JPS61142438A - Impact liquid pressure test - Google Patents

Impact liquid pressure test

Info

Publication number
JPS61142438A
JPS61142438A JP26511984A JP26511984A JPS61142438A JP S61142438 A JPS61142438 A JP S61142438A JP 26511984 A JP26511984 A JP 26511984A JP 26511984 A JP26511984 A JP 26511984A JP S61142438 A JPS61142438 A JP S61142438A
Authority
JP
Japan
Prior art keywords
cylinder
impact
pressure
air
air bag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26511984A
Other languages
Japanese (ja)
Inventor
Tomoyuki Kajiwara
梶原 友幸
Seiichi Kasaoka
誠一 笠岡
Ryuichiro Ebara
江原 隆一郎
Fumio Morimoto
森本 文男
Kunihiko Matsushita
邦彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TANAKA KAKOKI KOGYO KK
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
TANAKA KAKOKI KOGYO KK
Ryomei Engineering Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TANAKA KAKOKI KOGYO KK, Ryomei Engineering Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical TANAKA KAKOKI KOGYO KK
Priority to JP26511984A priority Critical patent/JPS61142438A/en
Publication of JPS61142438A publication Critical patent/JPS61142438A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/30Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight
    • G01N3/307Investigating strength properties of solid materials by application of mechanical stress by applying a single impulsive force, e.g. by falling weight generated by a compressed or tensile-stressed spring; generated by pneumatic or hydraulic means

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

PURPOSE:To disperse the decompression in a cylinder evenly, by interposing an air bag in a cylinder into which a liquid is injected as pressure medium. CONSTITUTION:An air bag 16 is inserted into a cylinder 7 to form an air layer positively between a piston 8 and a liquid 11. The air bag 16 shall be selected from among those made of material tough and soft enough to withstand the breakage by impact pressure or the like and produced from airtight sheet-like material. The amount of air in the air bag 16 is regulated with a plug 17. This provides a stable impact pressure wave regardless of the type and mounting position of a pressure converter thereby assuring a highly reliable data. The impact force also can be adjusted freely by changing the amount of air in the air bag.

Description

【発明の詳細な説明】 (産業上の利用分野)゛。[Detailed description of the invention] (Industrial application field)゛.

本発明は、衝撃力による液圧の影響を計測し、記録する
ための衝撃液圧試験装置に関するものである。
The present invention relates to an impact hydraulic pressure test device for measuring and recording the influence of hydraulic pressure due to impact force.

(従来技術) 既に提案され、開発されている、この種の衝撃液圧試験
機を使い、圧力変換器の種類及び測定位置を変えて圧力
計測を行なうと、それぞれに応じて液圧の状態は複雑、
かつ位相の異った互いに互換性のない圧力波形を呈する
ことが解明されている。この・ため、衝撃液圧試験を実
施する際は、圧力変換器を複数個セントし、これらの平
均値を求めると共に、同条件下での数回の試験を繰り返
して行ない、その結果、衝撃圧力を求めていたが、この
ような試験方法によると、以下のような問題があった。
(Prior art) If you use this type of shock hydraulic pressure testing machine that has already been proposed and developed and measure pressure by changing the type of pressure transducer and the measurement position, the state of the hydraulic pressure will change depending on each type of pressure transducer and measurement position. complicated,
It has also been revealed that these pressure waveforms exhibit mutually incompatible pressure waveforms with different phases. For this reason, when conducting an impact hydraulic pressure test, the impact pressure However, according to this test method, there were the following problems.

