellent doping characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による水素を含むアモルファスシリコン
超薄膜の構造を示す断面図、第2図は本発明によるGa
AlAsとQaAsとを交互に積層した多層構造単結晶
薄膜の構造を示す断面図である。 1 、 l’、 1′′〜In−GaAlAs薄[12
42’ 〜2n・−・GaAs薄膜、3.3’〜3n・
・・znをドーピングしたQaAS 、  4 ・= 
GaAs単結晶基板、  11.1]’−・アモルファ
スシリコン膜、12・・・Bを含むアモルファスシリコ
ン膜、13・・・ガラス基板。
FIG. 1 is a cross-sectional view showing the structure of an ultra-thin amorphous silicon film containing hydrogen according to the present invention, and FIG.
FIG. 2 is a cross-sectional view showing the structure of a multilayer single crystal thin film in which AlAs and QaAs are alternately laminated. 1, l', 1'' ~ In-GaAlAs thin [12
42'~2n・-GaAs thin film, 3.3'~3n・
・QaAS doped with zn, 4 ・=
GaAs single crystal substrate, 11.1]'--amorphous silicon film, 12... amorphous silicon film containing B, 13... glass substrate.

Claims (1)

【特許請求の範囲】[Claims] 1、単層または二層以上の多層構造の半導体薄膜を構成
する薄膜層において、該薄膜層の片面もしくは両面の表
面、あるいは界面から10〜300Åの範囲を除く領域
に、p型不純物、n型不純物および発光中心となる不純
物の群より選択された少なくとも一種の不純物を含有す
ることを特徴とする薄膜材料。
1. In a thin film layer constituting a semiconductor thin film with a single layer or a multilayer structure of two or more layers, p-type impurities, n-type A thin film material characterized by containing at least one kind of impurity selected from the group of impurities and impurities that serve as luminescent centers.
JP59264649A 1984-12-17 1984-12-17 Thin film material Pending JPS61142779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264649A JPS61142779A (en) 1984-12-17 1984-12-17 Thin film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264649A JPS61142779A (en) 1984-12-17 1984-12-17 Thin film material

Publications (1)

Publication Number Publication Date
JPS61142779A true JPS61142779A (en) 1986-06-30

Family

ID=17406283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264649A Pending JPS61142779A (en) 1984-12-17 1984-12-17 Thin film material

Country Status (1)

Country Link
JP (1) JPS61142779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140666A (en) * 1991-03-27 2000-10-31 Canon Kabushiki Kaisha Thin film semiconductor device with a semiconductor large including crystals of an average grain size with a range of 50-350-Å

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6140666A (en) * 1991-03-27 2000-10-31 Canon Kabushiki Kaisha Thin film semiconductor device with a semiconductor large including crystals of an average grain size with a range of 50-350-Å

Similar Documents

Publication Publication Date Title
KR100722031B1 (en) Optical semiconductor device comprising a multiple quantum well structure
KR102427203B1 (en) Electronic devices comprising n-type and p-type superlattices
US20050211291A1 (en) Solar cell assembly
JP7228176B2 (en) Group III nitride semiconductor light emitting device
US20080118999A1 (en) Method of fabricating a nitride semiconductor light emitting device
GB2030766A (en) Laser treatment of semiconductor material
US11817528B2 (en) Nitride-based light-emitting diode device
KR20070116080A (en) Metal oxide semiconductor films, structures and methods
US6166320A (en) Tandem solar cell
JPS6233479A (en) Solar cell
JP2010186915A (en) Solar cell
KR20140032499A (en) Multi-quantum well solar cell and method of manufacturing multi-quantum well solar cell
JP2002231992A (en) Semiconductor light receiving element
US4775876A (en) Photon recycling light emitting diode
JPS61142779A (en) Thin film material
AU2014341969B2 (en) Photovoltaic cells
JP2763805B2 (en) Photoelectric conversion element
JP2889728B2 (en) Photovoltaic device
TWI470818B (en) Solar battery
JP2005235910A (en) GaN-BASED COMPOUND SEMICONDUCTOR LIGHT RECEIVING ELEMENT
JPH08250764A (en) Semiconductor light-emitting element
JP2912781B2 (en) Semiconductor light emitting device
JP2018163989A (en) Heterojunction solar cell
JP2011222804A (en) Semiconductor device and method of manufacturing the same
KR100765387B1 (en) Luminance device having quantum well