JPS6114238B2 - - Google Patents

Info

Publication number
JPS6114238B2
JPS6114238B2 JP57173072A JP17307282A JPS6114238B2 JP S6114238 B2 JPS6114238 B2 JP S6114238B2 JP 57173072 A JP57173072 A JP 57173072A JP 17307282 A JP17307282 A JP 17307282A JP S6114238 B2 JPS6114238 B2 JP S6114238B2
Authority
JP
Japan
Prior art keywords
plating
electroplating
current
magnetic powder
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57173072A
Other languages
Japanese (ja)
Other versions
JPS5964795A (en
Inventor
Kazuo Toda
Tsutomu Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP57173072A priority Critical patent/JPS5964795A/en
Publication of JPS5964795A publication Critical patent/JPS5964795A/en
Publication of JPS6114238B2 publication Critical patent/JPS6114238B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Electroplating Methods And Accessories (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は、Ni,Fe,あるいはこれらの合金
等の、磁性を有する粉体表面に、電気メツキによ
つてCu,Ni,Ag等の被覆を施す方法に関するも
のである。 近年、各種微粉体表面に金属のメツキ被覆を施
すことによつて該微粉体に新しい特性を付与すれ
ば、種々の分野における需要が見込まれるという
ことから、この方面での研究報告が注目されるよ
うになつてきている。 ところで、従来、粉体、特に微粉体表面に金属
メツキを施す方法としては、無電解メツキによる
方法、あるいは気相メツキによる方法が知られて
いるのみであり、しかもこれらの方法ではメツキ
粉末製品の製造コストが非常に高くなるために、
工業的な実用例が極めて少ないというのが現状で
あつた。 本発明者等は、上述のような観点から、均一な
被覆メツキを有する粉末体を、低コストで、工業
的量産規模にて製造する方法を見出すべく研究を
行つた結果、Ni等の磁性を有する粉末の場合に
は、これをメツキ浴中に懸濁・分散させるととも
に該浴中に間歇的な磁場を陰極面の背後から与え
ると、該粉末の陰極面への吸着・離散が繰り返し
なされ、磁性粉末が陰極面に吸着して電気的接触
が得られた際に粉末の一部にメツキ層が析出する
という作用が、メツキ浴中に懸濁・分散している
粉末全体に繰り返されて、結局は懸濁粉末全体に
均一メツキ被覆が完結するとの知見を得るに至つ
たのである。 この発明は、上記知見に基づいてなされたもの
であつて、内部に陽極と陰極とを配置するととも
に、該陰極の背後の槽壁外面に磁石を配設した電
気メツキ槽に、被メツキ体たる磁性粉末を懸濁分
散状態で維持した電気メツキ液を保持し、前記磁
石により陰極付近に間歇的な磁場を形成しながら
電極を通してメツキ直流電流を通ずることによつ
て、陰極面に対する液中懸濁磁性粉末の吸着と離
散とを繰り返させて、粉末全体に均一メツキを施
すことに特徴を有するものである。 使用する磁石は、電磁石であつても良いし、ア
ルニコ磁石やSmCo磁石のような比較的強力な永
久磁石であつても何ら差支えない。 磁石として電磁石を使用する場合には、陰極付
近に間歇的な磁場を形成するために、励磁電流と
してパルス電流を通ずるのが好ましいが、励磁電
流パルスの周期は、0.1〜5Hz(周期時間:0.2〜
10秒)が、より好ましくは0.2〜2Hzが適当であ
り、通電休止時間は0.05〜0.5秒が適当である。
被メツキ粉体への均一メツキを得るためには、パ
ルス電流の周期は大きい方が好ましいが、つぎの
ような理由で最大限を5Hzとするのが好ましい。
すなわち、電磁マグネツトに励磁電流が流れる
と、その瞬間、メツキ槽内カソードへは被メツキ
粉体への吸引吸着が始まり、続いて、短い時間で
はあるが被メツキ粉体は次第に吸着層厚を増して
くる。従つて、例えば0.5秒経過後には、およそ
数ミリ厚の多層吸着状態となる。ところで、励磁
電流に同期してメツキ電流を流すときは、メツキ
電流の当初、つまり粉末の陰極への吸着が始まつ
た吸着層が薄いときは、粉体のメツキはほとんど
進行せず、専ら陰極板へのメツキ電着が起きる。
これは、微粉体の単粒子の陰極吸着では陰極への
接着圧(マグネツトの強度,および粉体たる金属
の種類,大きさ,重量による)が弱く、十分な電
気的接触が得られないためと考えられる。そこ
で、満足し得る電気的接触を得るためには、粉体
の多層吸着による接着圧力の増大が必要であり、
粉体の多層吸着を実現し、メツキを進行さすため
には、励磁電流とメツキ電流とにタイムラグをと
ることが好ましく、メツキ電流通電を励磁電流通
電より0.1秒以上遅らせると良い結果を得ること
ができる。したがつて、5Hzの周期の場合、実際
のメツキ時間は、パルス周期からタイムラグと休
止時間とを除いた0.05秒となり、1周期が極めて
短時間のメツキとなつてしまう。このようなこと
から、パルス周期の最大限を5Hzとするのが好ま
しいのである。また、同様の理由でタイムラグの
最大限を1秒に定めることが推奨される。 なお、通電休止時間の0.05〜0.5秒の間は、励
磁電流とメツキ電流とが同期して休止状態となる
が、この時間は陰極吸着微粉体が陰極面より離脱
するに要する時間であり、メツキ浴の撹拌または
循環速度に応じて定められるものであるが、いず
れにしても休止時間が0.05秒未満では吸着微粉体
の離脱が十分になされ難くなり、また0.5秒を越
えるとメツキ能率が低下するので好ましくない。 一方、パルス電流の周期が0.1Hz末満(周期時
間:10秒超)となると、メツキ時間各周期の10秒
に近いかそれ以上の時間となつて、被メツキ粉体
の不均一メツキを起すようになるので、パルス電
流周期の最小限を0.1Hzとするのが好ましい。 また、磁石として、アルニコ磁石やSmCo磁石
等の永久磁石を使用する場合には、前記電磁石を
使用する場合の間歇磁化に対応するように、該永
久磁石に周期的なメツキ槽壁への接近離隔運動を
与えて間歇的磁場を形成するのが良い。もちろ
ん、このときも、電磁石の場合と同様、メツキ電
流としてパルス電流を用いた場合には、そのメツ
キパルス電流の立上りを、メツキ槽壁への永久磁
石の接近完了時(陰極付近に完全な磁場が形成さ
れた時点)よりも0.1〜1秒だけ遅らせると良好
な結果を得ることができる。 被メツキ体たる磁性粉末をメツキ液中に懸濁分
散状態で維持する方法としては、第1図および第
2図に概略図で示されるように、インペラーでメ
ツキ液を撹拌したり、あるいはガス吹込みによつ
てメツキ液を撹拌したりする手段が採用でき、さ
らには第3図に示されるように、メツキ槽をパイ
プ状として、ポンプによつてこの内部にメツキ液
を循環させる手段を採用しても良い。 第1乃至3図は、この発明の方法において使用
する電気メツキ槽の例を示す概略構成図であり、
第1図及び第3図は磁石として電磁石4を使用し
たものの例であり、第2図は磁石として永久磁石
4′を使用したものの例である。 いずれのメツキ槽も、内部に陽極1と陰極2と
を配置するとともに、該陰極2の背後のメツキ槽
壁3外面に磁石(4または4′)が配置されてい
る。そして、第1図および第2図のものでは、メ