(1)狭隘なシリンダ内に複数個の圧力変換器をセット
するのは煩雑であり、また圧力計測、衝撃圧力の読み取
り(データ整理)等に時間を要する欠点があった。 ゛ (2)  シリンダ内全面が剛体であるため、内部に衝
撃水圧が発生すると、複雑な屈折、反射を伴って高周波
で、かつ複雑な圧力波形を呈し、データの信頼性に乏し
いも”のであった、・(3)  データの信頼性が低い
ため、同条件で数回試験をすることとなり、゛供試体、
消耗品(記録紙、ストレインゲージ、その他)等が増加
し、同時に試験回数、データ整理等の時間を費やするこ
とを余“儀無くされていた。
(1) It is complicated to set up a plurality of pressure transducers in a narrow cylinder, and there is also the drawback that it takes time to measure pressure, read impact pressure (data organization), etc. (2) Since the entire inside of the cylinder is a rigid body, if impact water pressure occurs inside, it will exhibit a high frequency and complicated pressure waveform with complicated refraction and reflection, resulting in poor data reliability.・(3) Due to the low reliability of the data, it was necessary to conduct the test several times under the same conditions.
The number of consumables (recording paper, strain gauges, etc.) increased, and at the same time, they were forced to spend more time conducting tests and organizing data.

以下、先に開発された衝撃液圧試験機を使った従来の計
測方法を図面に基づいて説明すると、第4図は、先に開
発された衝撃液圧試験機を示しており、1は門型の基台
で、基台1の中央には強化ガラス2等の供試体をその内
縁部で支持する円形の孔があけられており、該供試体上
には0リングを介してシリンダ7が載置固定される。ま
た、前記基台1の両側部には2本の支柱21が立設され
、該前支柱21の上端にはフレームが装架されて、全体
が門型のフレームを形成する。そして、シリンダ7は前
記前支柱21の下方中間部に横架された架台によって定
位置に固定されるものである。
Below, the conventional measurement method using the previously developed impact hydraulic pressure tester will be explained based on the drawings. Figure 4 shows the previously developed impact hydraulic pressure tester, and 1 is the gate. In the base of the mold, a circular hole is drilled in the center of the base 1 to support a specimen such as tempered glass 2 at its inner edge, and a cylinder 7 is mounted on the specimen through an O-ring. Placed and fixed. Further, two columns 21 are erected on both sides of the base 1, and a frame is mounted on the upper end of the front column 21, forming a gate-shaped frame as a whole. The cylinder 7 is fixed at a fixed position by a pedestal horizontally suspended at the lower intermediate portion of the front support 21.

4は重錘であって、前記前支柱21間を適宜軌道に沿っ
て昇降可能に配置され、通常、重錘4はウィンチ3のロ
ーブ先端のフック6に引掛けられて図示の如く前支柱2
1の上方に位置している。
Reference numeral 4 denotes a weight, which is disposed so as to be movable up and down along a suitable track between the front columns 21. Normally, the weight 4 is hooked to a hook 6 at the tip of a lobe of the winch 3, and the weight 4 is attached to the front column 2 as shown in the figure.
It is located above 1.

一方、シリンダ7内には加圧媒体である液体が注入され
ており、該シリンダ7内部開口部にはピストン8が嵌合
される。9は空気抜き機構であって、シリンダ7内部の
空気を排出するためにシリンダ7の適当な個所に設けら
れている。
On the other hand, a liquid as a pressurized medium is injected into the cylinder 7, and a piston 8 is fitted into the internal opening of the cylinder 7. Reference numeral 9 denotes an air venting mechanism, which is provided at an appropriate location in the cylinder 7 to exhaust the air inside the cylinder 7.

以上のような構成部分を有する衝撃液圧試験機を使った
従来法に従った計測方法を第4図及び第5図によって説
明すると、衝撃液圧試験機基台1に供試体で多る強化ガ
ラス2を置き、その上面に圧力変換器10を取付けて、
この強化ガラス2を0リング12を介してシリンダ7の
底部に液密に固定し、シリンダ7の内部には加圧媒体と
なる液体11を注入する。
The measurement method according to the conventional method using the impact hydraulic pressure testing machine having the above-mentioned components will be explained with reference to Figures 4 and 5. Place the glass 2, attach the pressure transducer 10 to its top surface,
This tempered glass 2 is liquid-tightly fixed to the bottom of a cylinder 7 via an O-ring 12, and a liquid 11 serving as a pressurized medium is injected into the inside of the cylinder 7.

