JPS6114202B2 - - Google Patents

Info

Publication number
JPS6114202B2
JPS6114202B2 JP56140350A JP14035081A JPS6114202B2 JP S6114202 B2 JPS6114202 B2 JP S6114202B2 JP 56140350 A JP56140350 A JP 56140350A JP 14035081 A JP14035081 A JP 14035081A JP S6114202 B2 JPS6114202 B2 JP S6114202B2
Authority
JP
Japan
Prior art keywords
goethite
water
parts
minutes
suspension
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56140350A
Other languages
Japanese (ja)
Other versions
JPS5842704A (en
Inventor
Toshinori Ishibashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP56140350A priority Critical patent/JPS5842704A/en
Publication of JPS5842704A publication Critical patent/JPS5842704A/en
Publication of JPS6114202B2 publication Critical patent/JPS6114202B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は分散性、配向性が優れ、且つ磁気特性
が優れた磁気記録材料用の磁性鉄粉の製造法に関
する。 高密度記録用の磁性材料として磁性鉄粉が注目
されているが、針状でかつ分散性、配向性の優れ
た磁性鉄粉を得るためには、出発原料としての針
状ゲーサイトに耐熱成分を必要量均一に被着させ
ねばならない。この均一性の要求度は磁性酸化鉄
粉製造の場合に較べて格段にきびしい。即ち、磁
性酸化鉄粉では還元がマグネタイト(Fe3O4)ど
まりであるに対し、磁性鉄粉ではほぼ鉄にまで還
元せねばならず、還元処理時に進行する針状粒子
間の焼結が激しくこれを防止するためにゲーサイ
トに添加する耐熱成分の量、及び被着均一性が最
終製品である磁性鉄粉の品質を大きく左右する。
なお本発明で言うゲーサイトとは針状含水酸化第
二鉄(α―FeOOH)であり、鉄塩単独又はこれ
に他金属例えばクロム、ニツケル、コバルト、亜
鉛等の塩を添加して湿式反応で沈澱させて得たも
のを言う。 このように出発原料であるゲーサイトに耐熱成
分を被着する工程は重要であるが、工業的にみて
安価な方法でなければならない。 従つて耐熱成分として安価な水ガラスを用い、
SiO2をゲーサイト表面に被着形成するる検討が
広く行なわれている。なお、分散剤例えばメタリ
ン酸塩等を用いて被着の均一を計ることを公知で
ありこれも本発明の実施を妨げるものではない。 水ガラスの希薄水溶液もアルカリ領域において
は分散剤として利用される。従つてSiO2の原料
として水ガラスを使用すればゲーサイトを水中に
均一に分散させることができ、従つてゲーサイト
表面へのSiO2の被着の均一を計ることもでき
る。 ゲーサイトの水懸濁液に水ガラスを添加して撹
拌し、懸濁液を中和して過、水洗してSiO2
着ゲーサイトを得る際にPHを6程度にすればゲー
サイトが凝集するため過、水洗が容易となるま
たPHが低い程水洗後のゲーサイトに残留するナト
リウムが減少する傾向にある。 しかしPH3〜5に調整して過、水洗、乾燥し
てもゲーサイトにはナトリウムが400〜1000ppm
程度は残留する問題がある。残留したナトリウム
は耐熱成分として被着したSiO2の耐熱性を下げ
るため極力除去する必要がある。しかし上述の条
件で水洗をくり返しても400ppm以上のナトリウ
ムは残留する。 表面に耐熱成分を被着したゲーサイトは250〜
400℃で脱水してヘマタイト(α―Fe2O3)とし、
更に高温で焼成してヘマタイト粒子を焼きしめ
る。この場合の焼成温度は通常350〜850℃の範
囲、特に550〜700℃の範囲で行なわれる。 高温で焼成したヘマタイトはH2中で還元し磁
性鉄粉とする。還元温度は通常300〜500℃の範囲
で行われる。この場合、いま仮に、ゲーサイト
100部に対し1.2部のSiO2を被着させこの時40ppm
のナトリウムが残留したとして、かかるナトリウ
ムがSiO2の耐熱性へ及ぼす影響を考察する。 SiO2−Na2Oの相図は公知文献(ジヤーナル
オブ アメリカン ケミストリー、61、28 69
(1939))に記載されているが、この相図を読み取
るために、まず、次式で定義されるモル比を計算
のする。 SiO/SiO+NaO これは、要するに、ゲーサイトの表面に被着さ
れたNaが残留したSiO2層の組成をモル比で示し
たものである。 上記設定において、100重量部のゲーサイトを
計算の基準とすると、 ゲーサイト 100 重量部 SiO2 1.2重量部 Naイオン X 重量部 ここでNaは400ppmであるから、 (X×106)/(100+1.2+X)=400 これを解いてXを求めると、 X=4.05×10-2重量部となる。 NaをNa2Oに換算すると、 Na2O=4.05×10-2×62/(2×23) =5.46×10-2重量部である。 従つて、モル比ベースで、 SiO/0SiO+NaO =1.2/60/1.2/60+5.46×10−2
/62 =0.957となる。 さて、この値を利用して上記文献記載の相図を
読み取ると、約780℃において、溶融相(Na2O・
3SiO2)と固相(SiO2)に相分離することが読み取
れる。しかも、この値の組成比では、溶融相
Na2O・3SiO2は、全SiO2−Na2O量の12.6重量部
に及ぶのである。 従つて、この組成の被着粉を780℃に加熱する
と、被着相が、溶融相(Na2O・3SiO2)と固相
(SiO2)に相分離し、この液相は、SiO2を被着し
た出発物質粒子同士で溶融〜融着を起こすことが
容易に理解されるのである。なお、一般に、焼結
は融着よりかなり低温で起こることが知られてお
り、780℃以上の高温においてはもちろん、これ
以下の温度においてもSiO2に混在した残留ナト
リウムにより、SiO2相の融着が起こるであろう
ことが容易に推定されるのである。 当然のことながら、磁性鉄粉はその構成成分た
る針状粒子の一本一本が融着していないことが必
要であるところ、上記のごとく、融着した粒子を
加熱還元して得た還元磁性鉄粉は、粒子の多くが
間が互いに融着しており、分散性が極めて悪いこ
とがわかるのである。すなわち、この程度の温度
における熱処理であつても、僅か400ppmのナト
リウムが残存していた場合、焼結に対する悪影
響、特に粒子間の融着による磁性鉄粉の分散性の
悪化は到底無視出来ないことは明らかである。 本発明者は水ガラスを用いたゲーサイトの耐熱
処理につき種々検討を重ねた結果、簡単な洗浄だ
けで水ガラス被着ゲーサイトへの残留ナトリウム
濃度を大幅に低減させ、かつSiO2を均一性定量
性よく被着させる技術である本発明を完成した。
即ち、本発明は水ガラスを被着したゲーサイトの
水系懸濁液を別、加熱、還元する磁性鉄粉の製
造法において、水系懸濁液にカルシウムイオンを
存在させることを特徴とする磁性鉄粉の製造法で
ある。 水ガラスは1号〜4号水ガラスのいづれも用い
られている。水ガラスの使用量は原料ゲーサイト
粒子の大きさ及びゲーサイト組成を考慮して適宜
決定されているが、Si換算で最底0.2wt%は使用
されているようである。ゲーサイト懸濁液に水ガ
ラスを添加した後にはPHを6以上に調整すること
は本発明の実施に好ましい。水ガラスを添加した
スラリーはアルカリ領域にあるため、そのままで
もよいが塩酸、硝酸、硫酸のいずれかを加えてPH
を6〜8程度に調整してもよい。PH調整のために
使用する酸は本発明で共存させるカルシウムイオ
ンと反応して難不溶性の塩を形成しないものが好
ましい。PHを6以下にすると使用する酸量が増
え、また被着処理を行なつた後の液の廃棄の際
にアルカリにて中和しなければならなくなる。カ
ルシウムイオンを共存させるためには硝酸カルシ
ウム、塩化カルシウム、水酸化カルシウム等を選
べば良い。カルシウム塩を添加するとゲーサイト
に吸着した水ガラスのうちNaイオンがCaイオン
で置換され、Na残留量を低減できるとともにス
ラリーが凝集して過・水洗が容易になるため工
業的に有利である。水ガラスのNaイオンとCaイ
オンの置換は例えばH.T.S,Brittonの著書
Hydrogen Ions 3rd ed.Vol.2,pl06(1942)
Chapman.Hall Ltd,Londonに示されている。 また、Ca塩を添加すれば強分散した懸濁液を
凝集させ過、水洗作業をを容易にる利点もあ
る。Caのない従来の技術においては、ゲーサイ
トの水ガラス懸濁液のPHが大略5〜6.5の領域で
は凝集をおこし濾過し易いが、それ以外の領域で
は強分散し、濾過しずらい状態になつてしまう。
このようにCa塩の添加により水系懸濁液にカル
シウムイオンを共存させると、水ガラスのNaイ
オンをCaで置換し、ゲーサイトへの残存ナトリ
ウムの悪影響を低減できるとともに、ゲーサイト
の水懸濁液を凝集させて、水洗・過がきわめて
容易に出来る。また凝集はPH6以上でもおこるた
め廃液処理上も有利である。 そして、カルシウムイオンを添加するゲーサイ
トの水系懸濁液はPHを6〜8とすることは実施例
1,3とと実施例5との比較において理解される
通りゲーサイトへのSiO2の被着量を高く保つ効
果もある。 実施例 1 アルカリ側領域で合成したゲーサイトを水洗
し、ゲーサイト100g、水2からなる懸濁液を
調製した。懸濁液のPHは9.2であつた。 次に、SiO2として1.62g含む3号水ガラスの水
溶液を懸濁液に添加し、30分間撹拌した。添加量
はゲーサイト100部に対しSi0.76部に相当する。
PH及び粘度は各々10.8、10cpであつた。 次に硝酸を加えてPHを7に調整し30分間撹拌し
た。粘度は8cpであつた。 このあと塩化カルシウム0.31gを溶解した水溶
液を加えて30分間撹拌した。添加量はゲーサイト
100部に対してCa0.11部に相当する。 PH及び粘度は6.8、330cpであつた。この時の懸
濁液の全量は2.5であつた。Ca塩を添加するこ
とによるスラリーの凝集が観察された。 凝集スラリーを過し、得られたケーキを2
の水中に再分散して30分間撹拌後過し、ケーキ
は乾燥してSi,Ca,Naの組成分析を行なつた。
なお、スラリーの過は5Cの紙と口径20cmの
ブフナロートにてアスピレーターで減圧下にて行
なつたが2回とも各々10分のきわめて短時間で
過が完了し、かつ過初期に紙からゲーサイト
が液中にリークすることが無かつた。水洗後の
ゲーサイトの分析値は表1の通りであつた。
The present invention relates to a method for producing magnetic iron powder for use in magnetic recording materials, which has excellent dispersibility, orientation, and magnetic properties. Magnetic iron powder is attracting attention as a magnetic material for high-density recording, but in order to obtain acicular magnetic iron powder with excellent dispersibility and orientation, it is necessary to add a heat-resistant component to acicular goethite as a starting material. must be uniformly deposited in the required amount. This requirement for uniformity is much stricter than in the case of producing magnetic iron oxide powder. In other words, with magnetic iron oxide powder, the reduction is limited to magnetite (Fe 3 O 4 ), whereas with magnetic iron powder, the reduction must be reduced to almost iron, and the sintering between the acicular particles that progresses during the reduction process is intense. The quality of the final product, the magnetic iron powder, is greatly influenced by the amount of heat-resistant components added to goethite to prevent this and the uniformity of the adhesion.
In addition, the goethite referred to in the present invention is acicular hydrated ferric oxide (α-FeOOH), which can be reacted with iron salt alone or with the addition of salts of other metals such as chromium, nickel, cobalt, zinc, etc. Refers to what is obtained by precipitation. Although the process of coating the heat-resistant component on the starting material goethite is important, it must be an inexpensive method from an industrial standpoint. Therefore, using inexpensive water glass as a heat-resistant component,
Studies have been widely conducted on depositing SiO 2 on the surface of goethite. Incidentally, it is known to use a dispersant such as a metaphosphate to ensure uniform adhesion, and this does not hinder the practice of the present invention. Dilute aqueous solutions of water glass are also used as dispersants in the alkaline region. Therefore, if water glass is used as a raw material for SiO 2 , goethite can be uniformly dispersed in water, and therefore it is also possible to measure the uniformity of the deposition of SiO 2 on the goethite surface. Goethite can be obtained by adding water glass to an aqueous suspension of goethite, stirring it, neutralizing the suspension, filtering it, and washing it with water to obtain SiO 2 -adhered goethite. Because it aggregates, it is easier to wash with water.The lower the pH, the less sodium remains in goethite after washing with water. However, even after adjusting the pH to 3 to 5, washing with water, and drying, goethite still contains 400 to 1000 ppm of sodium.
There remains a problem with the extent of this. The remaining sodium must be removed as much as possible because it serves as a heat-resistant component and reduces the heat resistance of the deposited SiO 2 . However, even if water washing is repeated under the above conditions, more than 400 ppm of sodium remains. Goethite with a heat-resistant component coated on the surface is 250~
