JPS61141907A - Preparation of hollow fibrous separation membrane - Google Patents

Preparation of hollow fibrous separation membrane

Info

Publication number
JPS61141907A
JPS61141907A JP26299784A JP26299784A JPS61141907A JP S61141907 A JPS61141907 A JP S61141907A JP 26299784 A JP26299784 A JP 26299784A JP 26299784 A JP26299784 A JP 26299784A JP S61141907 A JPS61141907 A JP S61141907A
Authority
JP
Japan
Prior art keywords
solvent
acid
org
additive
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26299784A
Other languages
Japanese (ja)
Other versions
JPH0450850B2 (en
Inventor
Yasunobu Izumi
泉 康伸
Ryoichi Awata
粟田 僚一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP26299784A priority Critical patent/JPS61141907A/en
Publication of JPS61141907A publication Critical patent/JPS61141907A/en
Publication of JPH0450850B2 publication Critical patent/JPH0450850B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain a hollow yarn membrane reduced in the adhesion of scale, by using a solution prepared by dissolving a polyether sulfone resin in a solvent prepared by adding an additive of an org. acid, an org. acid anbydride or an org. acid ester type to a polar org. solvent dissolving said resin. CONSTITUTION:Polyether sulfone is dissolved in a solvent mixture consisting of a solvint for polyether sulfone and at least one additive selected from an org. acid type, an org. acid anhydride type and an org. acid ester type in an amount of 10-25wt.% at room temp. or under heating to prepare a spinning raw solution. At this time, it is necessary to set the mixing wt. ratio of additive/ solvent in a range of 1/99-1/4. As the solvent, dimethylformamide or N- methyl-2-pyrrolidone is used. Spinning is performed by wet spinning method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は中空繊維状分離膜に関するものである。更に詳
しくは、すぐれた機械強度と濾過特性を併せもったポリ
エーテルスルホン中空繊維状分離膜の製造法に関するも
のである。その目的とするところは、特定の組成の紡糸
原液を用いることによシ、機械的強度にすぐれ、且つ安
定な濾過特性のため長時間の連続濾過に耐え得るポリエ
ーテルスルホン中空繊維状分離膜の製造法を提供するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fibrous separation membrane. More specifically, the present invention relates to a method for producing a polyethersulfone hollow fiber separation membrane that has both excellent mechanical strength and filtration properties. The aim is to create a polyether sulfone hollow fiber separation membrane that has excellent mechanical strength and stable filtration properties that can withstand long-term continuous filtration by using a spinning dope with a specific composition. The purpose is to provide a manufacturing method.

〔従来技術〕[Prior art]

ポリエーテルスルホンによる分離膜は、主に限外濾過の
範囲ですぐれた特性を有することが知られている。また
、ポリエーテルスルホンが元来耐熱性、耐薬品性、安全
性にすぐれておシ、このため食品工業、医療分野、更に
逆浸透膜の支持材等その用途は多岐にわたっている。
Separation membranes made of polyether sulfone are known to have excellent properties mainly in the ultrafiltration range. In addition, polyether sulfone originally has excellent heat resistance, chemical resistance, and safety, and for this reason, its uses are wide-ranging, such as in the food industry, the medical field, and as a support material for reverse osmosis membranes.

一方、従来よシ一般的に用いられている分離膜の製造方
法として、特公昭50−22508号公報が知られてお
り、この方法に従うと、表面の障壁層とこれに続く膜を
介する液体流れに対する低抗が小さく士2分に開孔した
多孔質構造の支持層からなる重合体膜が得られる。この
ような構造を有する分離膜の特徴として、単位膜面積当
たシの濾過流速が高いことが挙げられるが、一方その欠
点として機械的強度が低いこと、更に濾過流速が高すぎ
ることから膜表面における濃度分極が著じるしく、従っ
て表面へのスケール等の付着及び堆積が多くなり、この
結果連続濾過を行う際濾過流速が急激に低下することが
挙げられていた。
On the other hand, Japanese Patent Publication No. 50-22508 is known as a method for manufacturing a separation membrane that has been commonly used in the past. When this method is followed, liquid flow through the barrier layer on the surface and the membrane following this. A polymer membrane consisting of a support layer having a porous structure with small pores and a small resistance against the pores is obtained. A separation membrane with this structure has a high filtration flow rate per unit membrane area, but its drawbacks include low mechanical strength and the fact that the filtration flow rate is too high. It has been mentioned that the concentration polarization in the filtrate is significant, and therefore the adhesion and deposition of scale etc. on the surface increases, resulting in a rapid decrease in the filtration flow rate during continuous filtration.