次に空気抜き機構9を開いてシリンダ7内にピストン8
を上方より嵌合させ、シリンダ7内の空気を排除したの
ち、空気抜き機構9を閉塞する。
Next, open the air vent mechanism 9 and insert the piston 8 into the cylinder 7.
After fitting from above and expelling the air in the cylinder 7, the air vent mechanism 9 is closed.

また重錘4の重量を決定し、適正重量の□重錘4をフッ
ク6に掛け、これをウィンチ3で所定の嵩さまで引き上
げる。更にロープ5を引いて重錘4をフック6より分離
させ、ピストン8上に落下させる。
Also, the weight of the weight 4 is determined, the appropriate weight of the weight 4 is hung on the hook 6, and it is pulled up with the winch 3 to a predetermined volume. Further, the rope 5 is pulled to separate the weight 4 from the hook 6 and drop it onto the piston 8.

また重錘4の落下エネルギによりピストン8が沈み、シ
リンダ7内で液体11を媒体とした衝撃力が強化ガラス
2に作用する0、次いでシリンダ7内で発生した衝撃圧
力を圧力変換器10内で電気信号に変換し、増幅器13
記憶装置14及び記録計15にそれぞれ伝達する。
In addition, the piston 8 sinks due to the falling energy of the weight 4, and an impact force using the liquid 11 as a medium acts on the reinforced glass 2 within the cylinder 7.Then, the impact pressure generated within the cylinder 7 is transferred to the pressure transducer 10. Convert it into an electrical signal and send it to the amplifier 13
The information is transmitted to the storage device 14 and the recorder 15, respectively.

次に、本発明の後述する実施例と比較するため、上記試
験機を使った比較例・について説明する。
Next, a comparative example using the above test machine will be described in order to compare with the later-described embodiment of the present invention.

第6図は比較例を示し、上記従来例と異なる点は、供試
体として第5図に示した強化ガラス2に代えて鉄板18
を用い、該鉄板18の中央部に雌ネジを切った孔を設け
、この孔に固定型圧力変換器10cを螺合固定すると共
に該鉄板18上に2個の高さの異なる投げ込み型の圧力
変換器10a及び10bを設置固定する。
FIG. 6 shows a comparative example, and the difference from the conventional example is that an iron plate 18 is used as a specimen instead of the tempered glass 2 shown in FIG.
A female threaded hole is provided in the center of the iron plate 18, and the fixed pressure transducer 10c is screwed and fixed into this hole. Converters 10a and 10b are installed and fixed.

さらに、シリンダ7の側壁には前記と同様の固定型圧力
変換器10dを螺合固定している。このように準備され
た試験機において、従来法と同じ計測方法に従って計測
した結果、各圧力変換器から計測された圧力波形は第3
図に示すとおりのものであった。
Furthermore, a fixed pressure transducer 10d similar to that described above is screwed and fixed to the side wall of the cylinder 7. In the test machine prepared in this way, the pressure waveform measured from each pressure transducer was measured according to the same measurement method as the conventional method.
It was as shown in the figure.

この波形を検討すると、高周波部分が多く、かつ各圧力
変換器10a〜10dによって、その位相が著しく異な
り、圧力値も互いにばらばらになっており互換性のない
ことが分る。
When examining this waveform, it is found that there are many high frequency parts, the phases are significantly different depending on each pressure transducer 10a to 10d, and the pressure values are also different from each other, making them incompatible.

これは、前述した従来の問題点を裏付けるものである。This confirms the conventional problem mentioned above.