ツキ液5はインペラー6によつて撹拌され磁性粉
末を液中に懸濁分散状態で維持するようになつて
おり、第3図のものでは、図示しない液体ポンプ
によつてメツキ液を矢印の方向に循環させること
により、磁性粉末を液中に懸濁分散状態で維持す
るようになつている。このような手段で磁性粉末
を維持したメツキ液に、磁石(4または4′)で
陰極2背面から磁界をかけるわけであるが、第1
図および第3図のものは電磁石4にパルス電流を
流して間歇的な磁場を形成するようになつてお
り、第2図に示すものは、流体圧シリンダー7に
よつて永久磁石を間歇的にメツキ槽壁3に着脱さ
せ、これによつて陰極2付近のメツキ液6に間歇
的な磁場を形成するようになされたものである。 磁場が形成されると、メツキ液6中に懸濁分散
している磁性粉末の一部は陰極2面に引き寄せら
れて吸着し、電気的に接着するので、吸着磁性粉
末のメツキ液接触面にはメツキ電流によつてメツ
キ金属が析出することとなる。つぎに、磁場が解
除されると、一部分がメツキされた吸着粉末は再
びメツキ液中に分散懸濁するが、引き続く磁場形
成によつて、再度、別の磁性粉末が吸着されるか
あるいは一部分がメツキされた粉末が前回とは別
な部分で接触吸着され、前回と同様にしてメツキ
が施される。このような作用が繰り返されて、全
粉末の全表面が均一にメツキされることとなるの
である。 この発明の方法において使用するメツキ浴は特
定のものに限定されるものではないが、できれ
ば、被メツキ材に対してメツキ金属の化学置換を
起し難い組成のものを選択するのが良く、さらに
化学置換防止剤を添加したものを使用するのが好
ましい。 つぎに、この発明を実施例によつて具体的に説
明する。 実施例 第3図に示したような電気メツキ装置を使用し
て、フレーク状Ni粉にAgメツキを施した。この
ときのメツキ条件はつぎのとおりであつた。 被メツキ材:フレーク状Ni粉末(10μm未満が
35%、10〜20μmが45%、20〜44μmが17%
の粒度で、厚さが0.6μmのH2還元材)、 対極(陽極):Pt板、 Agメツキ浴:市販Agメツキ浴〔KAg(CN)2〕を
Agが10g/に調整したところの、25℃のも
の、
The present invention relates to a method for applying a coating of Cu, Ni, Ag, etc. to the surface of a magnetic powder such as Ni, Fe, or an alloy thereof by electroplating. In recent years, research reports in this field have been attracting attention, as it is expected that if new characteristics are imparted to the surface of various fine powders by applying metal plating to the surface, demand will be expected in various fields. It's starting to look like this. By the way, conventionally, the only known methods for applying metal plating to the surface of powder, especially fine powder, are electroless plating or vapor phase plating. Due to very high manufacturing costs,
The current situation is that there are very few industrial practical examples. From the above-mentioned viewpoint, the present inventors conducted research to find a method for producing powder with uniform coating plating at low cost on an industrial mass production scale. If the powder is suspended and dispersed in a plating bath and an intermittent magnetic field is applied to the bath from behind the cathode surface, the powder will be repeatedly adsorbed and dispersed on the cathode surface. When the magnetic powder is adsorbed to the cathode surface and electrical contact is established, a plating layer is deposited on a part of the powder, which is repeated throughout the powder suspended and dispersed in the plating bath. In the end, it was discovered that uniform plating was achieved over the entire suspended powder. This invention has been made based on the above knowledge, and includes an electroplating tank in which an anode and a cathode are arranged inside, and a magnet is arranged on the outer surface of the tank wall behind the cathode. By holding an electroplating liquid in which magnetic powder is maintained in a suspended and dispersed state, and passing a plating direct current through the electrode while forming an intermittent magnetic field near the cathode using the magnet, the suspension in the liquid is applied to the cathode surface. The feature is that the magnetic powder is repeatedly attracted and dispersed to uniformly plate the entire powder. The magnet used may be an electromagnet or a relatively strong permanent magnet such as an alnico magnet or a SmCo magnet. When using an electromagnet as a magnet, it is preferable to pass a pulsed current as an excitation current in order to form an intermittent magnetic field near the cathode. ~
10 seconds), more preferably 0.2 to 2 Hz, and the appropriate energization pause time is 0.05 to 0.5 seconds.