Dehydrated at 400℃ to form hematite (α-Fe 2 O 3 ),
Furthermore, the hematite particles are baked at a high temperature. The firing temperature in this case is usually in the range of 350 to 850°C, particularly in the range of 550 to 700°C. Hematite calcined at high temperature is reduced in H 2 to form magnetic iron powder. The reduction temperature is usually in the range of 300 to 500°C. In this case, if the game site
1.2 parts of SiO 2 was deposited on 100 parts, and at this time 40 ppm
Let us consider the influence of this sodium on the heat resistance of SiO 2 assuming that some sodium remains. The phase diagram of SiO 2 −Na 2 O is based on known literature (Journal
of American Chemistry, 61, 28 69
(1939)), but in order to read this phase diagram, first calculate the molar ratio defined by the following formula. SiO 2 /SiO 2 +Na 2 O This is, in short, the composition of the SiO 2 layer deposited on the surface of goethite in which Na remains, expressed in terms of molar ratio. In the above settings, if 100 parts by weight of goethite is used as the standard for calculation, Goethite 100 parts by weight SiO 2 1.2 parts by weight Na ions .2 + X) = 400 Solving this to find X, it becomes X = 4.05 × 10 -2 parts by weight. When Na is converted to Na 2 O, Na 2 O = 4.05 x 10 -2 x 62/(2 x 23) = 5.46 x 10 -2 parts by weight. Therefore, on a molar ratio basis, SiO 2 /0SiO 2 +Na 2 O = 1.2/60/1.2/60+5.46×10 −2
/62 = 0.957. Now, if we read the phase diagram described in the above literature using this value, at about 780°C, the molten phase (Na 2 O・
It can be seen that the phase separates into a solid phase (SiO 2 ) and a solid phase (SiO 2 ). Moreover, at this value of composition ratio, the molten phase
Na2O.3SiO2 accounts for 12.6 parts by weight of the total amount of SiO2 - Na2O . Therefore, when the adhering powder with this composition is heated to 780°C, the adhering phase separates into a molten phase (Na 2 O.3SiO 2 ) and a solid phase (SiO 2 ), and this liquid phase becomes SiO 2 It is easily understood that the particles of the starting material to which they are coated are melted or fused together. In addition, it is generally known that sintering occurs at a much lower temperature than fusion, and the residual sodium mixed in SiO 2 causes fusion of the SiO 2 phase, not only at high temperatures of 780°C or higher, but also at temperatures below this. It is easy to infer that this will occur. Naturally, magnetic iron powder requires that each of the acicular particles that are its constituent components are not fused together, but as mentioned above, the reduction obtained by heating and reducing the fused particles It can be seen that many of the particles of magnetic iron powder are fused to each other and have extremely poor dispersibility. In other words, even with heat treatment at this temperature, if only 400 ppm of sodium remains, the negative effect on sintering, especially the deterioration of the dispersibility of magnetic iron powder due to fusion between particles, cannot be ignored. is clear. As a result of various studies on the heat-resistant treatment of goethite using water glass, the present inventor has found that with simple cleaning, the residual sodium concentration in goethite adhered to water glass can be significantly reduced, and SiO 2 can be uniformly treated. The present invention, which is a technique for depositing with good quantitative properties, has been completed.
That is, the present invention relates to a method for producing magnetic iron powder in which an aqueous suspension of goethite coated with water glass is separately heated and reduced, which is characterized in that calcium ions are present in the aqueous suspension. This is a method of manufacturing powder. As for the water glass, all of No. 1 to No. 4 water glass are used. The amount of water glass used is determined appropriately taking into account the size of the raw goethite particles and the goethite composition, but it seems that the lowest amount of 0.2 wt% is used in terms of Si. After adding water glass to the goethite suspension, it is preferable for the practice of the present invention to adjust the pH to 6 or higher. The slurry containing water glass is in the alkaline range, so it can be used as is, but it can be adjusted to pH by adding either hydrochloric acid, nitric acid, or sulfuric acid.
may be adjusted to about 6 to 8. The acid used for pH adjustment is preferably one that does not react with calcium ions coexisting in the present invention to form a hardly soluble salt. When the pH is lower than 6, the amount of acid used increases, and the solution must be neutralized with an alkali when disposed of after the deposition process. In order to coexist with calcium ions, calcium nitrate, calcium chloride, calcium hydroxide, etc. may be selected. Addition of calcium salts is industrially advantageous because Na ions in the water glass adsorbed on goethite are replaced by Ca ions, reducing the amount of residual Na and coagulating the slurry to facilitate filtering and washing. For example, the replacement of Na ions and Ca ions in water glass is described in the book by HTS, Britton.
Hydrogen Ions 3rd ed.Vol.2, pl06 (1942)
Shown at Chapman.Hall Ltd, London. Additionally, the addition of Ca salt has the advantage of coagulating a strongly dispersed suspension to facilitate washing with water. In the conventional technology without Ca, goethite water glass suspension coagulates and is easy to filter in the pH range of approximately 5 to 6.5, but in other regions it is strongly dispersed and becomes difficult to filter. I get used to it.
When calcium ions are made to coexist in an aqueous suspension by adding Ca salts in this way, Na ions in water glass are replaced with Ca, which reduces the negative effects of residual sodium on goethite. It coagulates the liquid, making washing and filtering extremely easy. Furthermore, since aggregation occurs even at pH 6 or higher, it is advantageous in terms of waste liquid treatment. As understood from the comparison between Examples 1 and 3 and Example 5, the aqueous suspension of goethite to which calcium ions are added has a pH of 6 to 8. It also has the effect of keeping the amount of wear high. Example 1 Goethite synthesized in the alkaline region was washed with water to prepare a suspension consisting of 100 g of goethite and 2 parts of water. The pH of the suspension was 9.2. Next, an aqueous solution of No. 3 water glass containing 1.62 g of SiO 2 was added to the suspension and stirred for 30 minutes. The amount added corresponds to 0.76 parts of Si per 100 parts of goethite.
The pH and viscosity were 10.8 and 10 cp, respectively. Next, nitric acid was added to adjust the pH to 7, and the mixture was stirred for 30 minutes. The viscosity was 8 cp. Thereafter, an aqueous solution containing 0.31 g of calcium chloride was added and stirred for 30 minutes. Addition amount is game site
Equivalent to 0.11 parts of Ca per 100 parts. The pH and viscosity were 6.8 and 330 cp. The total volume of the suspension at this time was 2.5. Agglomeration of the slurry was observed by adding Ca salt. Filter the agglomerated slurry and divide the resulting cake into 2
The cake was redispersed in water, stirred for 30 minutes, and filtered. The cake was dried and analyzed for composition of Si, Ca, and Na.
The slurry was filtered using 5C paper and a Buchner funnel with a diameter of 20 cm under reduced pressure using an aspirator.The filtering was completed in a very short time of 10 minutes each time, and the goethite was removed from the paper in the early stage of the filtering. There was no leakage into the liquid. The analytical values of goethite after washing with water were as shown in Table 1.