(発明が解決ルようとする問題点) 本発明はこれまでに述べてきたように従来のこの種試験
機によると、データの信頼性が低(、その結果、試験そ
のものの煩雑さに加えて、データ整理等に費やす時間も
長くかかる等の問題点を解決しようとするものである。
(Problems to be Solved by the Invention) As stated above, the present invention is based on the fact that conventional testing machines of this type have low data reliability (as a result, in addition to the complexity of the test itself), This is an attempt to solve problems such as the long time it takes to organize data.

(問題点を解決するための手段) このため、本発明は供試体を底部に液密に固定するとと
もに、内部に加圧媒体としての液体が注入されるシリン
ダと、このシリンダ内部に液密に嵌合されたピストンと
、ピストンまたは前記シリンダに設けられシリンダ内部
の排気を行なう空気抜き機構と、前記ピストンに外部か
ら衝撃荷重を負荷する衝撃荷重負荷手段とを具備した衝
撃液圧試験機に於いて、前記シリンダ内部に空気袋を介
装することをその構成として、これを問題点解決のため
の手段とするものである。
(Means for Solving the Problems) Therefore, the present invention provides a cylinder in which a specimen is liquid-tightly fixed to the bottom, a liquid as a pressurized medium is injected into the inside, and a cylinder in which a liquid as a pressurized medium is injected into the cylinder. In an impact hydraulic pressure testing machine equipped with a fitted piston, an air vent mechanism provided on the piston or the cylinder to exhaust the inside of the cylinder, and an impact load loading means for applying an impact load to the piston from the outside. The structure is such that an air bag is interposed inside the cylinder, and this is used as a means to solve the problem.

(作用) シリンダ内に空気袋を介装させることにより、ピストン
と液体の間に空気層が形成される結果、衝撃力が緩和さ
れて、シリンダ内の液圧が均等に分散される。さらに、
前記空気袋内の空気の量を変化させることによって、衝
撃力を自由に調整する。
(Function) By interposing an air bag in the cylinder, an air layer is formed between the piston and the liquid, and as a result, the impact force is alleviated and the liquid pressure in the cylinder is evenly distributed. moreover,
By changing the amount of air in the air bag, the impact force can be freely adjusted.

(実施例) 以下、本発明の実施例を図面に基づいて説明する。第1
図が本発明の実施例を示すものであって、第5図に示し
た従来例と異なる点は、シリンダ7内に空気袋16を挿
入して、ピストン8と液体11との間に積極的に空気層
を形成している点にある。
(Example) Hereinafter, an example of the present invention will be described based on the drawings. 1st
The figure shows an embodiment of the present invention, which differs from the conventional example shown in FIG. The point is that an air layer is formed between the two.

空気袋16は衝撃圧等に破損されない強じんでかつ柔軟
な材質のものが選ばれ気密性のあるシート状材料によっ
て作成される。17は栓を示し、これにより、空気袋1
6内の空気量を調整できるようになっている。
The air bag 16 is made of a strong yet flexible material that will not be damaged by impact pressure or the like, and is made of an airtight sheet material. 17 indicates a stopper, which allows air bag 1
The amount of air inside 6 can be adjusted.

このようなシリンダ7内に空気袋を介装させた本実施例
に係る衝撃液圧試験装置を使って、先に述べた比較例と
同様の計測方法によって実験した結果が第2図に示され
ている。
The results of an experiment using the impact hydraulic pressure test device according to this embodiment in which an air bag is inserted in the cylinder 7 and using the same measurement method as in the comparative example described above are shown in FIG. ing.

すなわち、第1図において、供試体として鉄板18を用
い、該鉄板18の中央部に固定型圧力変換器10cを、
またその周辺部に高さの異なる投げ込み型圧力変換器1
0a及び10bを配設し、同時にシリンダ10dの側壁
部に固定型圧力変換器10dを固設し、ピストン8の上
部から重錘を落下させて、液体11に衝撃力を加える。
That is, in FIG. 1, an iron plate 18 is used as a specimen, and a fixed pressure transducer 10c is installed in the center of the iron plate 18.
In addition, the immersion type pressure transducer 1 with different heights is placed around it.
At the same time, a fixed pressure transducer 10d is fixed to the side wall of the cylinder 10d, and a weight is dropped from the top of the piston 8 to apply an impact force to the liquid 11.

