JPS61141168A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61141168A
JPS61141168A JP26281384A JP26281384A JPS61141168A JP S61141168 A JPS61141168 A JP S61141168A JP 26281384 A JP26281384 A JP 26281384A JP 26281384 A JP26281384 A JP 26281384A JP S61141168 A JPS61141168 A JP S61141168A
Authority
JP
Japan
Prior art keywords
layer
oxide film
atmosphere
impurity
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26281384A
Other languages
Japanese (ja)
Inventor
Hideaki Kato
秀明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP26281384A priority Critical patent/JPS61141168A/en
Publication of JPS61141168A publication Critical patent/JPS61141168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To produce semiconductor device with resistor layer subject to extremely high resistance value and high yield by a method wherein an impurity layer and an oxide film coating the impurity layer are provided on the surface layer of a semiconductor substrate while the impurity layer is heattreated either in the atmosphere of mixed gas containing oxygen exceeding 5vol% and residual nitrogen or in the atmosphere of oxgen gas. CONSTITUTION:A silicon oxide film 3 is formed on an N-type epitaxial growing layer 2. Then a pattern in resistor layer region is formed on the oxide film 3 to remove said oxide film 3 by etching process. Next another thin oxide film 4 is formed at high temperature oxidizing atmosphere on the layer 2 (resis tor layer region) and residual oxide film 3 further implanted with specified dosage of boron to be heattreated at high temperature atmosphere of mixed gas forming P type diffusion resistor layer 5 in the layer 2. Finally the thin oxide film 4 on layer 2 corresponding to the electrode forming parts on both ends of resistor layer is removed to deposit a boron silicate glass 6 as boron source on the thin oxide film 4 and the patterned layer 2 so that the glass may be thermodiffused in the layer 2 to form a P<+> region 7 bringing the glass 6 into ohmic contact with electrode.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、高いシート抵抗値を持つ高抵抗層を得ること
ができる半導体装置の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION TECHNICAL FIELD OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device that can obtain a high resistance layer having a high sheet resistance value.

従来技術と問題点 例えばバイポーラIC等の半導体装置の製造に際しては
、通常、トランジスタのベース領域と抵抗層とを同時に
形成している。これは、半導体装2における抵抗層のシ
ート抵抗値の範囲と同半導体装置におけるトランジスタ
のベース領域のシート抵抗値の範囲とが大部分同じ(例
えば抵抗層のシート抵抗値は50〜300Ω程度)であ
るからであって、両者同時に形成することによって製造
効率低下を抑えることができる。また、半導体装置にお
ける回路の抵抗層の抵抗値としては、上限値で1にΩ程
度しか要求されていなかったので、上述のようなシート
抵抗イーであっても、半導体装置を実用的に製造するこ
とができた。
Prior Art and Problems When manufacturing a semiconductor device such as a bipolar IC, a base region of a transistor and a resistance layer are usually formed at the same time. This is because the range of the sheet resistance value of the resistance layer in the semiconductor device 2 is almost the same as the range of the sheet resistance value of the base region of the transistor in the same semiconductor device (for example, the sheet resistance value of the resistance layer is about 50 to 300Ω). By forming both at the same time, a decrease in manufacturing efficiency can be suppressed. In addition, the upper limit of the resistance value of the resistance layer of the circuit in a semiconductor device was required to be only about 1Ω, so even if the sheet resistance is E as described above, it is difficult to practically manufacture a semiconductor device. I was able to do that.

しかしながら1回路上の要請から抵抗層の抵抗偵として
、例えば50にΩ程度の高い値が必要な場合には、上述
のような範囲のシート抵抗値で抵抗層を半導体装置上に
形成することが困難である。
However, if the resistance value of the resistance layer is required to be as high as, for example, 50Ω due to the requirements for one circuit, it is possible to form the resistance layer on the semiconductor device with a sheet resistance value in the above range. Have difficulty.