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量はゲーサイト中に64ppmときわめて少ない
ことがわかる。 なお使用したゲーサイトは長軸0.4μ、短軸
0.03μ、比表面積33m2/gの針状粒子であつた。 実施例 2 アルカリ側領域で合成したCrをFe100重量部に
対して0.5重量部含有するゲーサイトを水洗し、
ゲーサイト100g、水2からなる懸濁液を調製
した。懸濁液のPHは8.9であつた。 次にSiO2として0.857g含む4号水ガラスの水溶
液を懸濁液に添加し、30分間撹拌した。添加量は
ゲーサイト100部に対しSi0.4部に相当する。PH及
び粘度は各々10.7、20cpであつた。 次に塩酸を加えてPHを6に調整し30分間撹拌し
た。粘度は225cpであり、ゲーサイトは凝集し
た。このあと硝酸カルシウム0.5gを溶解した水溶
液を加えて3分間撹拌した。この時の懸濁液の全
量は2.5であつた。添加量はゲーサイト100部に
対してCa0.2部に相当する。 PH及び粘度は5.6,420cpであつた。 凝集スラリーを過し、得られたケーキを2
の水中に再分散して30分間撹拌後過し、ケーキ
は乾燥してSi,Ca,Na,Crの組成分析を行なつ
た。なお、スラリーの過は5Cの紙と口径20
cmのブフナロートにてアスピレーターで減圧下に
て行なつたが2回とも各々10分のきわめて短時間
で過が完了し、かつ過初期に紙からゲーサ
イトが液中にリークすることが全く無かつた。
水洗後のゲーサイトの分析値は表2の通りであつ
た。
[Table] In other words, it can be seen that the amount of sodium remaining in goethite after washing with water is extremely small at 64 ppm. The goethite used has a long axis of 0.4μ and a short axis.
They were acicular particles with a diameter of 0.03μ and a specific surface area of 33m 2 /g. Example 2 Goethite containing 0.5 parts by weight of Cr for 100 parts by weight of Fe synthesized in the alkaline region was washed with water,
A suspension consisting of 100 g of goethite and 2 parts of water was prepared. The pH of the suspension was 8.9. Next, an aqueous solution of No. 4 water glass containing 0.857 g of SiO 2 was added to the suspension and stirred for 30 minutes. The amount added corresponds to 0.4 parts of Si per 100 parts of goethite. The pH and viscosity were 10.7 and 20 cp, respectively. Next, hydrochloric acid was added to adjust the pH to 6, and the mixture was stirred for 30 minutes. The viscosity was 225 cp and the goethite was aggregated. Thereafter, an aqueous solution containing 0.5 g of calcium nitrate was added and stirred for 3 minutes. The total volume of the suspension at this time was 2.5. The amount added corresponds to 0.2 parts of Ca per 100 parts of goethite. The pH and viscosity were 5.6 and 420 cp. Filter the agglomerated slurry and divide the resulting cake into 2
The cake was redispersed in water, stirred for 30 minutes, and filtered. The cake was dried and analyzed for composition of Si, Ca, Na, and Cr. In addition, the slurry should be prepared using 5C paper and caliber 20.
The filtration was carried out under reduced pressure with an aspirator in a cm Buchna funnel, and the filtration was completed in a very short time of 10 minutes each time, and there was no leakage of goethite from the paper into the liquid at the beginning of the filtration. Ta.
The analytical values of goethite after washing with water were as shown in Table 2.