〔発明の目的〕[Purpose of the invention]

本発明者らは、以上のような従来方法による分離膜の欠
点を解決して、濾過流速が高く且つ長時間安定な濾過が
可能で、同時に機械的強度を兼ね備えた分離膜の製造方
法を得んとして鋭意研究を進めた結果、ポリエーテルス
ルホン、その溶剤、及び特定の添加剤として有機酸系、
有機酸無水物系、有機酸エステル系のいずれかの溶媒を
含む樹脂原液を、流延または紡糸等によシ膜状に形成し
た後、該樹脂の非溶剤と接触凝固せしめる方法が極めて
すぐれた方法であることを見出し、更にこの知見に基づ
き種々の検討を進めた結果本発明を完成するに至ったも
のである。
The present inventors have solved the above-mentioned drawbacks of conventional separation membranes, and have obtained a method for producing a separation membrane that has a high filtration flow rate, allows stable filtration for a long time, and has mechanical strength. As a result of intensive research, we found that polyether sulfone, its solvent, and certain additives such as organic acids,
An extremely excellent method involves forming a resin stock solution containing either organic acid anhydride-based or organic acid ester-based solvent into a film shape by casting or spinning, and then coagulating it by contact with a non-solvent of the resin. As a result of various studies based on this knowledge, we have completed the present invention.

〔発明の構成〕[Structure of the invention]

すなわち本発明は、2重管構造の中空繊維製造用ノズル
を用い、外側の環状口から紡糸原液を、芯部から凝固液
を凝固浴中へ吐出し凝固せしめる湿式紡糸法において、
紡糸原液がポリエーテルスルホン、該樹脂を溶解する極
性有機溶剤、及び添加剤として有機酸系、有機酸無水物
系、有機酸エステル系から選ばれる溶媒の少くとも1種
を含み、該添加剤/該溶剤の混合重量比が1/99〜1
/4であることを特徴とする中空繊維状分離膜の製造方
法である。
That is, the present invention provides a wet spinning method in which a hollow fiber manufacturing nozzle with a double tube structure is used, and a spinning dope is discharged from an outer annular port and a coagulating liquid is discharged from a core into a coagulating bath and coagulated.
The spinning stock solution contains polyether sulfone, a polar organic solvent that dissolves the resin, and at least one solvent selected from an organic acid type, an organic acid anhydride type, and an organic acid ester type as an additive, and the additive/ The mixing weight ratio of the solvent is 1/99 to 1
This is a method for producing a hollow fibrous separation membrane characterized in that:

更に詳細に本発明の説明を行うと、紡糸原液はポリエー
テルスルホンが10〜25重量%、好ましくけ12〜2
0重量%を、ポリエーテルスルホンの溶剤及び有機酸系
、有機酸無水物系、有機酸エステル系から選ばれる少く
とも1種の添加剤からなる混合溶剤に室温または加熱溶
解して得られる。ここでポリエーテルスルホンとは す、また溶剤はジメチルホルムアミド、N−メチル−2
−ピロリドン等が挙げられるが、ポリエーテルスルホン
が溶解するものであればこれらに限定されない。
To explain the present invention in more detail, the spinning stock solution contains 10 to 25% by weight of polyether sulfone, preferably 12 to 2% by weight.
It is obtained by dissolving 0% by weight of polyethersulfone in a mixed solvent consisting of a solvent of polyether sulfone and at least one type of additive selected from organic acids, organic acid anhydrides, and organic acid esters at room temperature or by heating. Here, polyether sulfone is used, and the solvent is dimethylformamide, N-methyl-2
-pyrrolidone, etc., but is not limited to these as long as polyether sulfone can be dissolved therein.