このときの鉄板18上の各圧力変換器10a、10b、
10c及びシリンダ7に設けた圧力変換器10dが受け
た圧力波形が第2図に示すとおりのものである。
Each pressure transducer 10a, 10b on the iron plate 18 at this time,
10c and the pressure waveforms received by the pressure transducer 10d provided in the cylinder 7 are as shown in FIG.

第2図をみると明らかなように、各圧力変換器10a〜
10dが受ける衝撃圧力値は殆ど同じであり、また波形
の位相においても、大体似かよっていることが分る。た
だ、シリンダ7に設けた圧力変換器の受けた圧力波は鉄
板18上のそれと多少その位相にづれがあるが、やはり
シリンダ底面と側面との位置の違いが表れたものと思わ
れる。
As is clear from FIG. 2, each pressure transducer 10a~
It can be seen that the impact pressure values received by 10d are almost the same, and the waveform phases are also roughly similar. However, the pressure waves received by the pressure transducer provided in the cylinder 7 are slightly out of phase with those on the iron plate 18, but this is probably due to the difference in position between the bottom and side surfaces of the cylinder.

しかしながら、これとても、波形全体は相似しており、
シリンダ7内のいづれの部位にあっても衝撃圧力の計測
が可能であることを示しているものである。
However, the entire waveform is very similar,
This shows that impact pressure can be measured at any location within the cylinder 7.

この点は、第3図で示した、従来装置に基づく比較例の
計測結果と比較すると一目瞭然であるといえる。
This point can be said to be obvious when compared with the measurement results of the comparative example based on the conventional device shown in FIG.

(発明の効果) 以上、詳しく述べた如く本発明によると、圧力変換器の
種類、取付は位置に関係なく、安定した衝撃圧力波形が
得られ、互換性のあることから、圧力変換器1台を設置
して試験も1回行なえば足り、信頼度の高いデータが得
られるものである。
(Effects of the Invention) As described in detail above, according to the present invention, a stable impact pressure waveform can be obtained regardless of the type of pressure transducer or the mounting position, and since the pressure transducer is compatible, one pressure transducer can be used. It is sufficient to install the equipment and conduct the test once, and highly reliable data can be obtained.

また空気袋内の空気量を変化させることにより、衝撃力
を自由に調節できるようになり、衝撃液圧試験の応用範
囲も著しく拡げることができる。
Furthermore, by changing the amount of air in the air bag, the impact force can be freely adjusted, and the range of applications of impact hydraulic pressure tests can be significantly expanded.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す衝撃液圧試験装置の要部
断面図、第2図は同装置を使ったときの衝撃圧力波形図
、第3図は比較例による衝撃圧力波形図、第4図は衝撃
液圧試験装置の全体斜視図、第5図は従来の同装置の要
部断面図、第6図は本実施例との比較例を示す同装置の
要部断面図である。 図の主要部分の説明 7− シリンダ 8・−・ピストン 10a、10b、10c、10d ・−圧力変換器11
−・液体 16・・−空気袋
FIG. 1 is a cross-sectional view of the main parts of an impact hydraulic pressure testing device showing an embodiment of the present invention, FIG. 2 is an impact pressure waveform diagram when using the same device, and FIG. 3 is an impact pressure waveform diagram according to a comparative example. Fig. 4 is an overall perspective view of the impact hydraulic pressure testing device, Fig. 5 is a sectional view of the main part of the conventional same device, and Fig. 6 is a sectional view of the main part of the same device showing a comparative example with this example. . Explanation of the main parts of the figure 7 - Cylinder 8 - Pistons 10a, 10b, 10c, 10d - Pressure transducer 11
-・Liquid 16...-Air bag

