JPS61142710A - Superconducting magnet - Google Patents

Superconducting magnet

Info

Publication number
JPS61142710A
JPS61142710A JP59264402A JP26440284A JPS61142710A JP S61142710 A JPS61142710 A JP S61142710A JP 59264402 A JP59264402 A JP 59264402A JP 26440284 A JP26440284 A JP 26440284A JP S61142710 A JPS61142710 A JP S61142710A
Authority
JP
Japan
Prior art keywords
current
switch
heater
coil
superconducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264402A
Other languages
Japanese (ja)
Inventor
Shinichi Kimura
信一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59264402A priority Critical patent/JPS61142710A/en
Publication of JPS61142710A publication Critical patent/JPS61142710A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)
  • Continuous-Control Power Sources That Use Transistors (AREA)

Abstract

PURPOSE:To flow no current across a coil protection resistance in a liquid helium vessel and depress the vaporization of liquid helium due to heat generation by switching a heater on in the permanent current switch using an automatic heater switch when the value of exciting current becomes equal to that of the source current. CONSTITUTION:When it is desired to decrease the current of a superconducting coil 1 from that in the permanent current mode, current leads 3 are installed and the power supply 2 is actuated to increase the source current. Then the value of exciting current is calculated from the measured value with a flux meter 12 and indicated on an exciting current meter 13. When the source current, which is indicated on a source current meter 14, becomes equal to that on the meter 13, an automatic heater switch 14 is actuated to switch the heater on. Then the superconducting wire 8 comes to function in the normal state of conductivity and the permanent current switch 7 is opened. Owing to no difference between the exciting current and the source current neither current flows in the coil protection resistance 4 nor increase appears in the vaporization of liquid helium resulting from heat generation. The same thing can be said of the case where it is desired to increase the current from that in the permanent current mode.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は超電導マグネットgi装置(二関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a superconducting magnet GI device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

超電導コイルは液体ヘリウム中(;置かれ磁気抵抗が零
となるため永久電流モードで励磁が可能となる。このた
めコイル(=電流を供給する電流リードは、液体ヘリウ
ムの蒸発量を多くするだけなので取外され、コイルは電
源と切離しされることがある。この永久電流モードで運
転される超電導コイルは、磁気浮上式鉄道、 NMR−
CTなどi;広く利用されている。
When the superconducting coil is placed in liquid helium (; the magnetic resistance becomes zero, it can be excited in persistent current mode. Therefore, the coil (= the current lead that supplies the current only increases the amount of evaporation of the liquid helium). The coil may be removed and disconnected from the power supply.Superconducting coils operated in this persistent current mode are used in magnetic levitation railways, NMR-
CT etc.; Widely used.

超電導コイルを氷久尾流モードで運転する手順をWIz
図の回路図をもと4’−FI5L#3Aする。超電導コ
イル1(:電源2から電流を供給するためζ:脱看式の
電流リード3が取付けられ超電導コイル1ζ二電流を流
し始める。この時、コイル保禮抵抗4のスイッチ5は開
とされ、MM4=rイルlがなんらかの原因(二よυ超
電導状態から常電導状態に転移した時のエネルギーは保
護抵抗6(二より消費され7i!!蝋導コイル1を保躾
する。また、永久−流スイッチ7は開とされる。この永
久−流スイッチ7の開閉は、超電導線8(=取付けられ
たヒータ−9に尾流を供給するヒーター電源10のヒー
ター回路(二設けられたヒータースイッチ11の開閉に
より超颯導腺8を超電導状態から常電導状態(=、また
は常電導状態から超電導状態(二転移させることで行な
われる。所定の電流まで上げた俊、コイル保護抵抗4は
スイッチ5を閉としコイルと並列(二接続し、永久磁流
スイッチ7はヒータースイッチ11を開とすること)二
よυ超磁線8を超電導状態とし閉とする。
WIz the procedure for operating a superconducting coil in Hikūo style mode
4'-FI5L#3A based on the circuit diagram shown in the figure. In order to supply current from the superconducting coil 1 (: power source 2), a removable current lead 3 is attached and a current begins to flow through the superconducting coil 1. At this time, the switch 5 of the coil protection resistor 4 is opened. MM4 = r is caused by some reason (2, υ, energy transferred from the superconducting state to the normal conducting state is consumed by the protective resistance 6 (2) and maintains the wax conductive coil 1. Also, the permanent current The switch 7 is opened. The opening/closing of the permanent flow switch 7 is controlled by the heater circuit (2) of the heater power supply 10 which supplies the tail flow to the superconducting wire 8 (= the attached heater 9). This is done by switching the superconducting gland 8 from a superconducting state to a normal conducting state (= or from a normal conducting state to a superconducting state) by opening and closing the switch. and parallel to the coil (two connections are made, and the permanent magnetic current switch 7 and the heater switch 11 are opened).

