JPS61141622A - Production of lower oxide of vanadium - Google Patents
Production of lower oxide of vanadiumInfo
- Publication number
- JPS61141622A JPS61141622A JP26362184A JP26362184A JPS61141622A JP S61141622 A JPS61141622 A JP S61141622A JP 26362184 A JP26362184 A JP 26362184A JP 26362184 A JP26362184 A JP 26362184A JP S61141622 A JPS61141622 A JP S61141622A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- raw material
- vanadium
- molar ratio
- reaction furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
【発明の詳細な説明】
〔利用される産業分野〕
この発明は三酸化バナジウム(VzOa)よりも酸素含
有量の高いバナジウム化合物より■2o、を製造する方
法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial field of application] This invention relates to a method for producing 2o from a vanadium compound having a higher oxygen content than vanadium trioxide (VzOa).
V2O3は近年温度センサ、その他の合金製造の素材、
触媒などとして使用されている。In recent years, V2O3 has been used as a material for temperature sensors and other alloy manufacturing.
It is used as a catalyst.
従来前記バナジウム化合物よりV2O3を得る方法とし
てはメタバナジジン酸アンモン(NH,VO,)を水素
(H2)気流中で250〜650℃に加熱し還元反応さ
せる方法が特開昭49−47294によって発表されて
おり、また五酸化バナジウム(Vies)とマグネシウ
ム(NHP)又はアルミニウム(NH)と非接触でかつ
排気密封容器中にて650〜1000″Cに加熱してv
20aを得る方法が特開昭50−72894に発表され
ている。Conventionally, as a method for obtaining V2O3 from the vanadium compound, a method was disclosed in JP-A-49-47294 in which ammonium metavanazidate (NH, VO, It is also heated to 650-1000''C in an exhaust-tight container without contact with vanadium pentoxide (Vies) and magnesium (NHP) or aluminum (NH).
A method for obtaining 20a has been published in Japanese Patent Application Laid-open No. 72894/1983.
ところが前者のものにおいてはH2ガスを使用するため
、漏洩したときや、反応炉中に酸素が混入すると爆発の
おそれがあり、またきわめて高価で製品コストを押し上
げ、実用性が之しい。However, since the former method uses H2 gas, there is a risk of explosion if it leaks or if oxygen gets mixed into the reactor, and it is also extremely expensive, increasing product costs and being impractical.
また後者のものにおいては排気密封加熱する方法である
ため、大きな容器が使用できず、一時に製造する量が限
定され、製造も不連続となり、かつ製造にも特殊な加熱
炉を必要とする。In addition, since the latter method uses exhaust gas sealed heating, a large container cannot be used, the amount that can be manufactured at one time is limited, manufacturing is discontinuous, and a special heating furnace is required for manufacturing.
この発明は従来技術のような爆発性のガスを使用せず、
かつ密封容器を必要としないでアンモニア(NH3)ガ
スにより安全に、バッチ式及び連続式の何れの方法をも
採用し得る方法を得ることを目的とする。This invention does not use explosive gas like the conventional technology,
Another object of the present invention is to provide a method that can safely employ ammonia (NH3) gas without requiring a sealed container and that can be used in both batch and continuous methods.
この発明は三酸化二バナジウム(V、O,)より酸素含
有量の高いバナジウム化合物の一種又は二種以上を原料
とし、この原料に対し、モル比で1〜20倍のアンモニ
ア(NH3)ガスを分圧0.1〜1.5armで前記原
料と接触させ、反応温度を450〜700 ’Cとし1
〜6時間保持させて、原料を分解解決した。This invention uses one or more vanadium compounds with a higher oxygen content than divanadium trioxide (V, O,) as a raw material, and adds ammonia (NH3) gas in a molar ratio of 1 to 20 times to this raw material. Contact with the raw materials at a partial pressure of 0.1 to 1.5 arm, and set the reaction temperature to 450 to 700'C.
It was held for ~6 hours to resolve the decomposition of the raw material.
次にこの発明を実施態様について説明する。 Next, embodiments of the present invention will be described.
この発明の原料としては、メタバナジン酸アン−F−y
(NH4VO3)五酸化バナジウム(V2O,)−二
酸化バナジウム(VO2)などV2O3よりも酸素含有
量の高いバナジウム化合物の一種又は二種以上の混合物
を用い、これに対してモル比1〜20倍のNH3ガスの
気流に、反応温度450〜700℃で、この原料を接触
させ、反応容器内でのNH3ガスの分圧を0.1〜1.