In order to uniformly plate the powder to be plated, it is preferable that the period of the pulse current be large, but it is preferable to set the maximum period to 5 Hz for the following reasons.
In other words, when an excitation current flows through the electromagnet, at that moment, the powder to be plated begins to be attracted to the cathode in the plating tank, and then the powder to be plated gradually increases the thickness of the adsorption layer, albeit for a short period of time. It's coming. Therefore, for example, after 0.5 seconds have elapsed, a multilayered adsorption state with a thickness of approximately several millimeters is formed. By the way, when the plating current is applied in synchronization with the excitation current, at the beginning of the plating current, that is, when the adsorption layer where the powder starts to be adsorbed to the cathode is thin, the plating of the powder hardly progresses and the plating is exclusively applied to the cathode. Electrodeposition occurs on the plate.
This is because when a single particle of fine powder is adsorbed to the cathode, the adhesion pressure to the cathode (depending on the strength of the magnet and the type, size, and weight of the metal powder) is weak, and sufficient electrical contact cannot be obtained. Conceivable. Therefore, in order to obtain a satisfactory electrical contact, it is necessary to increase the adhesive pressure through multilayer adsorption of powder.
In order to achieve multilayer adsorption of powder and advance plating, it is preferable to have a time lag between the excitation current and the plating current, and good results can be obtained by delaying the application of the plating current by 0.1 seconds or more from the application of the excitation current. can. Therefore, in the case of a cycle of 5 Hz, the actual plating time is 0.05 seconds, which is the pulse cycle minus the time lag and rest time, and one cycle becomes an extremely short plating time. For this reason, it is preferable to set the maximum pulse period to 5 Hz. Furthermore, for the same reason, it is recommended to set the maximum time lag to 1 second. Note that during the 0.05 to 0.5 second energization stop time, the excitation current and plating current are synchronized and are in a rest state, but this time is the time required for the cathode-adsorbed fine powder to separate from the cathode surface, and the plating It is determined according to the stirring or circulation speed of the bath, but in any case, if the pause time is less than 0.05 seconds, it will be difficult to remove the adsorbed fine powder sufficiently, and if it exceeds 0.5 seconds, the plating efficiency will decrease. So I don't like it. On the other hand, if the pulse current cycle is less than 0.1 Hz (cycle time: more than 10 seconds), the plating time will be close to or longer than 10 seconds for each cycle, causing uneven plating of the powder to be plated. Therefore, it is preferable to set the minimum pulse current period to 0.1 Hz. In addition, when a permanent magnet such as an alnico magnet or a SmCo magnet is used as a magnet, the permanent magnet should be periodically moved toward and away from the plating tank wall in order to correspond to intermittent magnetization when the electromagnet is used. It is better to apply motion to form an intermittent magnetic field. Of course, in this case, as in the case of electromagnets, if a pulsed current is used as the plating current, the rise of the plating pulse current is set at the time when the permanent