Claims (1)

【特許請求の範囲】[Claims] 供試体を底部に液密に固定するとともに、内部に加圧媒
体としての液体が注入されるシリンダと、このシリンダ
内部に液密に嵌合されたピストンと、ピストンまたは前
記シリンダに設けられシリンダ内部の排気を行なう空気
抜き機構と、前記ピストンに外部から衝撃荷重を負荷す
る衝撃荷重負荷手段とを具備した衝撃液圧試験機に於い
て、前記シリンダ内部に空気袋を介装したことを特徴と
する衝撃液圧試験装置。
A cylinder in which the specimen is liquid-tightly fixed to the bottom and a liquid as a pressurized medium is injected into the inside, a piston liquid-tightly fitted inside the cylinder, and a cylinder provided in the piston or the cylinder inside the cylinder. An impact hydraulic pressure testing machine equipped with an air venting mechanism for exhausting air, and an impact load applying means for applying an impact load to the piston from the outside, characterized in that an air bag is interposed inside the cylinder. Impact hydraulic pressure test equipment.
JP26511984A 1984-12-15 1984-12-15 Impact liquid pressure test Pending JPS61142438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26511984A JPS61142438A (en) 1984-12-15 1984-12-15 Impact liquid pressure test

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26511984A JPS61142438A (en) 1984-12-15 1984-12-15 Impact liquid pressure test

Publications (1)

Publication Number Publication Date
JPS61142438A true JPS61142438A (en) 1986-06-30

Family

ID=17412876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26511984A Pending JPS61142438A (en) 1984-12-15 1984-12-15 Impact liquid pressure test

Country Status (1)

Country Link
JP (1) JPS61142438A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686318A (en) * 2024-02-01 2024-03-12 吉林省东懋包装有限公司 A test device for corrugated container board intensity

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117686318A (en) * 2024-02-01 2024-03-12 吉林省东懋包装有限公司 A test device for corrugated container board intensity
CN117686318B (en) * 2024-02-01 2024-04-26 吉林省东懋包装有限公司 A test device for corrugated container board intensity

Similar Documents

Publication Publication Date Title
US11085858B1 (en) True triaxial tester with adjustable loading stiffness and test method
Kenner et al. Impact on a simple physical model of the head
US3854328A (en) Resiliency testing device
Chakrabarti et al. Interaction of waves with large vertical cylinder
CN108051054A (en) It is a kind of in hospital can intelligent measure height and weight measuring instrument
US4375679A (en) Hydrophone acoustic response chamber
JPS61142438A (en) Impact liquid pressure test
CN108593377A (en) Sample and preparation method in a kind of low frequency measurement system and application method
CN207991944U (en) A kind of horizontal pull experimental rig applied to slope pile foundation
JPS6150040A (en) Liquid pressure impact tester
US3662327A (en) Seismometer
CN111189525B (en) Underwater explosion sound source acoustic power measuring device
US3812924A (en) Device for monitoring a change in mass in varying gravimetric environments
SU960565A1 (en) Device for pressure converter graduation
CN114858626B (en) Buffer pad performance test fixture and buffer pad performance test method
Kopperman et al. Effect of state of stress on velocity of low amplitude compression waves propagating along principal stress directions in dry sand
US4559817A (en) Hydrodynamic test apparatus with offshore structure model using gas bag seal at model bottom
Marangoni et al. Impact stresses in human head-neck model
CN217359746U (en) Oil tank noise barrier performance testing device
CN212646343U (en) Hand-raising strength test system for display panel packaging box
CN114960785B (en) Flexible bearing plate for foundation load test
CN113670555B (en) Explosion-proof performance test system and performance evaluation method of flexible explosion-proof equipment
CN220508593U (en) Shell strength mechanical test tool
CN216770781U (en) Device for testing sound level meter
JPH07268895A (en) Method and equipment for measuring deformability of rock core