5 atm(残りは窒素(N2)ガス又はその他の不活
性ガス)として1〜6時間加熱し、前記原料を分解還元
1−て、V2O3を生成し、次に不活性ガス例えば常温
の窒素ガスをこれに連続供給して、これを冷却して目的
物を得る。As a raw material for this invention, metavanadate an-F-y
(NH4VO3) Using one or a mixture of two or more vanadium compounds having a higher oxygen content than V2O3, such as vanadium pentoxide (V2O,)-vanadium dioxide (VO2), and NH3 at a molar ratio of 1 to 20 times. This raw material is brought into contact with a gas flow at a reaction temperature of 450 to 700°C, and the partial pressure of NH3 gas in the reaction vessel is adjusted to 0.1 to 1.
5 atm (the rest being nitrogen (N2) gas or other inert gas) for 1 to 6 hours, the raw material is decomposed and reduced to produce V2O3, and then an inert gas such as nitrogen gas at room temperature is heated. This is continuously supplied and cooled to obtain the target product.
叙上のような方法により得られた生成物をX線回折によ
り検査したところ、1−1図に示す通りであり、従来法
のN2ガスによる還元法のその結果とよく一致し、V、
O3であることが同定された。When the product obtained by the above method was examined by X-ray diffraction, the results were as shown in Figure 1-1, which agreed well with the results of the conventional reduction method using N2 gas.
It was identified as O3.
易であるし、加熱温度も450〜700″Cと比較的低
い温度であるため、反応容器及びガス供給パイプなど、
この程度の温度に耐え得るものであれば、特に限定はな
く、鋼管、ステンレス管など安価な材料が使用できる。It is easy to use, and the heating temperature is relatively low at 450 to 700"C, so the reaction vessel, gas supply pipe, etc.
There is no particular limitation as long as it can withstand this level of temperature, and inexpensive materials such as steel pipes and stainless steel pipes can be used.
また、反応炉は甜、ガスをワンスル一方式で回収しても
、或は循環式にしても実施可能であり、反応炉自体も一
応外気と遮断できればよ<H,2ガス使用の方法のよう
に反応時間を15〜20時間要する従来例に比較し、反
応時間は1〜6時間と短かく、かつ密封式のようにその
都度真空密封するような特殊な炉及び手数を要さず連続
的な処理を行うこともでき、生産性が向上する。In addition, the reactor can be used to collect sugar and gas in a one-shot system or in a circulation system, and the reactor itself can be isolated from the outside air for the time being (as in the method using H, 2 gas). Compared to the conventional method, which requires 15 to 20 hours for reaction time, the reaction time is shorter at 1 to 6 hours, and the process is continuous without the need for special furnaces and labor that are vacuum-sealed each time. Processing can also be performed, improving productivity.
この発明において、NH3量がバナジウム化合物に対し
てモル比で1倍以下では還元が十分に進まず、20倍以
上では生成物中にNを含有し易く、かつ経済的でない。In this invention, if the amount of NH3 is less than 1 times the molar ratio of the vanadium compound, the reduction will not proceed sufficiently, and if it is more than 20 times, the product will tend to contain N and is not economical.
また反応温度が450℃以下では還元が十分に進まず、
700℃以上ではNを生成物に含有し易(、かつ経済的
でない。Furthermore, if the reaction temperature is below 450°C, the reduction will not proceed sufficiently;
At temperatures above 700°C, N is easily included in the product (and is not economical).
またNI(3ガスの分圧が0.1arm以下では還元が
十分に進まず、1.5arm以上では生成物にNが含有
し易く、かつ加圧装置を必要とし、製品コストを押し上
げ経済的でない。In addition, if the partial pressure of NI (3 gases) is less than 0.1 arm, the reduction will not proceed sufficiently, and if it is more than 1.5 arm, the product will likely contain N, and a pressurizing device will be required, which will increase the product cost and be uneconomical. .
この発明において、原料としては前記の通りV2O3よ
りも酸素含有量の高いバナジウム化合物の一種又は二種
以上の混合物が使用できるのは、その反応が下記の過程
によるものと考えられるためである。In this invention, the reason why one or a mixture of two or more vanadium compounds having a higher oxygen content than V2O3 can be used as a raw material as described above is because the reaction is thought to be based on the following process.