magnet completes its approach to the plating tank wall (when the complete magnetic field is near the cathode). Good results can be obtained by delaying the time by 0.1 to 1 second from the time of formation. As a method of maintaining the magnetic powder to be plated in a suspended and dispersed state in the plating liquid, as shown schematically in Figures 1 and 2, stirring the plating liquid with an impeller or using gas blowing. In addition, as shown in Figure 3, the plating tank can be made into a pipe and the plating liquid can be circulated inside the tank using a pump. It's okay. 1 to 3 are schematic configuration diagrams showing examples of electroplating baths used in the method of the present invention,
1 and 3 are examples in which an electromagnet 4 is used as the magnet, and FIG. 2 is an example in which a permanent magnet 4' is used as the magnet. Each of the plating tanks has an anode 1 and a cathode 2 arranged therein, and a magnet (4 or 4') arranged on the outer surface of the plating tank wall 3 behind the cathode 2. In the case of FIGS. 1 and 2, the plating liquid 5 is stirred by an impeller 6 to maintain the magnetic powder in a suspended and dispersed state, and in the case of FIG. By circulating the plating liquid in the direction of the arrow by a liquid pump (not shown), the magnetic powder is maintained in a suspended and dispersed state in the liquid. A magnetic field is applied from the back of the cathode 2 using a magnet (4 or 4') to the plating solution that maintains the magnetic powder by such means.
The ones shown in Figs. and 3 are designed to generate an intermittent magnetic field by passing a pulse current through the electromagnet 4, while the one shown in Fig. 2 is designed to generate an intermittent magnetic field by using a fluid pressure cylinder 7. It is attached to and detached from the plating tank wall 3, thereby creating an intermittent magnetic field in the plating liquid 6 near the cathode 2. When a magnetic field is formed, a part of the magnetic powder suspended and dispersed in the plating liquid 6 is attracted to the two surfaces of the cathode and is electrically bonded to the surface of the plating liquid. The plating metal will be deposited by the plating current. Next, when the magnetic field is removed, the partially plated adsorbed powder is again dispersed and suspended in the plating liquid, but as a result of the subsequent formation of the magnetic field, another magnetic powder may be adsorbed again or a portion of the adsorbed powder may be partially plated. The plated powder is contacted and adsorbed in a different part from the previous one, and the plated powder is applied in the same way as the previous one. By repeating this action, the entire surface of all the powder is plated uniformly. The plating bath used in the method of this invention is not limited to a specific one, but if possible, it is better to select one with a composition that does not cause chemical substitution of the plating metal in the material to be plated, and It is preferable to use one to which a chemical displacement inhibitor is added. Next, the present invention will be specifically explained with reference to Examples. Example Using an electroplating device as shown in FIG. 3, flaky Ni powder was plated with Ag. The plating conditions at this time were as follows. Material to be plated: flaky Ni powder (less than 10μm)
35%, 10-20μm 45%, 20-44μm 17%
(H 2 reducing material with a particle size of 0.6 μm and a thickness of
At 25℃, with Ag adjusted to 10g/