これ):より永久磁流モードとな9超電導コイル1と超
電導線8の閉回路を磁流が流れる。次(二電源2は一流
を零とし電流リード3を取外す。この状態で超電導コイ
ル1が常電導状態着二転移した時のエネルギーはコイル
保護抵抗4で消費されること(二なる。
(This): A magnetic current flows in a closed circuit of the superconducting coil 1 and the superconducting wire 8 in a more permanent magnetic current mode. Next (the second power source 2 makes the current flow zero and removes the current lead 3. In this state, when the superconducting coil 1 transitions to the normal conduction state, the energy is consumed by the coil protection resistor 4.

永久磁流モードから電流を下げる場合は、脱着式電流リ
ード3を取付は超電導コイル1の励磁電流値まで礁SX
流を上げる。この励磁電流値は磁束密度(=比例した値
であるため、これを測定し求めることができる。次(二
氷久屯流スイッチ7はヒータースイッチ11を閉とする
こと(二より開とし、コイル保護抵抗スイッチ5は開と
する。この状態で永久磁流モードではなくな9磁源峨流
を下げていくことでコイル励磁電流も下がっていく。
When lowering the current from the permanent magnetic current mode, install the removable current lead 3 until the excitation current value of the superconducting coil 1 is reached.
Raise the flow. This excitation current value is a value proportional to the magnetic flux density, so it can be determined by measuring it. The protective resistance switch 5 is opened.In this state, the permanent magnetic current mode is no longer in effect, and the coil excitation current is also reduced by lowering the 9-magnetic source current.

この水久礒流モードから電流を下げていく場合、電源電
流か励磁電流と同値でない状態で永久磁流スイッチ7を
開とすると差分の一流はコイル保護抵抗4と保ili抵
抗6(二分流し発熱する。コイル保護抵抗4は超電導コ
イル1と同じく液体ヘリウム容器内(二収納されている
ため液体ヘリウムの蒸発量を増大させる結果となる。
When lowering the current from this water current mode, if the permanent magnetic current switch 7 is opened in a state where the power supply current or excitation current is not the same value, the differential current is the coil protective resistor 4 and the protective resistor 6 (bifurcated flow heat generation). Like the superconducting coil 1, the coil protection resistor 4 is housed in a liquid helium container, which results in an increase in the amount of evaporation of liquid helium.

〔発明の目的〕[Purpose of the invention]

本発明は励磁電流値と電源電流が同値のときにのみ永久
電流スイッチを開とすることができる超電導マグネット
装置を提供することを目的とする。
An object of the present invention is to provide a superconducting magnet device in which a persistent current switch can be opened only when the excitation current value and the power supply current are the same value.

〔発明の概要〕[Summary of the invention]