すなわち、高抵抗値を持つ抵抗層を得るには、半導体装
置を構成する基板上において抵抗層の長さを長くするか
抵抗層の幅を狭くするかしなければならない、しかし、
前者は大きな面積をとるので集積度が悪くなるし、後者
は現状においてずでに1偕可能限界幅に近くなっている
ので大幅なシート抵抗イー増大効果が期待できない。
That is, in order to obtain a resistive layer with a high resistance value, it is necessary to either increase the length of the resistive layer or decrease the width of the resistive layer on the substrate constituting the semiconductor device.
The former requires a large area, resulting in poor integration, and the latter is already close to the limit width of one layer at present, so a significant increase in sheet resistance cannot be expected.

さらに、シート抵抗値を上述のような範囲(50〜30
0Ω/cm2程度)を越えて高くして高抵抗値を持つ抵
抗層を得ようとしても、そのような抵抗層を持つ半導体
装置を高歩留で製造することは困難である。すなわち、
通常は1つの半導体ウェハから多数個の半導体装1ff
(IC)のチップを得るが、そのwII造工程のうち、
抵抗層を形成するに際しては、ウェハ全体にわたって必
要個所に不純物を必要量デボジシ璽ンし、ついで9票(
N2)雰囲気下で熱拡散処理する。このような熱拡散処
理は、製造効率の点から通常、例えば石英管の中に複数
枚の半導体ウニl毎を並設した状態で行ってl、%る。
Furthermore, the sheet resistance value is adjusted to the above range (50 to 30
Even if an attempt is made to obtain a resistive layer having a high resistance value by increasing the resistivity to more than about 0 Ω/cm 2 ), it is difficult to manufacture a semiconductor device having such a resistive layer with a high yield. That is,
Normally, a large number of semiconductor devices 1ff are produced from one semiconductor wafer.
(IC) chip is obtained, but in the wII manufacturing process,
When forming a resistance layer, the required amount of impurities is deposited at the required locations over the entire wafer, and then 9 votes (
N2) Heat diffusion treatment in an atmosphere. From the viewpoint of manufacturing efficiency, such thermal diffusion treatment is usually carried out with a plurality of semiconductor urchins arranged side by side in a quartz tube, for example.

しかしながら、上述のような熱処理によって得られた半
導体ウェハの面内各個所におけるシート抵抗の値はきわ
めてばらつきが大Sい、そのだめ、製品として使用でき
るチップの割合が少なくなり、半導体装置の製造歩留は
きわめて慈〈なってしまう。
However, the sheet resistance values at various points within the surface of the semiconductor wafer obtained by the above-mentioned heat treatment vary considerably, and as a result, the proportion of chips that can be used as products decreases, and the manufacturing process of semiconductor devices is reduced. Remains become extremely compassionate.

発明の目的 本発明の目的は1以上のような問題を解消し、高いシー
ト抵抗値を得ることができ、かっ歩留がきわめて高い半
導体装置の製造方法を提供することにある。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a method for manufacturing a semiconductor device that solves one or more of the above problems, provides a high sheet resistance value, and has an extremely high yield.

発明の概要 本発明は半導体基板の表層に不純物層と不純物層を被う
酸化膜とを設け、次いで不純物層を。
Summary of the Invention The present invention provides an impurity layer and an oxide film covering the impurity layer on the surface layer of a semiconductor substrate, and then forms an impurity layer.

酸素を5容量%以上含み、残りが窒素からなる混合カス
雰囲気下または酸素ガス雰囲気下で熱処理して、半導体
基板に不純物の拡散抵抗層を形成す      1′な
お1本発明において上述のように数値限定した理由は酸
素が5%未満になると、シート抵抗値のウェハ面内にお
けるばらつきがきわめて大きくなるからである。
An impurity diffusion resistance layer is formed on the semiconductor substrate by heat treatment in a mixed gas atmosphere containing 5% by volume or more of oxygen and the remainder being nitrogen, or in an oxygen gas atmosphere. The reason for this limitation is that when the oxygen content is less than 5%, the variation in sheet resistance value within the wafer surface becomes extremely large.

発明の実施例 第1図(A)〜第1図(G)は半導体装置の抵抗層部分
の本発明による製造工程の一例を示す。
Embodiment of the Invention FIGS. 1(A) to 1(G) show an example of a manufacturing process according to the present invention for a resistive layer portion of a semiconductor device.