【表】 陰極:AgメツキCu板、 (対向面の面積……5cm×5cm)、【table】 Cathode: Ag plated Cu plate, (Area of opposing surfaces...5cm x 5cm),

【表】 Agメツキ電流密度:4A/dm2(対陰極面)、 陰極タイムラグ:0.5秒。 このときの励磁電流パルスとメツキ電流パルス
の同期状態を模式図で表わすと、第4図に示され
るようなものであつた。 なお、メツキ処理にあたつては、まず、フレー
ク状Ni粉の5gをAgメツキ浴2に加え、ポン
プ循環によつてこのフレーク状Ni粉を懸濁分散
状態とした。そして、電磁石の励磁電流並びにメ
ツキパレス電流はバイポーラ整流器(フアンクシ
ヨンゼネレーター使用)により発生し、励磁パレ
ス電流より分流したメツキ電流のタイムラグの
0.5秒は、励磁パルス信号より、リレーおよび電
子タイマーを経て発生せしめることによつて電気
メツキを行つた。 このような処理を90分間(4500クーロン)実施
し、処理後のAgメツキされたフレーク状Ni粉の
収量を測定したところ10.1gの値が得られた。 そして、得られたAgメツキフレーク状Ni粉に
ついて、高温および低温における導電ペースト特
性をテストしたところ、フレーク状Ni粉単味に
比べていずれも導電性にすぐれているという結果
が得られ、Niフレーク表面に均一なAgメツキ被
覆が形成されていることが確認された。 上述のように、この発明によれば、均一なメツ
キ被覆を有する微粉末を、簡単容易に、低コスト
で大量生産することができ、例えば、Ni微粉体
表面にAgの電気メツキ被覆を付与することによ
り、従来のAgペーストに代り得る安価な導電性
ペーストの製造を可能にするなど、新しい技術分
野の開拓が実現でき、工業上有用な効果がもたら
されるのである。
[Table] Ag plating current density: 4A/dm 2 (anticathode surface), cathode time lag: 0.5 seconds. The synchronized state of the excitation current pulse and the plating current pulse at this time was schematically shown in FIG. 4. In the plating process, first, 5 g of flaky Ni powder was added to the Ag plating bath 2, and the flaky Ni powder was suspended and dispersed by pump circulation. The excitation current of the electromagnet and the plating current are generated by a bipolar rectifier (using a function generator), and the time lag of the plating current shunted from the excitation pulse current is
Electroplating was performed by generating a 0.5 second excitation pulse signal via a relay and an electronic timer. Such treatment was carried out for 90 minutes (4500 coulombs), and the yield of Ag-plated flaky Ni powder after the treatment was measured, and a value of 10.1 g was obtained. When we tested the conductive paste properties at high and low temperatures of the obtained Ag-metsuki flake-like Ni powder, we found that it had superior conductivity compared to single flake-like Ni powder. It was confirmed that a uniform Ag plating coating was formed on the surface. As described above, according to the present invention, fine powder having a uniform plating coating can be easily mass-produced at low cost. For example, an electroplating coating of Ag can be applied to the surface of a Ni fine powder. This will enable the development of new technical fields, such as the production of inexpensive conductive pastes that can replace conventional Ag pastes, and will bring about industrially useful effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、および第3図は、それぞれ本
発明方法に使用される電気メツキ槽の異なる例の
概略構成図、第4図は本発明実施例における励磁
電流パルスとメツキ電流パルスの同期状態を示す
模式図である。 図面において、1…陽極(対極)、2…陰極、
3…メツキ槽壁、4…電磁石、4′…永久磁石、
5…メツキ液、6…インペラー、7…流体圧シリ
ンダー。
1, 2, and 3 are schematic diagrams of different examples of electroplating baths used in the method of the present invention, and FIG. 4 shows the excitation current pulse and plating current pulse in the embodiment of the present invention. It is a schematic diagram which shows a synchronization state. In the drawings, 1... anode (counter electrode), 2... cathode,
3... Plating tank wall, 4... Electromagnet, 4'... Permanent magnet,
5... Metsuki liquid, 6... Impeller, 7... Fluid pressure cylinder.