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量はゲーサイト中に42ppmときわめて少ない
ことがわかる。 なお、使用したゲーサイトは長軸0.45μ、短軸
0.03μ、比表面積32m2/gの針状粒子であつた。 実施例 3 アルカリ側で合成したZnをFe100重量部に対し
て1.2重量部含有するゲーサイトを水洗し、ゲー
サイト100g、水2からなる懸濁液を調製し
た。懸濁液のPHは8.9であつた。 次にSiO2として3.21g含む1号水ガラスの水溶
液を添加し30分間撹拌した。添加量はゲーサイト
100部に対しSi1.5部に相当する。 PH及び粘度は10.6、15cpであつた。 次に塩酸を加えてPHを7に調整し30分間撹拌し
た。粘度は12cpであつた。 このあと塩化カルシウム0.6gを溶解した水溶液
を加えて30分間撹拌した。この時の懸濁液の全量
は2.5であつた。添加量はゲーサイト100部に対
して0.22部に相当する。PH及び粘度は6.6、420cp
であり、Ca塩を添加することによりスラリーが
凝集した。 凝集スラリーを過し、得られたケーキを2
の水中に再分散して30分間撹拌後過しケーキは
乾燥してSi,Ca,Na,Znの組成分析を行なつ
た。 なお、スラリーの過は5Cの紙と、口径20
cmのブフナロートにてアスピレーターで減圧下に
て行なつたが2回とも10分のきわめて短時間で
過が完了し、かつ過初期に紙からゲーサイト
が液中にリークすることが全くなかつた。 水洗後のゲーサイトの分析値は表―3の通りで
あつた。
[Table] In other words, it can be seen that the amount of sodium remaining in goethite after washing with water is extremely small at 42 ppm. The goethite used has a major axis of 0.45μ and a minor axis.
They were acicular particles with a diameter of 0.03μ and a specific surface area of 32m 2 /g. Example 3 Goethite containing 1.2 parts by weight of Zn based on 100 parts by weight of Fe synthesized on the alkali side was washed with water to prepare a suspension consisting of 100 g of goethite and 2 parts of water. The pH of the suspension was 8.9. Next, an aqueous solution of No. 1 water glass containing 3.21 g of SiO 2 was added and stirred for 30 minutes. Addition amount is game site
Equivalent to 1.5 parts of Si per 100 parts. The pH and viscosity were 10.6 and 15 cp. Next, hydrochloric acid was added to adjust the pH to 7, and the mixture was stirred for 30 minutes. The viscosity was 12 cp. Thereafter, an aqueous solution containing 0.6 g of calcium chloride was added and stirred for 30 minutes. The total volume of the suspension at this time was 2.5. The amount added is equivalent to 0.22 parts per 100 parts of goethite. PH and viscosity is 6.6, 420cp
The slurry was flocculated by adding Ca salt. Filter the agglomerated slurry and divide the resulting cake into 2
After stirring for 30 minutes, the cake was filtered and dried, and the composition of Si, Ca, Na, and Zn was analyzed. In addition, the slurry should be prepared using 5C paper and 20mm diameter paper.
The filtration was carried out under reduced pressure using an aspirator in a Buchna funnel of 1.5 cm, and the filtration was completed in a very short time of 10 minutes both times, and there was no leakage of goethite from the paper into the liquid at the beginning of the filtration. The analytical values of goethite after washing with water were as shown in Table 3.