この例においては、p形シリコン(Si)半導体基&l
 hにn形エピタキシャル成m層2を形成したものを使
用する。まず、第1図(A)に示すように、尚温酸化雰
囲気中で1層2上にシリコン酸化膜(SiOz ) ”
を形成する。
In this example, a p-type silicon (Si) semiconductor base &l
A layer with an n-type epitaxial layer 2 formed thereon is used. First, as shown in FIG. 1(A), a silicon oxide film (SiOz) is deposited on layer 1 in a still-temperature oxidizing atmosphere.
form.

ついで第1図(B)に示すように写真蝕刻法(フォトレ
ジストを使用する)によって酸化膜3上に抵抗層領域の
パターンを形成し、ついでエツチングによって抵抗層領
域内の酸化膜3を除去する(フォトレジストもその役に
除去する)。
Next, as shown in FIG. 1(B), a pattern of the resistive layer region is formed on the oxide film 3 by photolithography (using a photoresist), and then the oxide film 3 in the resistive layer region is removed by etching. (The photoresist is also removed for that purpose).

ついで第1図(C)に示すように、開孔された(パター
ニングされた)層2上(抵抗層領域上)および残りの酸
化@3上に高温酸化雰囲気中で薄い酸化1II4を形成
する。
Then, as shown in FIG. 1C, a thin oxide 1II4 is formed on the holed (patterned) layer 2 (on the resistive layer region) and on the remaining oxide@3 in a high temperature oxidation atmosphere.

ついで第1図(0)に示すように、イオン打込み法によ
って層2のパターニングされた部分に薄いllI!4を
通してホウ素(Baron)を所定量打込み;ついで本
発明にかかる混合ガスの高温雰囲気中で熱処理して1層
2中にp形の拡散抵抗層5を形成する。なお、薄い酸化
膜4は所定の効率でイオン打込みが行えるような最大厚
み(イオンの打込みエネルギーの値にもよるが1例えば
2000 A 8度)よりも薄ければよい。
Next, as shown in FIG. 1(0), a thin llI! is applied to the patterned portion of layer 2 by ion implantation. A predetermined amount of boron (Baron) is implanted through 4; then, a p-type diffused resistance layer 5 is formed in layer 2 by heat treatment in a high temperature atmosphere of a mixed gas according to the present invention. The thin oxide film 4 only needs to be thinner than the maximum thickness at which ion implantation can be performed with a predetermined efficiency (depending on the value of ion implantation energy, for example, 2000 A, 8 degrees).

ついで第1図(E)に示すように、拡散抵抗7!&5の
パターニングと同様にして抵抗層両端の電極形成部分に
該当する層2上の薄い酸化膜4を除去する。
Next, as shown in FIG. 1(E), the diffused resistor 7! In the same manner as patterning &5, the thin oxide film 4 on the layer 2 corresponding to the electrode formation portions at both ends of the resistance layer is removed.

ついで第1図(F)に示すように、薄い酸化@4上およ
びパターニングされた層2上にホウ素源としてのポロン
 シリケート ガラス(BoronSilicate 
Glass、以下8SG という)8を11績し、これ
を層2中に熱拡散させて電極とのオーミックコンタクト
をとるためのp+領域7を形成する。
Then, as shown in FIG.
Glass (hereinafter referred to as 8SG) 8 is applied 11 times, and this is thermally diffused into the layer 2 to form a p+ region 7 for making ohmic contact with the electrode.

ついで、リンシリケートガラス8’(phosphos
ili−cate glas )を堆積し、これを7ニ
ールする。
Then, phosphosilicate glass 8' (phosphos
ili-cate glass) is deposited and this is subjected to 7 anneals.

ついでp◆領域7上のB5G3 、 PSG8’ を上
記同様にパターニングして、このパターニングされた部
分および残りのB5G3 、 PSG8’ 上に電極と
してのアルミニウム(A文)を蒸着等によって付着させ
、ついで上記同様にパターニングを行って第1図(G)
に示すように、電極8を形成する。
Next, B5G3 and PSG8' on p◆ region 7 are patterned in the same manner as above, and aluminum (text A) as an electrode is deposited on this patterned part and the remaining B5G3 and PSG8' by vapor deposition, etc. Patterning was performed in the same manner as shown in Figure 1 (G).
An electrode 8 is formed as shown in FIG.

ついで本発明による効果を明確にするための具体的な実
験例について説明する。
Next, specific experimental examples will be explained to clarify the effects of the present invention.