有機酸系の添加剤は例として、ギ酸、酢酸、プロピオン
酸、酪酸、イソ酪酸、吉草酸、トリメチル酢酸、カプロ
ン酸、2−エチル酢酸、カプリル酸、2−エチルヘキサ
ン酸、オレイン酸、モノクロル酢酸、ジクロル酢酸、ト
リクロル酢酸、乳酸、マレイン酸、フマル酸、酒石酸、
ステアリン酸、コハク酸、安息香酸、フタル酸などが挙
げられるがこれらに限定されない。有機酸無水物系の添
加剤は例として、無水酢酸、無水プロピオン酸、無水酪
酸、無水マレイン酸、無水コハク酸、無水安息香酸、無
水フタル酸などが挙げられるがこれらに限定されない。
Examples of organic acid additives include formic acid, acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, trimethylacetic acid, caproic acid, 2-ethyl acetic acid, caprylic acid, 2-ethylhexanoic acid, oleic acid, and monochloroacetic acid. , dichloroacetic acid, trichloroacetic acid, lactic acid, maleic acid, fumaric acid, tartaric acid,
Examples include, but are not limited to, stearic acid, succinic acid, benzoic acid, phthalic acid, and the like. Examples of organic acid anhydride additives include, but are not limited to, acetic anhydride, propionic anhydride, butyric anhydride, maleic anhydride, succinic anhydride, benzoic anhydride, phthalic anhydride, and the like.

有機酸エステル系の添加剤は例として、ギ酸メチル、ギ
酸エチル、ギ酸プロピル、ギ酸ブチル、ギ酸アミル、酢
酸メチル、酢酸エチル、酢酸プロピル、酢酸ブチル、酢
酸アミル、プロピオン酸エチル、プロピオン酸ブチル、
プロピオン酸アミル、酪酸エチル、酪酸ブチル、酪酸イ
ソアミル、ステアリン酸ブチル、アセト酢酸エチル、乳
酸メチル、乳酸エチル、乳酸ブチル、乳酸アミル、安息
香酸メチル、安息香酸エチル、安息香酸プロピル、サリ
チル酸メチル、シェラ酸ジエチル、酒石酸ジブチル、フ
タル酸ジメチル、フタル酸ジエチルなどが挙げられるが
これらに限定されない。
Examples of organic acid ester additives include methyl formate, ethyl formate, propyl formate, butyl formate, amyl formate, methyl acetate, ethyl acetate, propyl acetate, butyl acetate, amyl acetate, ethyl propionate, butyl propionate,
Amyl propionate, ethyl butyrate, butyl butyrate, isoamyl butyrate, butyl stearate, ethyl acetoacetate, methyl lactate, ethyl lactate, butyl lactate, amyl lactate, methyl benzoate, ethyl benzoate, propyl benzoate, methyl salicylate, Schella acid Examples include, but are not limited to, diethyl, dibutyl tartrate, dimethyl phthalate, diethyl phthalate, and the like.

また、上記添加剤/溶剤の混合重量比は、1/99以下
では添加剤の効果が得られず、従って本発明の目的とし
ているところの機械的強度と濾過の安定性には不十分で
あ、9.1/4を越える場合は添加剤の量が多すぎるこ
とから均一相の紡糸原液を得ることが困難であり、仮シ
に原液が得られるとしても溶液が高粘度化し中空繊維の
安定な紡糸が難かしくなる。
Furthermore, if the mixing weight ratio of the additive/solvent is 1/99 or less, the effect of the additive cannot be obtained, and therefore it is insufficient to achieve the mechanical strength and filtration stability that are the objectives of the present invention. If it exceeds 9.1/4, it is difficult to obtain a spinning stock solution with a homogeneous phase because the amount of additive is too large, and even if a stock solution can be obtained, the solution becomes highly viscous and the hollow fiber cannot be stabilized. spinning becomes difficult.

ノズル芯部より吐出し紡糸原液の内部よυ凝固せしめる
内部凝固液、及び外部よυ凝固せしめる凝固浴の組成は
、操作性の点からは水単独であることが望ましいが、水
に金属塩及び/またはポリエーテルスルホンの溶剤、及
び/またはポリエーテルスルホンの非溶剤を加えること
により、分離膜の中間層の構造を変化させるととが可能
である。
The composition of the internal coagulating liquid that is discharged from the nozzle core and coagulates the spinning dope inside, and the coagulating bath that coagulates the spinning solution externally, is preferably composed of water alone from the viewpoint of operability. By adding/or a polyether sulfone solvent and/or a polyether sulfone non-solvent, it is possible to change the structure of the intermediate layer of the separation membrane.