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量はゲーサイト中に73ppmときわめて少ない
ことがわかる。 なお、使用したゲーサイトは長軸0.5μ、短軸
0.033μ、比表面積32m2/gの針状粒子であつた。 実施例 4 酸側領域で合成したゲーサイトを水洗し、ゲー
サイト100g、水2からなる懸濁液を調製し
た。 懸濁液のPHは5.4であつた。カセイソーダを加
えてPHを8.0に調整したあとSiO2を1.62g含む3号
水ガラスの水溶液を懸濁液に添加し、30分間撹拌
した。PH及び粘度は各々10.0、12cpであつた。 次に硝酸を加えてPHを7に調整し30分間撹拌し
た。粘度は12cpであつた。このあと水酸化カル
シウム0.01gを溶解させた水溶液を加えて30分間
撹拌した。この時の懸濁液の全量は2.5であつ
た。PH及び粘度は9.3、320cpであつた。Si,Ca
の添加量はゲーサイト100部に対しSi0.76部、
Ca0.054部に相当する。水洗・過は実施例1〜
3と同様に行ない、過性は実施例1〜3と同様
きわめて良好であつた。 水洗後のゲーサイトの分析値は表―4の通りで
あつた。
[Table] In other words, it can be seen that the amount of sodium remaining in goethite after washing with water is extremely small at 73 ppm. The goethite used has a long axis of 0.5μ and a short axis.
They were acicular particles with a diameter of 0.033μ and a specific surface area of 32m 2 /g. Example 4 Goethite synthesized in the acid side region was washed with water to prepare a suspension consisting of 100 g of goethite and 2 parts of water. The pH of the suspension was 5.4. After adjusting the pH to 8.0 by adding caustic soda, an aqueous solution of No. 3 water glass containing 1.62 g of SiO 2 was added to the suspension and stirred for 30 minutes. The pH and viscosity were 10.0 and 12 cp, respectively. Next, nitric acid was added to adjust the pH to 7, and the mixture was stirred for 30 minutes. The viscosity was 12 cp. Thereafter, an aqueous solution in which 0.01 g of calcium hydroxide was dissolved was added and stirred for 30 minutes. The total volume of the suspension at this time was 2.5. The pH and viscosity were 9.3 and 320 cp. Si, Ca
The amount of Si added is 0.76 parts per 100 parts of goethite.
Equivalent to 0.054 parts of Ca. Washing and filtration are from Example 1.
The process was carried out in the same manner as in Example 3, and the permeability was very good as in Examples 1 to 3. The analysis values of goethite after washing with water were as shown in Table 4.

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量は90ppmときわめて少ないことが明らかで
ある。 なお使用したゲーサイトは長軸0.6μ、短軸
0.04μ、比表面積25m2/gの針状粒子であつた。 実施例 5 実施例1で使用したのと同じ水洗ゲーサイト
100g、水2からなる懸濁液を調製した。懸濁
液のPHは9.2であつた。 次にSiO2を1.62g含む3号水ガラスの水溶液を
懸濁液に添加し、3分間撹拌した。添加量はゲー
サイト100部に対してSi0.76部に相当する。 PH及び粘度は各々10.8,10cpであつた。 次に硝酸を加えてPHを9に調整し30分間撹拌し
た。粘度は9cpであつた。 このあと塩化カルシウム0.31gを溶解した水溶
液を加えて30分間撹拌した。添加量はゲーサイト
100部に対してCa0.11部に相当する。 PH及び粘度は8.8,120cpであつた。Ca塩を添
加することによりスラリーが凝集したのが観察さ
れた。 凝集スラリーを過し、得られたケーキを2
の水中に再分散して30分間撹拌後過し、ケーキ
は乾燥してSi,Ca,Naの組成分析を行なつた。
なお、スラリーの過は実施例1と同じくきわめ
て短時間で行なうことができた。 水洗後のゲーサイトの分析値は表―5の通りで
あつた。
[Table] In other words, it is clear that the amount of sodium remaining in the goethite after washing with water is extremely small at 90 ppm. The goethite used has a long axis of 0.6μ and a short axis.
They were acicular particles with a diameter of 0.04μ and a specific surface area of 25m 2 /g. Example 5 Same water washing game site as used in Example 1
A suspension consisting of 100 g and 2 parts water was prepared. The pH of the suspension was 9.2. Next, an aqueous solution of No. 3 water glass containing 1.62 g of SiO 2 was added to the suspension and stirred for 3 minutes. The amount added corresponds to 0.76 parts of Si per 100 parts of goethite. The pH and viscosity were 10.8 and 10 cp, respectively. Next, nitric acid was added to adjust the pH to 9, and the mixture was stirred for 30 minutes. The viscosity was 9 cp. Thereafter, an aqueous solution containing 0.31 g of calcium chloride was added and stirred for 30 minutes. Addition amount is game site
Equivalent to 0.11 parts of Ca per 100 parts. The pH and viscosity were 8.8 and 120 cp. It was observed that the slurry flocculated by adding Ca salt. Filter the agglomerated slurry and divide the resulting cake into 2
The cake was redispersed in water, stirred for 30 minutes, and filtered. The cake was dried and analyzed for composition of Si, Ca, and Na.
Note that, as in Example 1, the slurry could be filtered in a very short time. The analysis values of goethite after washing with water were as shown in Table 5.