まず表面に薄い酸化膜(1000人)4を形成した3イ
ンチ(75■φ)のn形半導体ウェハな複数枚準備し、
イオン打込み法を適用して、全てのウェハの表面全体に
、75keVのエネルギーで、打込量1、OX 10’
 / c履2になるようにホウ素を注入した。ついで内
径120 amφの石英管中に前記処理ウェハを所要枚
数直立して所定間隔で並置し、温度1200℃および処
理時間40分の条件で向石英管内を窒素(N2100%
)ガス雰囲気にしてウェハを熱処理し、同ウェハ表層に
拡散層を形成した。
First, prepare multiple 3 inch (75 φ) n-type semiconductor wafers with a thin oxide film (1000 layers) 4 formed on their surfaces.
Ion implantation was applied to the entire surface of all wafers with an implant dose of 1, OX 10' at an energy of 75 keV.
/ Boron was injected so that the diameter was 2. Next, the required number of processed wafers were placed upright in a quartz tube with an inner diameter of 120 amφ and placed side by side at a predetermined interval, and the inside of the quartz tube was flushed with nitrogen (100% N2) at a temperature of 1200°C and a processing time of 40 minutes.
) The wafer was heat-treated in a gas atmosphere to form a diffusion layer on the surface layer of the wafer.

同様に、ガスとして、混合比を種々変えた窒素(N2)
および酸素(02)からなる複数の混合ガスおよび酸素
(02100%)ガスの各々を準備し、ガス雰囲気以外
は上記と全く同一条件で、m*した各ガス毎のガス雰囲
気において各々所要枚数のウェハを熱処理してその表層
に拡散層を形成した。
Similarly, as a gas, nitrogen (N2) was used at various mixing ratios.
A plurality of mixed gases consisting of and oxygen (02) and oxygen (02 100%) gas were prepared, and the required number of wafers were each prepared in the gas atmosphere for each m* gas under exactly the same conditions as above except for the gas atmosphere. was heat-treated to form a diffusion layer on its surface layer.

このようにして拡散層を形成したウェハに関して、拡散
層のシート抵抗値のばらつきを調べるために第2図に示
すように、ウェハlの表面の中心を通って直交する2直
線a、b上の各々12点(等間隔)のシート抵抗を測定
し、その結果から各ガス毎の所要数の全ウェハ面内のシ
ート抵抗の平均値およびシート抵抗値のばらつきを求め
た。その結果のうち代表例を第1表に、また、シート抵
抗値のばらつさを第3図にグラフで各々示す、なお、こ
のばらつさくσ/写)は。
Regarding the wafer with the diffusion layer formed in this way, in order to investigate the variation in the sheet resistance value of the diffusion layer, as shown in FIG. The sheet resistance was measured at each of 12 points (equally spaced), and from the results, the average value of the sheet resistance and the dispersion of the sheet resistance value within the surface of all the required number of wafers for each gas were determined. Representative examples of the results are shown in Table 1, and the dispersion of sheet resistance values is shown graphically in FIG.

T :各ガラス毎の全ウェハ面内のシート抵抗の平均値 ρ :ウエハ面内各点のシート抵抗値 (i = 1.2.・・・、n) として、ド記式 に基ついて求めた。T: Average value of sheet resistance within the entire wafer surface for each glass ρ: Sheet resistance value at each point on the wafer surface (i = 1.2..., n) as, C notation Based on the following.

第1表 以上から、酸素を少なくとも5%含む混合ガス(残り窒
素)を不純物のデポジションまたはイオン打込み後の熱
処理雰囲気に使用することによってシート抵抗値のばら
つきのきわめて少ないウェハが得られることが明らかで
ある。また、シート抵抗値のばらつきは、混合ガス中の
酸素濃度が、25%以上でより少なく、さらに同濃度が
50%以上でより一層少なくなることが明らかである。
From Table 1 and above, it is clear that by using a mixed gas containing at least 5% oxygen (remaining nitrogen) in the heat treatment atmosphere after impurity deposition or ion implantation, wafers with extremely small variations in sheet resistance can be obtained. It is. Further, it is clear that the variation in sheet resistance value becomes smaller when the oxygen concentration in the mixed gas is 25% or more, and further becomes smaller when the same concentration is 50% or more.