ここで凝固液に添加し得る金属塩は、Lict、 Li
Br。
Here, metal salts that can be added to the coagulation liquid include Lict, Li
Br.

NaC1,NaBr 、 KC4%KBr 、 MgC
42、MgB r 2、CaCl2 、CaBr2など
が挙げられるが、これらに限定されず、また2種以上の
金属塩の組合わせも可能でおる。また、凝固浴に添加し
得るポリエーテルスルホンの溶剤は、ジメチルホルムア
ミド、N−メチル−2−ピロリドンなどであるがこれら
に限定されず、また2種以上の溶剤の組合わせも可能で
ある。凝固浴に添加し得るポリエーテルスルホンの非溶
剤は、アルコール系、ケトン系などがあ為がこれらに限
定されず、また2種以上の非溶剤の絹み合わせも可能で
ある。
NaCl, NaBr, KC4%KBr, MgC
42, MgBr2, CaCl2, CaBr2, etc., but are not limited to these, and a combination of two or more metal salts is also possible. Further, the polyether sulfone solvent that can be added to the coagulation bath includes dimethylformamide, N-methyl-2-pyrrolidone, etc., but is not limited to these, and a combination of two or more solvents is also possible. Non-solvents for polyether sulfone that can be added to the coagulation bath include, but are not limited to, alcohol-based and ketone-based solvents, and it is also possible to combine two or more types of non-solvents.

中空糸を紡糸する際の吐出条件、すなわち製膜条件とし
て主に温度管理が重要であシ通常室温近辺で行うが、紡
糸原液の組成によシ室温において不安定な場合は加温紡
糸を行い、紡糸温度は室温〜100℃の範囲が適当であ
る。更に得られた膜には水に不溶性の添加剤を含む場合
もあるため、エタノール等に浸漬させ脱溶剤及び脱添加
剤を行って抜水に置換する方法をとるのが効果的である
When spinning hollow fibers, temperature control is the main important factor in the discharge conditions, that is, the film forming conditions.It is usually carried out around room temperature, but if the composition of the spinning stock solution is unstable at room temperature, heated spinning is performed. The spinning temperature is suitably in the range of room temperature to 100°C. Furthermore, since the obtained membrane may contain additives that are insoluble in water, it is effective to immerse the membrane in ethanol or the like to remove solvent and additives, and then replace the water with water.

〔発明の効果〕〔Effect of the invention〕

本発明の方法によって得られるポリエーテルスルホン中
空繊維状分離膜の構造は、内表面に0゜05μ以下の細
孔及び外表面に15μ以下の孔を有しており、また内表
面の平滑性が高く、このため濾過の際スケールの付着な
どが少ない。また、濾過液体が血液の場合、血球成分等
の沈着も少ない。内外表面層にはさまれる中間層は、紡
糸原液及び凝固液の組成を組み合わせることによって、
ボイド構造からスポンジ構造まで大巾にpl製が可能で
あシ、また比較的密な内部構造を得るため膜の機械的強
度にすぐれる。更に、内部の比較的密な構造と外表面の
小さな孔は、いずれも濾過流体に対して適度な抵抗とな
シ、通常高流速膜にあシがち表層表面における濃度分極
を抑えることができるため、安定な連続濾過が可能と表
る。
The structure of the polyether sulfone hollow fiber separation membrane obtained by the method of the present invention has pores of 0.05μ or less on the inner surface and pores of 15μ or less on the outer surface, and the inner surface has smoothness. Therefore, there is less scale adhesion during filtration. Furthermore, when the filtered liquid is blood, there is less deposition of blood cell components and the like. The intermediate layer sandwiched between the inner and outer surface layers is formed by combining the compositions of the spinning solution and coagulation solution.
A wide variety of membrane structures, from void structures to sponge structures, can be made of PL, and the membrane has excellent mechanical strength because it has a relatively dense internal structure. Furthermore, both the relatively dense internal structure and the small pores on the outer surface provide appropriate resistance to the filtrate fluid, and can suppress concentration polarization at the surface layer, which normally tends to occur with high-flow membranes. This indicates that stable continuous filtration is possible.