Claims (1)

【特許請求の範囲】 1 内部に陽極と陰極とを配置するとともに、該
陰極の背後の槽壁外面に磁石を配設した電気メツ
キ槽に、被メツキ体たる磁性粉末を懸濁分散状態
で維持した電気メツキ液を保持し、前記磁石によ
り陰極付近に間歇的な磁場を形成しながら電極を
通してメツキ直流電流を通ずることによつて、陰
極面に対する液中懸濁磁性粉末の吸着と離散とを
繰り返させながら、該磁性粉末全体に均一メツキ
を施すことを特徴とする、磁性粉末の電気メツキ
方法。 2 磁石として電磁石を使用し、これに直流パレ
ス電流を通ずることによつて間歇的な磁場を形成
する、特許請求の範囲第1項に記載の磁性粉末の
電気メツキ方法。 3 直流パレス電流の周期を0.1〜5Hzとする特
許請求の範囲第2項に記載の磁性粉末の電気メツ
キ方法。 4 メツキ直流電流を励磁電流パルスに同期した
パルス電流とし、メツキパルス電流の立上りを励
磁電流パルスの立上りよりも0.1〜1秒だけ遅ら
せる、特許請求の範囲第2項または第3項に記載
の磁性粉末の電気メツキ方法。 5 磁石として永久磁石を使用し、該永久磁石に
周期的なメツキ槽壁への接近離隔運動を与えるこ
とによつて間歇的な磁場を形成する、特許請求の
範囲第2項に記載の磁性粉末の電気メツキ方法。 6 メツキ直流電流を永久磁石の運動周期に同期
したパルス電流とし、メツキパルス電流の立上り
を、メツキ槽壁への永久磁石の接近完了時よりも
0.1〜1秒だけ遅らせる、特許請求の範囲第5項
に記載の磁性粉末の電気メツキ方法。
[Claims] 1. Magnetic powder to be plated is maintained in a suspended and dispersed state in an electroplating tank in which an anode and a cathode are arranged and a magnet is arranged on the outer surface of the tank wall behind the cathode. The magnetic powder suspended in the liquid is repeatedly attracted to the cathode surface and dispersed by holding the electroplating liquid and passing a plating direct current through the electrode while forming an intermittent magnetic field near the cathode using the magnet. 1. A method for electroplating magnetic powder, the method comprising uniformly plating the entire magnetic powder. 2. The method of electroplating magnetic powder according to claim 1, wherein an electromagnet is used as the magnet, and an intermittent magnetic field is formed by passing a DC pulse current through the electromagnet. 3. The method of electroplating magnetic powder according to claim 2, wherein the period of the DC pulse current is 0.1 to 5 Hz. 4. The magnetic powder according to claim 2 or 3, wherein the plating direct current is a pulse current synchronized with the excitation current pulse, and the rise of the plating pulse current is delayed by 0.1 to 1 second than the rise of the excitation current pulse. electroplating method. 5. The magnetic powder according to claim 2, which uses a permanent magnet as a magnet and forms an intermittent magnetic field by giving the permanent magnet periodic movement towards and away from the plating tank wall. electroplating method. 6 The plating DC current is a pulse current synchronized with the motion cycle of the permanent magnet, and the rise of the plating pulse current is set to be higher than when the permanent magnet completes approaching the plating tank wall.
A method of electroplating magnetic powder according to claim 5, wherein the delay is delayed by 0.1 to 1 second.
JP57173072A 1982-10-01 1982-10-01 Method for electroplating magnetic powder Granted JPS5964795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57173072A JPS5964795A (en) 1982-10-01 1982-10-01 Method for electroplating magnetic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57173072A JPS5964795A (en) 1982-10-01 1982-10-01 Method for electroplating magnetic powder