上記目的を達成するため(二本発明の超電導マグネット
装置(=おいては、超電導コイルの生成する磁束から超
電導コイルに流れている砥流値を求める磁束計および励
磁電流計と、超電導コイルν(二電源から供給される電
流を求める慰源庫流計と、これら両者の4流値が等しい
ときにON、OFFされるヒーターを有する永久電流ス
イッチとを備えた構成とし、両電流値が等しい状態で超
電導コイル回路を電源回路(=接続あるいは切離するこ
とかできるよう(=して、コイル保護抵抗C:流れる差
電流が生じないようCニする。
In order to achieve the above object (2), the superconducting magnet device (=) of the present invention includes a magnetometer and an excitation ammeter that measure the value of the abrasive current flowing in the superconducting coil from the magnetic flux generated by the superconducting coil, and a superconducting coil ν ( The configuration includes a source current meter that measures the current supplied from two power sources, and a persistent current switch that has a heater that turns on and off when the four current values of both are equal, and the current value of both is equal. The superconducting coil circuit is connected to the power supply circuit (= so that it can be connected or disconnected (=), and the coil protection resistor C is set so that no differential current flows.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例をWI1図をもとじ説明する。1
2は超電導コイル1の磁束密度を測定する磁束計、13
は磁束密度より比例計算ζ二より励磁峨流値を求める励
磁電流計、14は岨源磁流計、15は励磁電流計13の
値と゛電源磁流計14の1Kが等しいとき(;動作する
自動ヒータースイッチである。
Hereinafter, embodiments of the present invention will be described based on Figure WI1. 1
2 is a magnetometer that measures the magnetic flux density of the superconducting coil 1, 13
is an excitation ammeter that calculates the excitation current value from the proportional calculation ζ2 from the magnetic flux density, 14 is an excitation magnetometer, and 15 is an excitation ammeter 13 that is equal to 1K of the power source magnetometer 14. Automatic heater switch.

次(二上記のよう(=構成した超電導マグネット装置の
動作を説明する。超電導コイル1の一流を永久磁流モー
ドから下げる場合は、−流リード3を取付け、電源2を
作動させ電源電流を上げる。この時励磁柩流値は磁束計
12で測定した値より計算され励磁電流計13(=表わ
される。電源電流は電源電流計14で表わされ、この値
が励磁電流計13のそれと等しくなれば自動ヒータース
イッチ15が作動し、ヒーターが入る。これ(二より超
電導線8は常電導状態となシ氷久電流スイッチ7は開と
なる。
Next (2) We will explain the operation of the superconducting magnet device configured as described above. When lowering the first flow of the superconducting coil 1 from the permanent magnetic current mode, attach the -current lead 3 and activate the power supply 2 to increase the power supply current. At this time, the excitation current value is calculated from the value measured by the magnetometer 12 and is expressed by the excitation ammeter 13 (=).The power supply current is represented by the power supply ammeter 14, and this value must be equal to that of the excitation ammeter 13. If so, the automatic heater switch 15 is activated and the heater is turned on.When this happens (the superconducting wire 8 is in a normal conductive state), the current switch 7 is opened.

励磁電流と電源電流(二差が無いためコイル保護抵抗4
(二電流は流れず、発熱ζ二よる液体ヘリウムの蒸発量
増大ということはない。これは永久磁流モードから電流
を上げる場合(二ついても西°える。
Excitation current and power supply current (because there is no difference between the two, coil protection resistance 4
(No current flows, and there is no increase in the amount of evaporation of liquid helium due to heat generation ζ2.) This occurs when increasing the current from the permanent magnetic current mode (even if there are two currents, the amount of evaporation of liquid helium does not increase).