本発明において上記のようなすぐれた特徴が発現する理
由は明らかではないが、紡糸原液が凝固液と接触し、水
と溶剤の交換が進み、ポリニー芙ルスルホンが凝固し膜
の微細構造を形成する過程において、添加剤が水と溶剤
の交換に作用し、その速度を適度にコントロールする結
果特徴ある膜構造が生成するものと推定される。
Although the reason why the above-mentioned excellent characteristics are expressed in the present invention is not clear, the spinning dope comes into contact with the coagulation solution, the exchange of water and solvent progresses, and the polynylon sulfone coagulates to form the fine structure of the membrane. It is presumed that during the process, the additive acts on the exchange of water and solvent, and as a result of appropriately controlling the rate, a distinctive film structure is produced.

以下本発明の実施例について説明する。Examples of the present invention will be described below.

実施例1 ポリエーテルスルホニ/(IC1社製、Vlctrex
 300P)を15重量%、溶剤としてN−メチル−2
−ピロリドンを78重量%、添加剤としてプロピオン酸
を7重量−の割合で混合し、80’Cで3時間加熱攪拌
を行い均一溶液を得た。この紡糸原液を中空繊維製造用
ノズルの外側の環状口から、また芯部からは水を吐出し
、水からなる凝固浴へ導いて凝固せしめ、30m/分の
速度で巻取シを行った。ここで紡糸温度、すなわち紡糸
原液及び内部凝固液の温度は40℃であった。得られた
中空繊維状分離膜は内径250μ、膜厚45μであった
Example 1 Polyether sulfony/(manufactured by IC1, Vlctrex
300P) and N-methyl-2 as a solvent.
-78% by weight of pyrrolidone and 7% by weight of propionic acid as an additive were mixed, and heated and stirred at 80'C for 3 hours to obtain a homogeneous solution. Water was discharged from the outer annular opening of the hollow fiber manufacturing nozzle and from the core, and the spinning dope was introduced into a water coagulation bath for coagulation, and then wound up at a speed of 30 m/min. Here, the spinning temperature, that is, the temperature of the spinning dope and the internal coagulation liquid, was 40°C. The obtained hollow fibrous separation membrane had an inner diameter of 250 μm and a membrane thickness of 45 μm.

次いで有効長20cmの膜1000本を束ね、両端を接
着剤で固定した後切断し、両端に開孔部を有する膜モジ
ーールを得た。膜モジーールの性能評価は重量平均分子
量約7万のデキストラン(ファルマシアファインケミカ
ルズ社fi、T2O)の1%水溶液2tを200m(7
分の流速でポンプ循環し、濾過液は循環液へもどして、
この時の濾過速度及びデキストランの阻止率の時間変化
を測定した。
Next, 1000 membranes each having an effective length of 20 cm were bundled, both ends fixed with adhesive, and then cut to obtain a membrane module having openings at both ends. The performance of the membrane module was evaluated by adding 2 tons of a 1% aqueous solution of dextran (Pharmacia Fine Chemicals, Inc., T2O) with a weight average molecular weight of about 70,000 to 200 m (7
The pump circulates at a flow rate of
At this time, changes over time in the filtration rate and dextran rejection rate were measured.

ことで用語の説明を行うと、次の通りである。The terminology can be explained as follows.

濾過速度(mし’tanHgφ時間・m)阻止率(%) 測定の結果循環開始5分後の濾過速度は510(m17
1eIHg・時間−m)で、その後30分、1時間、2
時間、3時間の値はそれぞれ490.485.475.
470 (me / tasHg ・時間am)と高い
値を保ち、減少は極めて小いものであった。デキストラ
ンの阻止率は5分値で33%、その後は35〜39チで
安定であった。
Filtration rate (m'tanHgφ time・m) Rejection rate (%) As a result of measurement, the filtration rate 5 minutes after the start of circulation was 510 (m17
1eIHg・time-m), then 30 minutes, 1 hour, 2
The values for time and 3 hours are 490.485.475.
The value remained high at 470 (me/tasHg/hour am), and the decrease was extremely small. The inhibition rate of dextran was 33% at 5 minutes and stable at 35 to 39 hours thereafter.