Publications (2)

Publication Number Publication Date
JPS5964795A JPS5964795A (en) 1984-04-12
JPS6114238B2 true JPS6114238B2 (en) 1986-04-17

Family

ID=15953681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57173072A Granted JPS5964795A (en) 1982-10-01 1982-10-01 Method for electroplating magnetic powder

Country Status (1)

Country Link
JP (1) JPS5964795A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01162796A (en) * 1987-12-17 1989-06-27 Mitsui Mining & Smelting Co Ltd Electroplating method of magnetic powder

Also Published As

Publication number Publication date
JPS5964795A (en) 1984-04-12

Similar Documents

Publication Publication Date Title
TW526295B (en) Electroplating method using the combination of vibration flow of the plating bath and the pulse form of plating current
JP3827276B2 (en) Barrel electroplating method for extremely small articles
US5071517A (en) Method for directly electroplating a dielectric substrate and plated substrate so produced
JP3342697B2 (en) Electroplating method for metal coating on particles at high coating speed using high current density
Foster et al. The effect of current density and agitation on the formation of electrodeposited composite coatings
US4097342A (en) Electroplating aluminum stock
CN104088002A (en) Preparation device and method of composite coating
US3454376A (en) Metal composite and method of making same
JP2002069689A (en) Method for electroplating on powder
Kristof et al. Improved copper plating through the use of current pulsing & ultrasonic agitation
JPS6114238B2 (en)
US2920018A (en) Anodizing process and system
CN104746117A (en) Cathode and anode synchronous frequency vibration type strong magnetic auxiliary electro-deposition processing device and method
JPS6318096A (en) Method for coating metal to hyperfine powder
CN105296974A (en) Palladium plating liquid and method for plating palladium on copper surface by using same
US3531379A (en) Process of coating aluminum with other metals
Mohan et al. The effect of additives on the pulsed electrodeposition of copper
Yung et al. The effects of pulse plating parameters on copper plating distribution of microvia in PCB manufacture
CN114525559A (en) Plating apparatus and plating method
JP3925724B2 (en) Surface treatment method for non-conductive materials
EP0590046B1 (en) Basic accelerating solutions for direct electroplating
KR20170037066A (en) Apparatus and method for electroplating
JPS60217603A (en) Manufacture of rigid magnetic film
JP3286900B2 (en) Plating method and plating equipment
JPH0798997B2 (en) Metal electrodeposition method