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量はゲーサイト中に72ppmときわめて少ない
ことがわかる。しかしゲーサイト中のSi被着量が
若干低いことが示されている。 実施例 6 実施例1で使用したのと同じ水洗ゲーサイト
100g、水2からなる懸濁液を調製した。懸濁
液のPHは9.2であつた。メタリン酸ソーダ1.0gを
溶解させた水溶液を懸濁液に加え、30分間撹拌し
た。添加量はゲーサイト100部に対しP0.3部に相
当する。PH及び粘度は10.7,10cpであつた。 次にSiO2を1.62g含む3号水ガラスの水溶液を
懸濁液に添加し、30分間撹拌した。添加量はゲー
サイト100部に対しSi0.76部に相当する。PH及び
粘度は各々10.9,7cpであつた。 次に硝酸を加えてPHを7に調整し30分間撹拌し
た。粘度は8cpであつた。 このあと塩化カルシウム0.31gを溶解した水溶
液を加えて3分間撹拌した。この時の懸濁液の全
量は2.5であつた。添加量はゲーサイト100部に
対してCa0.11部に相当する。PH及び粘度は6.8,
350cpであつた。Ca塩を添加することによりスラ
リーが凝集したのが観察された。 凝集スラリーを過し、得られたケーキを2
の水中に再分散して30分間撹拌後過し、液は
先の液とともにPO4≡の比色分析を行ないケー
キは乾燥してSi,P,Ca,Naの組成分析を行な
つた。なお、スラリーの過は5Cの紙と口径
20cmのブフナロートにてアスピレーターで減圧下
にて行なつたが2回とも各々10分のきわめて短時
間で過が完了し、かつ過初期に紙からゲー
サイトが液中にリークすることが全く無かつ
た。 液、及び水洗後のゲーサイトの分析値は表―
6,表―7の通りであつた。
[Table] In other words, it can be seen that the amount of sodium remaining in goethite after washing with water is extremely small at 72 ppm. However, it has been shown that the amount of Si deposited in goethite is somewhat low. Example 6 The same water washing game site used in Example 1
A suspension consisting of 100 g and 2 parts water was prepared. The pH of the suspension was 9.2. An aqueous solution in which 1.0 g of sodium metaphosphate was dissolved was added to the suspension and stirred for 30 minutes. The amount added is equivalent to 0.3 parts of P per 100 parts of goethite. The pH and viscosity were 10.7 and 10 cp. Next, an aqueous solution of No. 3 water glass containing 1.62 g of SiO 2 was added to the suspension and stirred for 30 minutes. The amount added corresponds to 0.76 parts of Si per 100 parts of goethite. The pH and viscosity were 10.9 and 7 cp, respectively. Next, nitric acid was added to adjust the pH to 7, and the mixture was stirred for 30 minutes. The viscosity was 8 cp. Thereafter, an aqueous solution containing 0.31 g of calcium chloride was added and stirred for 3 minutes. The total volume of the suspension at this time was 2.5. The amount added corresponds to 0.11 parts of Ca per 100 parts of goethite. PH and viscosity are 6.8,
It was 350 cp. It was observed that the slurry flocculated by adding Ca salt. Filter the agglomerated slurry and divide the resulting cake into 2
The cake was redispersed in water, stirred for 30 minutes, and then filtered. The solution was subjected to colorimetric analysis for PO 4 ≡ along with the previous solution, and the cake was dried and analyzed for composition of Si, P, Ca, and Na. In addition, the slurry is made of 5C paper and caliber.
The filtration was carried out under reduced pressure using an aspirator in a 20cm Buchna funnel, and the filtration was completed in a very short time of 10 minutes each time, and there was no leakage of goethite from the paper into the liquid at the beginning of the filtration. Ta. The analysis values of goethite in the liquid and after washing with water are shown in the table.
6. It was as shown in Table-7.

【表】【table】

【表】 即ち水洗後のゲーサイト中に残留するナトリウ
ム量はゲーサイト中に70ppmときわめて少ない
ことがわかる。 比較例 1 実施例1に使用した水洗ゲーサイトを用いてゲ
ーサイト100g、水2からなる懸濁液を調合し
た。懸濁液のPHは9.2であつた。 次にSiO2を1.62g含む3号水ガラスの水溶液を
懸濁液に添加し30分間撹拌した。PH及び粘度は
各々10.7,10cpであつた。 次に硝酸を加えてPHを3.5に調整し30分間撹拌
した。粘度は18cpでありスラリーは強分散状状
態にあつた。スラリーを過し、得られたケーキ
を2の水中に再分散して30分間撹拌後過し、
得られたケーキを一部分析用にサンプリングし、
残量を更に2の水中に再分散して30分間撹拌後
過した。各水洗段階のゲーサイトの組成分析を
行なつた。なお、過は5Cの紙と口径20cmの
ブフナロートにてアスピレータで減圧下にて行な
つた。過の初期に紙からゲーサイトが紙中
にリークし、数回液を戻して過を行なつたが
所要時間は延べ16〜20時間を要した。更に2回洗
浄処理をしたケーキをゲーサイトとして20g相当
量を2の水に再分散し、90℃に加熱して30分間
撹拌後過した。過所要時間は16時間を要し
た。 水洗ケーキの分析値を表―8に示す。
[Table] In other words, it can be seen that the amount of sodium remaining in goethite after washing with water is extremely small at 70 ppm. Comparative Example 1 Using the water-washed goethite used in Example 1, a suspension consisting of 100 g of goethite and 2 parts of water was prepared. The pH of the suspension was 9.2. Next, an aqueous solution of No. 3 water glass containing 1.62 g of SiO 2 was added to the suspension and stirred for 30 minutes. The pH and viscosity were 10.7 and 10 cp, respectively. Next, nitric acid was added to adjust the pH to 3.5, and the mixture was stirred for 30 minutes. The viscosity was 18 cp and the slurry was in a strongly dispersed state. The slurry was filtered, the resulting cake was redispersed in water from step 2, stirred for 30 minutes, and filtered.
A portion of the resulting cake was sampled for analysis.
The remaining amount was further redispersed in water from Step 2, stirred for 30 minutes, and then filtered. A compositional analysis of goethite at each washing stage was conducted. The filtration was carried out using 5C paper and a Buchner funnel with a diameter of 20 cm under reduced pressure using an aspirator. At the beginning of the process, goethite leaked from the paper into the paper, and the liquid was returned several times to perform the process, but it took a total of 16 to 20 hours. Further, the cake that had been washed twice was used as goethite, and an amount equivalent to 20 g was redispersed in water from step 2, heated to 90°C, stirred for 30 minutes, and then filtered. The total time required was 16 hours. Table 8 shows the analytical values for the washed cake.