比較例1 ポリエーテルスルホン15重量%、N−メチル−2−ピ
ロリドンを85重量%を実施例1と同様の方法で溶解、
製膜を行い、得られた同一寸法の膜の性能評価を行った
ところ、5分値の濾過速度は650 (ml/lxx+
Hg・時間・イ)と高い値であったが、その後の低下は
著しるしく30分、1時間、2時間、3時間でそれぞれ
560.480,340.180(m1/wnHg・時
間・イ)とほぼ直線的に低下した。一方、デキストラン
の阻止率は5分値より、30分、1時間、2時間、3時
間までそれぞれ39チ、43チ、47チ、55%、64
チと高くなる傾向を示した。
Comparative Example 1 15% by weight of polyether sulfone and 85% by weight of N-methyl-2-pyrrolidone were dissolved in the same manner as in Example 1.
When we formed a membrane and evaluated the performance of the obtained membrane with the same dimensions, we found that the 5-minute filtration rate was 650 (ml/lxx+
Hg・time・a) was high, but after that the value decreased significantly to 560.480 and 340.180 (m1/wnHg・time・a) at 30 minutes, 1 hour, 2 hours, and 3 hours, respectively. decreased almost linearly. On the other hand, the inhibition rate of dextran was 39%, 43%, 47%, 55%, and 64% for 30 minutes, 1 hour, 2 hours, and 3 hours, respectively, from the 5-minute value.
It showed a tendency to increase.

実施例2 ポリエーテルスルホン(ICI社製、Vlctrex 
300P)を17重量%、溶剤としてジメチルホルムア
ミド70重量%、添加剤として無水安息香酸13重量%
を混合し、80℃で3時間攪拌し均一溶液を得た。紡糸
温度30℃において、実施例1と同様にしてHMし、更
にエタノール中に5時間浸漬し脱溶剤及び脱添加剤を行
った。膜の内径、膜厚はそれぞれ250μ、45μであ
った。次いで実施例1と同様にしてモジュールを作成し
てデキストラン水溶液の濾過試験を行った。濾過速度及
び阻止率の変化は、第1表に示す通り安定であった。
Example 2 Polyether sulfone (manufactured by ICI, Vlctrex
300P), 70% by weight of dimethylformamide as a solvent, and 13% by weight of benzoic anhydride as an additive.
were mixed and stirred at 80°C for 3 hours to obtain a homogeneous solution. At a spinning temperature of 30° C., the material was subjected to HM in the same manner as in Example 1, and further immersed in ethanol for 5 hours to remove solvent and additives. The inner diameter and thickness of the membrane were 250μ and 45μ, respectively. Next, a module was prepared in the same manner as in Example 1, and a filtration test of an aqueous dextran solution was conducted. Changes in filtration rate and rejection rate were stable as shown in Table 1.

実施例3 ポリエーテルスルホ7(ICI社製、Victrex 
300P)を14重量%、N−メチル−2−ピロリドン
を82重11%、添加剤として乳酸エチル4=4重量%
を混合し、80℃で3時間攪拌を行い均一溶液を得た。
Example 3 Polyether sulfo 7 (manufactured by ICI, Victrex)
300P) 14% by weight, N-methyl-2-pyrrolidone 82% by weight, 11% by weight, ethyl lactate 4 = 4% by weight as an additive.
were mixed and stirred at 80°C for 3 hours to obtain a homogeneous solution.

これを紡糸原液とし、紡糸温度40℃において実施例1
と同様にして製膜しモジュールを作成した。また同様に
してデキストラン水溶液の濾過試験を行った。その結果
を第1表に示す。
Example 1 This was used as a spinning dope and the spinning temperature was 40°C.
A module was produced by forming a film in the same manner as described above. In addition, a filtration test of an aqueous dextran solution was conducted in the same manner. The results are shown in Table 1.

実施例4 ポリエーテルスルホン(夏CI社製、Victrex 
300P)14重量%、N−メチル−2−ピロリド/8
1重量%、添加剤としてトリメチル酢酸5重量%を、8
0℃で3時間攪拌溶解し、これを紡糸原液として実施例
1と同様に製膜を行った。ただし巻取シ速度は45m/
分であった。巻取った膜を5時間エタノール浸漬し、更
に水置換を行った。得られた朕は内径200μ、膜厚3
5μであった。
Example 4 Polyether sulfone (manufactured by Natsu CI Co., Ltd., Victrex)
300P) 14% by weight, N-methyl-2-pyrrolid/8
1% by weight, 5% by weight of trimethylacetic acid as an additive, 8% by weight of trimethylacetic acid as an additive.
The mixture was stirred and dissolved at 0° C. for 3 hours, and this was used as a spinning stock solution to form a film in the same manner as in Example 1. However, the winding speed is 45m/
It was a minute. The wound membrane was immersed in ethanol for 5 hours, and then replaced with water. The obtained one has an inner diameter of 200μ and a film thickness of 3.
It was 5μ.