発明の詳細 な説明したように本発明によれば、極めて高いシート抵
抗値の抵抗層を持つ半導体装置を高歩留りで製造するこ
とができる。
DETAILED DESCRIPTION OF THE INVENTION As described in detail, according to the present invention, a semiconductor device having a resistance layer having an extremely high sheet resistance value can be manufactured at a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(^)〜(G)は本発明による半導体装置の製造
工程の一例を示す図、第2図はウニI\のシート抵抗測
定点を示す図、第3図はシート抵抗のばらつきを示す図
である。 l・・・半導体装置、2・・・エピタキシャル成長層、
3・・・酸化膜、4・・・薄い膜、5・・・拡散抵抗器
、6.6′・・・BSG、7・・・P1領域、8・・・
電極。
Figures 1 (^) to (G) are diagrams showing an example of the manufacturing process of a semiconductor device according to the present invention, Figure 2 is a diagram showing sheet resistance measurement points of sea urchin I\, and Figure 3 is a diagram showing variations in sheet resistance. FIG. 1... Semiconductor device, 2... Epitaxial growth layer,
3... Oxide film, 4... Thin film, 5... Diffused resistor, 6.6'... BSG, 7... P1 region, 8...
electrode.

Claims (1)

【特許請求の範囲】  半導体基板の表層に不純物層と該不純物層を被う酸化
膜とを設け、 次いで前記不純物層を、酸素を5容量%以上含み、残り
が窒素からなる混合ガス雰囲気下または酸素ガス雰囲気
下で熱処理して、前記半導体基板に当該不純物の拡散抵
抗層を形成することを特徴とする半導体装置の製造法。
[Claims] An impurity layer and an oxide film covering the impurity layer are provided on the surface layer of a semiconductor substrate, and then the impurity layer is heated under a mixed gas atmosphere containing 5% by volume or more of oxygen and the remainder being nitrogen. A method for manufacturing a semiconductor device, comprising forming a diffusion resistance layer of the impurity on the semiconductor substrate by performing heat treatment in an oxygen gas atmosphere.
JP26281384A 1984-12-14 1984-12-14 Manufacture of semiconductor device Pending JPS61141168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26281384A JPS61141168A (en) 1984-12-14 1984-12-14 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26281384A JPS61141168A (en) 1984-12-14 1984-12-14 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61141168A true JPS61141168A (en) 1986-06-28

Family

ID=17380965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26281384A Pending JPS61141168A (en) 1984-12-14 1984-12-14 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61141168A (en)

Similar Documents

Publication Publication Date Title
US5324974A (en) Nitride capped MOSFET for integrated circuits
US4125426A (en) Method of manufacturing semiconductor device
US3764409A (en) Method for fabricating a semiconductor component for a semiconductor circuit
US4199384A (en) Method of making a planar semiconductor on insulating substrate device utilizing the deposition of a dual dielectric layer between device islands
JPS58182259A (en) Method of forming polysilicon resistor
US3925572A (en) Multilevel conductor structure and method
US4502894A (en) Method of fabricating polycrystalline silicon resistors in integrated circuit structures using outdiffusion
JPS62290173A (en) Manufacture of semiconductor integrated circuit device
US3541676A (en) Method of forming field-effect transistors utilizing doped insulators as activator source
US3431636A (en) Method of making diffused semiconductor devices
JPH06112146A (en) Manufacture of diffusion type silicon element substrate
US3306788A (en) Method of masking making semiconductor and etching beneath mask
JPS61141168A (en) Manufacture of semiconductor device
JPS5852843A (en) Manufacture of semiconductor integrated circuit device
JPS6220711B2 (en)
JPS58206158A (en) Manufacture of semiconductor device
JPH01165156A (en) Semiconductor device
JPS6455853A (en) Semiconductor device and manufacture thereof
RU845678C (en) Method of manufacturing hf p- &amp;&amp;&amp; -p transistors
JPH04168764A (en) Manufacture of semiconductor device
JPS5850411B2 (en) Impurity diffusion method
JPS6474754A (en) Semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPS6222428A (en) Manufacture of electrode for compound semiconductor device
JPS6378519A (en) Manufacture of semiconductor device