【表】 即ちゲーサイトに残留するナトリウム量は水洗
を強化しても400ppm以下にするのが困難なこと
が明らかである。 比較例 2 実施例1に使用した水洗ゲーサイトを用いてゲ
ーサイト100g、水2からなる懸濁液を調製し
た。懸濁液のPHは9.2であつた。次にSiO2を1.62g
含む3号水ガラスの水溶液を懸濁液に添加し30分
間撹拌した。PH及び粘度は各々10.3,11cpであつ
た。次に硝酸を加えてPHを6.0に調整し30分間撹
拌した。粘度は320cpに上昇し、目視ではスラリ
ーが凝集しているのが観察された。 該スラリーを過し、得られたケーキを2の
水中に再分散して30分間撹拌後、過し、得られ
たケーキを一部分析用にサンプリングし、残量を
更に2の水中に再分散して30分間撹拌後、過
した。なお、過は5Cの紙と口径20cmのブフ
ナロートにてアスピレータで減圧下にて行なつ
た。過性は良好で各液とも10分で過が完了
した。 更に2回洗浄処理をしたケーキをゲーサイトと
して20g相当量を2の水に再分散し、90℃に加
熱して30分間撹拌後過した。過所要時間は15
分を要した。 水洗ケーキの分析値を表―9に示す。
[Table] In other words, it is clear that it is difficult to reduce the amount of sodium remaining in goethite to 400 ppm or less even if washing with water is strengthened. Comparative Example 2 Using the water-washed goethite used in Example 1, a suspension consisting of 100 g of goethite and 2 parts of water was prepared. The pH of the suspension was 9.2. Next, 1.62g of SiO 2
An aqueous solution of No. 3 water glass was added to the suspension and stirred for 30 minutes. The pH and viscosity were 10.3 and 11 cp, respectively. Next, nitric acid was added to adjust the pH to 6.0, and the mixture was stirred for 30 minutes. The viscosity increased to 320 cp, and the slurry was visually observed to be agglomerated. The slurry was filtered, the resulting cake was redispersed in water from step 2, stirred for 30 minutes, filtered, a portion of the resulting cake was sampled for analysis, and the remaining amount was further redispersed in water from step 2. After stirring for 30 minutes, the mixture was filtered. The filtration was carried out using 5C paper and a Buchner funnel with a diameter of 20 cm under reduced pressure using an aspirator. The filtration was good and the filtration of each liquid was completed in 10 minutes. Further, the cake that had been washed twice was used as goethite, and an amount equivalent to 20 g was redispersed in water from step 2, heated to 90°C, stirred for 30 minutes, and then filtered. The extra time required is 15
It took minutes. Table 9 shows the analytical values for the washed cake.

【表】 即ちゲーサイトに残留するナトリウム量は水洗
を強化しても630ppmと高い値であつた。 実施例 7 実施例1において被着したゲーサイトを電気炉
を用いて空気中350℃で2時間焼成してヘマタイ
トとし更に650℃で4時間焼成して比表面積30m2/
gのヘマタイトを得た。該ヘマタイトを450℃の
H2気流中で還元して還元鉄粉とし、N2で雰囲気
を置換し室温まで放冷したのちN2中にO2で0.2%
に相当する量の空気を混合し還元鉄粉に2時間通
気し、その後、O2量を倍増させてゆき最終的に
全量空気に置換し、還元鉄粉の表面に酸化被膜を
形成させた。該磁性鉄粉の磁性特性を最大磁界
10KGaussで測定したところ抗磁力(Hc)
1230Oe、磁化量(σs)166emu/g、角形比
(R)0.51であつた。なお比表面積は29m2/gであ
つた。 該磁性鉄粉50gを熱可塑性ポリウレタン樹脂25
%のメチルエチルケトン溶液20g、メチルエチル
ケトン75g、平滑化助剤としてシリコン系添加剤
0.1gの各々とともにステンレス製容器に入れ、ア
ルミナ製ボールを用いてペイントコンデイシヨナ
ーで―8時間分散処理して分散物を得た後、上記
熱可塑性ポリウレタン樹脂25%のメチルエチルケ
トン溶液20gを追加し、更にメチルエチルケトン
で希釈して粘度を調整し磁性塗料を得た。この磁
性塗料を12μ厚さの強化ポリエチレンテレフタレ
ートフイルムにバーコーターを用いて乾燥膜厚が
約4μになるように塗布し磁界を通して磁性粒子
の配向を行なつた後、熱風乾燥を行ないカレンダ
ーロールによる平滑化を行なつた後評価用の磁気
テープを得た。これを最大磁界10KGaussで測定
したところ、磁気特性は抗磁力(Hc)1170Oe残
留磁化量(Br)2990G、Br/Bm=0.82という良
好な結果を得た。ここでBmは飽和磁化量であ
る。 このようにBr及びBr/Bmが高い値を示すのは
磁性鉄粉粒子の針状性保持が良好でかつ粒子間の
凝集がないことを示している。 実施例 8〜12 実施例2〜6のゲーサイトを用いて実施例7と
同様な処理を行なつた結果を表―10に示す。いず
れも磁性鉄粉粒子の針状性保持が良好でかつ分散
性配向性に悪影響をもたらすような粒子間の凝集
がないことを示している。
[Table] In other words, the amount of sodium remaining in goethite remained as high as 630 ppm even when water washing was strengthened. Example 7 The goethite deposited in Example 1 was fired in air at 350°C for 2 hours using an electric furnace to form hematite, and further fired at 650°C for 4 hours to obtain a specific surface area of 30 m 2 /
g of hematite was obtained. The hematite was heated at 450℃
Reduced to reduced iron powder in a H 2 stream, replaced the atmosphere with N 2 , left to cool to room temperature, and then 0.2% O 2 in N 2
A corresponding amount of air was mixed and aerated over the reduced iron powder for 2 hours, and then the amount of O 2 was doubled until finally the entire amount was replaced with air to form an oxide film on the surface of the reduced iron powder. The magnetic properties of the magnetic iron powder are determined by the maximum magnetic field.
Coercive force (Hc) measured at 10KGauss
The magnetization was 1230 Oe, the magnetization (σs) was 166 emu/g, and the squareness ratio (R) was 0.51. Note that the specific surface area was 29 m 2 /g. Add 50g of the magnetic iron powder to 25g of thermoplastic polyurethane resin.
% methyl ethyl ketone solution 20g, methyl ethyl ketone 75g, silicone additive as smoothing aid
0.1 g of each was placed in a stainless steel container, and dispersed for 8 hours with a paint conditioner using an alumina ball to obtain a dispersion, and then 20 g of the above 25% methyl ethyl ketone solution of the thermoplastic polyurethane resin was added. The mixture was further diluted with methyl ethyl ketone to adjust the viscosity to obtain a magnetic paint. This magnetic paint was applied to a reinforced polyethylene terephthalate film with a thickness of 12μ using a bar coater so that the dry film thickness was about 4μ, the magnetic particles were oriented using a magnetic field, and then dried with hot air and smoothed using a calendar roll. After the conversion, a magnetic tape for evaluation was obtained. When this was measured at a maximum magnetic field of 10 KGauss, good magnetic properties were obtained with coercive force (Hc) of 1170 Oe, residual magnetization (Br) of 2990 G, and Br/Bm = 0.82. Here, Bm is the saturation magnetization amount. Such high values of Br and Br/Bm indicate that the magnetic iron powder particles maintain good acicularity and there is no aggregation between the particles. Examples 8 to 12 Table 10 shows the results of the same treatment as in Example 7 using the goethites of Examples 2 to 6. All of the results show that the magnetic iron powder particles maintain good acicularity and there is no aggregation between particles that would adversely affect the dispersibility and orientation.