膜モジーールは有効長16crIt1膜本数は2000
本とした。これに、人アルブミン0.2−の生理的食塩
水溶液2tを200m1l/分の流速でポンプ循環し、
濾過速度及び阻止率の変化を測定した。その結果、5分
、30分、1.2.3.4時間で、濾過速度がそれぞれ
470.450.445.430.420.410 (
mffi/mHg・時間・イ)、また阻止率は約90〜
959gでほぼ一定であった。
The effective length of the membrane module is 16crIt, and the number of membranes per membrane is 2000.
I made it into a book. To this, 2 tons of physiological saline solution containing 0.2- human albumin was pumped and circulated at a flow rate of 200 ml/min.
Changes in filtration rate and rejection were measured. As a result, the filtration rate was 470.450.445.430.420.410 (
mffi/mHg・time・a), and the rejection rate is about 90~
It remained almost constant at 959g.

実施例5〜8 ポリエーテルスルホ7(IC1社製、Victrec 
300P)14重量%、添加剤として安息香酸エチルを
2.7.12.17重量%、溶剤のN−メチル−2−ピ
ロリド/を添加剤の量に対応して84.79.74.6
9重量%とし、それぞれ順に実施例5〜Bとした。これ
らを80℃で3時間攪拌溶解し紡糸原液とした。更に、
実施例4と同様にして製膜し、モジュールを作成した。
Examples 5 to 8 Polyether sulfo 7 (manufactured by IC1, Victrec
300P) 14% by weight, 2.7.12.17% by weight of ethyl benzoate as an additive, and 84.79.74.6% of N-methyl-2-pyrrolid/solvent corresponding to the amount of additive.
It was set at 9% by weight and designated as Examples 5 to B, respectively. These were stirred and dissolved at 80° C. for 3 hours to obtain a spinning stock solution. Furthermore,
A module was produced by forming a film in the same manner as in Example 4.

モジー−ルの評価も実施例4と同様に行い、その結果は
第2表に示した通りであった。
Evaluation of the module was also carried out in the same manner as in Example 4, and the results were as shown in Table 2.

Claims (3)

【特許請求の範囲】[Claims] (1)2重管構造の中空繊維製造用ノズルを用い、外側
の環状口から紡糸原液を、芯部から凝固液を凝固浴中へ
吐出し凝固せしめる湿式紡糸法において、紡糸原液がポ
リエーテルスルホン、該樹脂を溶解する極性有機溶剤、
及び添加剤として有機酸系、有機酸無水物系、有機酸エ
ステル系から選ばれる溶媒の少くとも1種を含み、該添
加剤/該溶剤の混合重量比が1/99〜1/4であるこ
とを特徴とする中空繊維状分離膜の製造方法。
(1) In a wet spinning method in which a hollow fiber manufacturing nozzle with a double tube structure is used, the spinning stock solution is discharged from the outer annular port and the coagulation solution is discharged from the core into a coagulation bath and coagulated. , a polar organic solvent that dissolves the resin;
and at least one type of solvent selected from an organic acid type, an organic acid anhydride type, and an organic acid ester type as an additive, and the mixing weight ratio of the additive/the solvent is 1/99 to 1/4. A method for producing a hollow fibrous separation membrane, characterized by:
(2)凝固液及び凝固浴の組成が水、または、水及び金
属塩及び/または該樹脂の溶剤、及び/または該樹脂の
非溶剤からなる、特許請求の範囲第(1)項記載の中空
繊維状分離膜の製造方法。
(2) The hollow space according to claim (1), wherein the composition of the coagulating liquid and the coagulating bath is water, or water and a metal salt and/or a solvent for the resin, and/or a non-solvent for the resin. A method for producing a fibrous separation membrane.
(3)ポリエーテルスルホンが▲数式、化学式、表等が
あります▼ のくり返し単位を有する重合体よりなる、特許請求の範
囲第(1)項記載の中空繊維状分離膜の製造方法。
(3) A method for producing a hollow fibrous separation membrane according to claim (1), wherein the polyether sulfone is made of a polymer having a repeating unit as shown in the formula, chemical formula, table, etc.
JP26299784A 1984-12-14 1984-12-14 Preparation of hollow fibrous separation membrane Granted JPS61141907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26299784A JPS61141907A (en) 1984-12-14 1984-12-14 Preparation of hollow fibrous separation membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26299784A JPS61141907A (en) 1984-12-14 1984-12-14 Preparation of hollow fibrous separation membrane

Publications (2)

Publication Number Publication Date
JPS61141907A true JPS61141907A (en) 1986-06-28
JPH0450850B2 JPH0450850B2 (en) 1992-08-17

Family

ID=17383460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26299784A Granted JPS61141907A (en) 1984-12-14 1984-12-14 Preparation of hollow fibrous separation membrane

Country Status (1)

Country Link
JP (1) JPS61141907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257012A2 (en) * 1986-08-15 1988-02-24 PERMEA, Inc. Asymmetric gas separation membranes having graded density skins
EP0259288A2 (en) * 1986-08-15 1988-03-09 PERMEA, Inc. Process and dope for forming asymmetric gas separation membranes having graded density skins
JP2008022673A (en) * 2006-07-14 2008-01-31 Meidensha Corp Control center unit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0257012A2 (en) * 1986-08-15 1988-02-24 PERMEA, Inc. Asymmetric gas separation membranes having graded density skins
EP0259288A2 (en) * 1986-08-15 1988-03-09 PERMEA, Inc. Process and dope for forming asymmetric gas separation membranes having graded density skins
EP0259288A3 (en) * 1986-08-15 1989-03-22 Permea, Inc. Process and dope for forming asymmetric gas separation membranes having graded density skins
EP0257012A3 (en) * 1986-08-15 1989-03-22 Permea, Inc. Asymmetric gas separation membranes having graded density skins
JP2008022673A (en) * 2006-07-14 2008-01-31 Meidensha Corp Control center unit

Also Published As

Publication number Publication date
JPH0450850B2 (en) 1992-08-17

Similar Documents

Publication Publication Date Title
US4351860A (en) Polyaryl ether sulfone semipermeable membrane and process for producing same
KR102386027B1 (en) Compositions and Methods for Preparation of Sulfone Polymer Membrane
KR960004612B1 (en) Porous membrane and the manufacturing process thereof
EP0012630B1 (en) Process for producing a cellulose acetate-type permselective membrane, permselective membrane thus produced, and use of such membrane in artificial kidney
JPS61141907A (en) Preparation of hollow fibrous separation membrane
JPS6153085B2 (en)
EP0077691A1 (en) Supported reverse osmosis membranes
JPS61107909A (en) Manufacture of hollow fibrous separation film
KR101675455B1 (en) A preparation method of a membrane having improved chlorine resistance and a chlorine resistant membrane prepared by the same
JPS61103504A (en) Preparation of hollow fibrous separation membrane
JPS60172312A (en) Preparation of polysulfone hollow yarn film
JPS6329562B2 (en)
JP2701357B2 (en) Casting dope for film formation
JP2855233B2 (en) Method for producing aromatic polysulfone semipermeable membrane having excellent water permeability
JPS61101208A (en) Preparation of hollow fibrous separation membrane
JP2675197B2 (en) Manufacturing method of high strength and porous polysulfone hollow fiber membrane
JP3818157B2 (en) Method for producing polyphenylsulfone hollow fiber membrane
JPS61141906A (en) Preparation of hollow fibrous separation membrane
JP2819713B2 (en) Porous membrane and method for producing the same
JPS60206404A (en) Permselective membrane and its prepration
JPS61293502A (en) Separation film for purifying blood
JPS6051504A (en) Hollow fiber type separation membrane and preparation thereof
JPS6247367A (en) Blood concentrator
JP3235836B2 (en) Manufacturing method of semipermeable membrane
JP2001029758A (en) Manufacture of regenerated cellulose hollow fiber membrane