実験例1
原料として、NH4VO3をステンレス製網容器(直径
22MII、長さ150ar)に30g入れ、これを環
状炉の中に装填し、炉内をN2ガスで置換後、団、ガス
を循環させ、反応部の温度が所定の温度まで達した後4
時間その温度を保持させ還元反応をさせた後、再びN2
ガスを流して室温まで冷却した(表1(1)(2)及び
(3)参照)。Experimental Example 1 As a raw material, 30g of NH4VO3 was placed in a stainless steel net container (diameter 22MII, length 150ar), and this was loaded into a ring furnace. After replacing the inside of the furnace with N2 gas, the gas was circulated. After the temperature of the reaction section reaches the predetermined temperature 4
After holding the temperature for a period of time to cause a reduction reaction, N2
The mixture was cooled to room temperature by flowing gas (see Table 1 (1), (2), and (3)).
実験例2 原料として五酸化バナジウムV、O5を使用した。Experimental example 2 Vanadium pentoxide V, O5 was used as a raw material.
(表1、(4)参照)
表 1
いづれの方法によるものも、X@回折により■203と
同定できた。〔矛1図参照〕〔比較対照実験〕
次に比較実験とし、反応温度NH3ガスの対原料のモル
比のそれぞれ限定範囲外、及び従来の水素ガスN2ガス
を還元剤として用いたものを表2に示した。(See Table 1, (4)) Table 1 Both methods could be identified as ■203 by X@ diffraction. [See Figure 1] [Comparative experiment] Next, as a comparative experiment, the reaction temperature was outside the limited range of the molar ratio of NH3 gas to raw material, and the conventional hydrogen gas and N2 gas were used as reducing agents as shown in Table 2. It was shown to.
表 2
表2中、例(5) (6)及ヒ(7) ハ[料トシテN
H4vO3ヲ用いた。例(8)については従来のN2ガ
スを還元剤として用いた。Table 2 In Table 2, examples (5), (6) and (7)
H4vO3 was used. For example (8), conventional N2 gas was used as the reducing agent.
装置の1例としては、矛3図のようなものを用いて行う
1図中、10は反応炉であり、この中にステンレス製網
容器11が設けてあり、パイプライン12によって、反
応炉10にNH,ガスが循環できるように、またN2ガ
スが供給できるようにしである。13は冷却筒であり、
生成物を冷却するためのものでN2ガスがパイプライン
14によって循環できるようにしである。As an example of an apparatus, a device like that shown in Figure 3 is used.In Figure 1, 10 is a reactor, in which a stainless steel mesh container 11 is installed, and a pipeline 12 connects the reactor 10 to the reactor. This is so that NH and gas can be circulated and N2 gas can be supplied. 13 is a cooling cylinder;
This is for cooling the product and allows N2 gas to be circulated by pipeline 14.
図面はこの発明に係るものであり、矛1図は本件発明の
方法により得られた生成物のX線回折図、1?2図は従
来のN2ガスにより還元した生成物のX線回折図、矛3
図は本件方法発明に用いる装置の概略図である。
特許出願人 新興化学工業株式会社
面間隔(dA)
面間隔(dA)The drawings relate to this invention; Figure 1 is an X-ray diffraction diagram of the product obtained by the method of the present invention, Figures 1 and 2 are X-ray diffraction diagrams of the product reduced by conventional N2 gas, spear 3
The figure is a schematic diagram of an apparatus used in the present method invention. Patent applicant: Shinko Kagaku Kogyo Co., Ltd. Planar spacing (dA) Planar spacing (dA)
Claims (1)
高いバナジウム化合物の一種又は二種以上を原料とし、
この原料に対し、モル比で1〜20倍のアンモニア(N
H_3)ガスを分圧0.1〜1.5atmで前記原料と
接触させ、反応温度を450〜700℃とし1〜6時間
保持させて、原料を分解・還元してV_2O_3を生成
することを特徴とするバナジウム低級酸化物の製法。Using one or more vanadium compounds with a higher oxygen content than divanadium trioxide (V_2O_3) as a raw material,
For this raw material, 1 to 20 times the molar ratio of ammonia (N
H_3) The gas is brought into contact with the raw material at a partial pressure of 0.1 to 1.5 atm, and the reaction temperature is maintained at 450 to 700°C for 1 to 6 hours to decompose and reduce the raw material to generate V_2O_3. A method for producing lower vanadium oxides.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26362184A JPS61141622A (en) | 1984-12-13 | 1984-12-13 | Production of lower oxide of vanadium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26362184A JPS61141622A (en) | 1984-12-13 | 1984-12-13 | Production of lower oxide of vanadium |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61141622A true JPS61141622A (en) | 1986-06-28 |
JPH0432766B2 JPH0432766B2 (en) | 1992-06-01 |