【表】 比較例 3〜4 比較例1〜2のゲーサイト(いずれも第3回水
洗ゲーサイト)を用いて実施例7と同様な処理を
行なつた結果を表11に示す。いずれも磁性鉄粉粒
子の分散性・配向性が実施例7〜12にくらべて劣
つており残留ナトリウムの悪影響と考えられる。
[Table] Comparative Examples 3 and 4 Table 11 shows the results of performing the same treatment as in Example 7 using the goethites of Comparative Examples 1 and 2 (all of which were third-washed goethites). In all cases, the dispersibility and orientation of the magnetic iron powder particles were inferior to those of Examples 7 to 12, which is considered to be an adverse effect of residual sodium.

【表】【table】

Claims (1)

【特許請求の範囲】 1 水ガラスを被着したゲーサイトの水系懸濁液
を過、加熱、還元する磁性鉄粉の製造法におい
て、水系懸濁液にカルシウイオンを存在させるこ
とを特徴とする方法。 2 水系懸濁液のPHが6〜8であることを特徴と
する特許請求の範囲第1項記載の方法。
[Scope of Claims] 1. A method for producing magnetic iron powder in which an aqueous suspension of goethite coated with water glass is filtered, heated, and reduced, characterized by the presence of calciuion in the aqueous suspension. Method. 2. The method according to claim 1, wherein the aqueous suspension has a pH of 6 to 8.
JP56140350A 1981-09-08 1981-09-08 Production of magnetic iron powder Granted JPS5842704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56140350A JPS5842704A (en) 1981-09-08 1981-09-08 Production of magnetic iron powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56140350A JPS5842704A (en) 1981-09-08 1981-09-08 Production of magnetic iron powder

Publications (2)

Publication Number Publication Date
JPS5842704A JPS5842704A (en) 1983-03-12
JPS6114202B2 true JPS6114202B2 (en) 1986-04-17

Family

ID=15266779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56140350A Granted JPS5842704A (en) 1981-09-08 1981-09-08 Production of magnetic iron powder

Country Status (1)

Country Link
JP (1) JPS5842704A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230758A (en) * 1975-09-05 1977-03-08 Hitachi Ltd Method to manufacture ferromagnetic matal poeder

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5230758A (en) * 1975-09-05 1977-03-08 Hitachi Ltd Method to manufacture ferromagnetic matal poeder

Also Published As

Publication number Publication date
JPS5842704A (en) 1983-03-12

Similar Documents

Publication Publication Date Title
JP6106303B2 (en) Surface-modified iron-based oxide magnetic particle powder and method for producing the same
US4209412A (en) Process for producing nonstoichiometric ferroso-ferric oxides
US4631090A (en) Preparation and use of iron magnetic pigments
JPS6114202B2 (en)
JPS5919163B2 (en) Method for producing magnetic metal powder
JPS5923505A (en) Magnetic powder
JPS5919169B2 (en) Manufacturing method of metal magnetic powder
JPH0420241B2 (en)
US4985073A (en) Needle shaped alloy powders based on iron and their use
JP2844932B2 (en) Composite spinel ferrite fine particles and method for producing the same
JP2950892B2 (en) Method for producing hexagonal plate-like barium ferrite
JPS6122604A (en) Magnetic metal powder and manufacture thereof
JPS59143004A (en) Production of magnetic alloy powder
JPS6118323B2 (en)
JPS62235220A (en) Production of ferromagnetic fine powder for magnetic recording
JPH01125805A (en) Magnetic powder having improved dispersibility
JPS6163921A (en) Magnetic powder and its production
JP3314788B2 (en) Granular magnetite particle powder and method for producing the same
JP2678480B2 (en) Metal magnetic powder
JPH01294810A (en) Production of magnetic metal powder for magnetic recording
JPH03265524A (en) Production of hexagonal sheet like barium ferrite
JP2651795B2 (en) Method for producing ferromagnetic fine powder for magnetic recording
JPH01298106A (en) Manufacture of ferromagnetic iron powder
JPH0425687B2 (en)
JPS58126905A (en) Production of magnetic metal powder consisting of iron or essentially of iron