〔発明の効果〕〔Effect of the invention〕

以上のよう(二本発明によれば、超電導;イルの励磁電
流を永久磁流モードから変化させる場合、励磁電流を磁
束針の値より求め、4源の砥流値がこの値と同じくなっ
た時、自動ヒータースイッチ(二上って永久磁流スイッ
チにヒーターが入るので、上記二つの一流値(:差のな
い状態ではじめて永久電流スイッチが開となる。このた
め液体ヘリウム容器内(=あるコイル保護抵抗(二は電
流が流れず、発熱シニよる液体ヘリウム蒸発がない。
As described above (according to the present invention), when changing the excitation current of the superconducting coil from the permanent magnetic current mode, the excitation current is determined from the value of the magnetic flux needle, and the abrasive current values of the four sources become the same as this value. When the automatic heater switch (2) goes up and the heater is turned on to the permanent magnetic current switch, the permanent current switch opens only when there is no difference between the two above-mentioned values. Coil protection resistor (2) No current flows and there is no evaporation of liquid helium due to heat generation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の超電導マグネット装置の回路
図、第2図は従来のものの回路図である。 1・・・超電導コイIL/2・・・′kL源3・・・一
流リード   4・・・コイル保護抵抗5・・・コイル
保護抵抗スイッチ 6・・・保護抵抗7・・・氷久砥流
スイッチ 8・・・超電導線9・・・ヒーター    
 lO・・・ヒーター電源11・・・ヒータースイッチ
 12・・・磁束計13・・・励磁砿流計   14・
・・電源電流計15・・・自動ヒータースイッチ。 代理人 弁理士 則 近 憲 右(ほか1名)第1図 第2図
FIG. 1 is a circuit diagram of a superconducting magnet device according to an embodiment of the present invention, and FIG. 2 is a circuit diagram of a conventional one. 1...Superconducting coil IL/2...'kL source 3...First class lead 4...Coil protection resistor 5...Coil protection resistance switch 6...Protection resistor 7...Hiku Toryu Switch 8...Superconducting wire 9...Heater
lO... Heater power supply 11... Heater switch 12... Magnetic flux meter 13... Excitation current meter 14.
...Power supply ammeter 15...Automatic heater switch. Agent: Patent Attorney Noriyoshi Chika Right (and 1 other person) Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  超電導コイルと、この超電導コイルに電流を供給する
電源と、前記超電導コイルに並列接続された永久電流ス
イッチと、前記超電導コイルの生成する磁束を測定し前
記超電導コイルに流れている電流を求める励磁電流計と
、前記電源の供給する電流を測定する電源電流計と、こ
の電源電流計の測定値と前記励磁電流計の測定値とを比
較し両者が等しいときに前記永久電流スイッチのヒータ
ー回路を開閉するヒータースイッチとを備えたことを特
徴とする超電導マグネット装置。
a superconducting coil, a power source that supplies current to the superconducting coil, a persistent current switch connected in parallel to the superconducting coil, and an excitation current that measures the magnetic flux generated by the superconducting coil to determine the current flowing through the superconducting coil. a power supply ammeter that measures the current supplied by the power supply, and compares the measurement value of the power supply ammeter with the measurement value of the excitation ammeter, and opens and closes the heater circuit of the persistent current switch when the two are equal. A superconducting magnet device characterized in that it is equipped with a heater switch.
JP59264402A 1984-12-17 1984-12-17 Superconducting magnet Pending JPS61142710A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59264402A JPS61142710A (en) 1984-12-17 1984-12-17 Superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264402A JPS61142710A (en) 1984-12-17 1984-12-17 Superconducting magnet

Publications (1)

Publication Number Publication Date
JPS61142710A true JPS61142710A (en) 1986-06-30

Family

ID=17402660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264402A Pending JPS61142710A (en) 1984-12-17 1984-12-17 Superconducting magnet

Country Status (1)

Country Link
JP (1) JPS61142710A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058398A (en) * 2009-09-08 2011-03-24 Toshiba Corp Super-conductive magnet device for space and propulsion device for space

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011058398A (en) * 2009-09-08 2011-03-24 Toshiba Corp Super-conductive magnet device for space and propulsion device for space

Similar Documents

Publication Publication Date Title
US4689439A (en) Superconducting-coil apparatus
JPH08180790A (en) Tripping device having one or more current transformers
JPH04361168A (en) Electromagnetic induction type conductivity meter
JPS6018014B2 (en) Conductive fluid conductivity monitoring device
GB2195054A (en) Superconducting magnet apparatus with emergency demagnetizing unit
JPS61142710A (en) Superconducting magnet
Arenz et al. Thermal conductivity and electrical resistivity of copper in intense magnetic fields at low temperatures
US2304535A (en) Direct current measuring instrument
GB2227846A (en) Meter tampering detection device
US11313888B2 (en) Hot socket detection at an electric meter
JPH05327042A (en) Superconducting device using quench detecting function
JPS60131077A (en) Excess current detector of inverter
JP2000077226A (en) Superconductive device
JPS6475980A (en) Measuring device for magnetic field
JPS6195502A (en) Superconducting magnet
JPS6120303A (en) Superconductive coil apparatus
US2435070A (en) Temperature indicator control circuit
JPS60242606A (en) Superconductive device
JPS6142308Y2 (en)
US3535621A (en) System for magnetizing using an a.c. to d.c. converter
JPS62244110A (en) Superconducting coil device
GB2087572A (en) Improvements in and relating current sensing devices
JPH0325908A (en) Transformer with built-in alarm circuit
JPH07115016A (en) Superconducting device
JPH0240551Y2 (en)