Family
ID=17392073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26362184A Granted JPS61141622A (en) | 1984-12-13 | 1984-12-13 | Production of lower oxide of vanadium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61141622A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560635A (en) * | 2012-03-21 | 2012-07-11 | 电子科技大学 | Preparation method of vanadium trioxide film |
CN103695954A (en) * | 2013-12-12 | 2014-04-02 | 中国科学院过程工程研究所 | Method for preparing vanadium trioxide from vanadate by direct electrolysis |
CN106006736A (en) * | 2016-05-16 | 2016-10-12 | 武汉理工大学 | Method of using hydrogen for preparing vanadium trioxide from vanadium-containing solution |
CN106006733A (en) * | 2016-05-16 | 2016-10-12 | 武汉理工大学 | Method for preparing vanadium trioxide through hydrothermal method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240919A (en) * | 1975-09-26 | 1977-03-30 | Matsushita Electric Ind Co Ltd | Chrominance signal record reproducing system |
-
1984
- 1984-12-13 JP JP26362184A patent/JPS61141622A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5240919A (en) * | 1975-09-26 | 1977-03-30 | Matsushita Electric Ind Co Ltd | Chrominance signal record reproducing system |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102560635A (en) * | 2012-03-21 | 2012-07-11 | 电子科技大学 | Preparation method of vanadium trioxide film |
CN103695954A (en) * | 2013-12-12 | 2014-04-02 | 中国科学院过程工程研究所 | Method for preparing vanadium trioxide from vanadate by direct electrolysis |
CN106006736A (en) * | 2016-05-16 | 2016-10-12 | 武汉理工大学 | Method of using hydrogen for preparing vanadium trioxide from vanadium-containing solution |
CN106006733A (en) * | 2016-05-16 | 2016-10-12 | 武汉理工大学 | Method for preparing vanadium trioxide through hydrothermal method |
Also Published As
Publication number | Publication date |
---|---|
JPH0432766B2 (en) | 1992-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ZA200504556B (en) | Hydrocyanic acid consisting of formamide | |
JPS61141622A (en) | Production of lower oxide of vanadium | |
JP2737914B2 (en) | Prussic acid reactor | |
JPS5916494B2 (en) | Reduction catalyst and method for producing same, and method for reducing nitrogen oxides | |
JPS61257940A (en) | Production of dicarboxylic acid | |
US4154806A (en) | Process for the production of nitrous oxide | |
SU615853A3 (en) | Method of obtaining acrylnitrile | |
US5843394A (en) | Catalyst for the oxidation of gaseous sulphur compounds | |
US6777372B1 (en) | Method for producing hydrocyanic acid synthesis catalyst | |
US1558598A (en) | Oxidation of ammonia | |
US5770757A (en) | Ammoxidation catalysts containing germanium to produce high yields of acrylonitrile | |
JPH067685A (en) | Regeneration of deteriorated catalyst | |
JPH02198638A (en) | Catalyst for decomposing ammonia | |
JPH02267116A (en) | Synthesis of ammonia | |
US4717429A (en) | Process for the removal of alkali metal nitrite from nitrate containing salt baths | |
US4216033A (en) | Method of nitriding steel | |
ES8306463A1 (en) | Simultaneous manufacture of high-concentrated nitric acid and diluted nitric acid | |
JP4623247B2 (en) | Method for producing a catalyst for synthesis of cyanide | |
SU1399265A1 (en) | Method of producing reducing gas | |
JPS60166206A (en) | Production of nitrogen highly free of oxygen and apparatus therefor | |
JPS6147440A (en) | Preparation of palladium acetate | |
SU929565A1 (en) | Process for continuously producing copper nitrate | |
JPS62197317A (en) | Production of vanadium suboxide | |
JPS6185363A (en) | Manufacture of pyridine | |
JPS61205607A (en) | Manufacture of nitrogen oxide bycatalytically burning ammonia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |