JPS6114064A - Production of ceramic-metal composite body - Google Patents

Production of ceramic-metal composite body

Info

Publication number
JPS6114064A
JPS6114064A JP13361984A JP13361984A JPS6114064A JP S6114064 A JPS6114064 A JP S6114064A JP 13361984 A JP13361984 A JP 13361984A JP 13361984 A JP13361984 A JP 13361984A JP S6114064 A JPS6114064 A JP S6114064A
Authority
JP
Japan
Prior art keywords
ceramic
molded body
molten metal
metal
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13361984A
Other languages
Japanese (ja)
Other versions
JPH0157989B2 (en
Inventor
Yoshihiro Nakagawa
中川 義弘
Takashi Hashimoto
隆 橋本
Hiroaki Katayama
片山 博彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP13361984A priority Critical patent/JPS6114064A/en
Publication of JPS6114064A publication Critical patent/JPS6114064A/en
Publication of JPH0157989B2 publication Critical patent/JPH0157989B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D19/00Casting in, on, or around objects which form part of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D13/00Centrifugal casting; Casting by using centrifugal force
    • B22D13/04Centrifugal casting; Casting by using centrifugal force of shallow solid or hollow bodies, e.g. wheels or rings, in moulds rotating around their axis of symmetry

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Products (AREA)

Abstract

PURPOSE:To improve the wear resistance and heat resistance of a composite body by mounting a cylindrical ceramic molding having specific porosity into a die and rotating the die at a required rotating speed then pouring a molten metal to the inside surface thereof. CONSTITUTION:A ceramic molding 2 having about 2-30mm. wall thickness in mounted via a heat insulating material 6 in the die 5 for centrifugal casting. The molding 2 is formed to 15-50% porosity and the top end thereof is fixed by a band 7 to the die 5. The die 5 is fixed to a turntable 9 and is then rotated at a high speed in such a manner that the G.No. given by D.N<2>/179,000 attains >=200. The molten metal for forming an inside layer 5 is thereafter poured through a spout 8 into the molding 2. The molten metal receives large centrifugal force in the molding 2 and the composite body contg. ceramics at >=50% volumetric ratio is obtd. The wear resistance and heat resistance thereof are thus improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、多孔質のセラミックス成型体の気孔中に所望
の金属が完全に浸透されたセラミックス−金属複合体を
製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for manufacturing a ceramic-metal composite in which a desired metal is completely infiltrated into the pores of a porous ceramic molded body.

〈従来の技術〉 耐摩耗ローラや断熱ローラの胴部外殻材として、金属酸
化物、ケーイ化物、窒化物、金属炭化物、ホウ化物等の
粒子(以下、゛セラミックス粒子と称す。
<Prior Art> Particles of metal oxides, silicides, nitrides, metal carbides, borides, etc. (hereinafter referred to as ``ceramic particles'') are used as body shell materials for wear-resistant rollers and heat-insulating rollers.

)と金属との複合体が用いられており、その製造法とし
て、セラミックス粒子を金属溶湯中に投入、攪拌するこ
とにより均一分散化を計かり、その後成形凝固させる方
法や、容器内に粉末を充填しておきこれに金属溶湯を圧
入する方法等を挙げることができる。
) and metal, and its production methods include placing ceramic particles into molten metal and stirring to ensure uniform dispersion, followed by molding and solidification, and methods that include placing the powder in a container. Examples include a method of filling the container and press-fitting molten metal into the container.

、しかし、大型の製品や円筒状の複合体を工業的に得る
のに適していないばかりか、セラミックス粒子の稠密度
が低く耐摩耗性や断熱性にも劣るという欠点があった。
However, not only is it not suitable for industrially producing large products or cylindrical composites, but it also has the drawbacks of low compactness of the ceramic particles and poor abrasion resistance and heat insulation properties.

〈問題を解決するための手段〉 本発明は以上の点に鑑みなされたもので、その目的とす
るところは、耐摩耗ローラやlfT熱ローラの胴部外殻
材として使用されるセラミックス−金属複合体を工業的
高生産性の下で製造すると共に、セラミックス粒子の充
填率が高く耐摩耗性や断熱性の優れた複合体の製造法を
提供するにあり、その技術的手段は遠心力鋳造用金型内
に、気孔率15〜50%の多孔質の円筒状セラミックス
成型体を装着し、該成型体をG No、で200以上に
回転した後、前記成型体の内面に金属溶湯を注湯し、該
成型体の気孔中に前記溶湯を完全に浸透させるものであ
る。
<Means for Solving the Problems> The present invention was made in view of the above points, and its purpose is to improve the ceramic-metal composite used as the body shell material of wear-resistant rollers and lfT heat rollers. The objective is to provide a method for producing composite bodies with high industrial productivity and a high filling rate of ceramic particles and excellent wear resistance and heat insulation.The technical means for this purpose is centrifugal casting A porous cylindrical ceramic molded body with a porosity of 15 to 50% is placed in a mold, and after rotating the molded body at G No. 200 or more, molten metal is poured into the inner surface of the molded body. The molten metal is allowed to completely penetrate into the pores of the molded body.

く作 用〉 上記手段によれば、気孔率が15〜50%である低気孔
率のセラミックス成型体であっても、該成型体をG N
o、で200以上に回転させて、所望の金属を遠心力鋳
造するから、該溶湯金属を容易かつ完全に前記成型体の
気孔中に浸透させることができ、耐摩耗性、耐熱性に優
れかつ強度的にも優れたセラミックス−金属複合体を容
易に得ることができる。また、注湯すべき溶湯量を適宜
増量するだけで、前記成型体の気孔に金属が浸透した浸
透層の内面に、鋳造金属からなる内層を容易に形成せし
めることができる。
Effect> According to the above means, even if the molded body is a low-porosity ceramic molded body having a porosity of 15 to 50%, the molded body can be G N
Since the desired metal is centrifugally cast by centrifugally casting the desired metal by rotating the molded body at a speed of 200° or more, the molten metal can easily and completely penetrate into the pores of the molded body, and it has excellent wear resistance, heat resistance, and A ceramic-metal composite with excellent strength can be easily obtained. Further, by simply increasing the amount of molten metal to be poured as appropriate, it is possible to easily form an inner layer made of cast metal on the inner surface of the permeation layer in which metal has penetrated into the pores of the molded body.

〈実施例〉 次に図面を参照して本発明の実施例につき詳述する。<Example> Next, embodiments of the present invention will be described in detail with reference to the drawings.

先ず、本発明の製造目的とするセラミックス−金属複合
体について説明する。
First, the ceramic-metal composite which is the object of manufacturing the present invention will be explained.

第1図においてユセラミックスー金属複合体1は、多孔
質の円筒状セラミックス成型体2に所望の金属が浸透し
た浸透N3と、該浸透層3の内面に形成された内N4と
から構成される。内層4の鋳造金属は、浸透層3の浸透
金属と冶金的に一体鋳造されており、又、内層4が形成
されていない場合もある。
In FIG. 1, the ceramic-metal composite 1 is composed of a permeation N3 in which a desired metal permeates into a porous cylindrical ceramic molded body 2, and an inner N4 formed on the inner surface of the permeation layer 3. . The cast metal of the inner layer 4 is metallurgically integrally cast with the permeated metal of the permeated layer 3, and the inner layer 4 may not be formed in some cases.

セラミックス成型体2は、セラミックス粒子の焼成によ
り形成され、その材質はAl2O2、ZrO2、Be0
1Tics SiC,、TirCSi3N4等の酸化物
、ケイ化物、窒化物、金属炭化物、ホウ化物が用いられ
る。また、これらのセラミックス材は、目的の耐摩耗性
、断熱性(熱伝導率)、金属とのぬれ性、熱膨張係数、
強度等を考慮して選択される。
The ceramic molded body 2 is formed by firing ceramic particles, and its materials include Al2O2, ZrO2, Be0
Oxides such as 1Tics SiC, TirCSi3N4, silicides, nitrides, metal carbides, and borides are used. In addition, these ceramic materials have the desired wear resistance, heat insulation (thermal conductivity), wettability with metal, coefficient of thermal expansion,
Selection is made taking into consideration strength, etc.

セラミックス成型体2の気孔率は、15〜50%とする
。気孔率については、0%に近いほどセラミックス本来
の耐摩耗性、断熱性の特性が失なわれず良好であるが、
セラミックスと金属との複合体を形成するためには、セ
ラミックスの気孔中に金属を浸透させるために、最小限
の気孔率を有することが必要になる。気孔率が15%未
満のときは、セラミックス粒子を小さくすることが必要
で、このため必然的に気孔も小さくなり金属溶湯の十分
な浸透が得られ難く、金属の侵入し゛ない独立気孔が生
じることになり、斯かる部分は脆く品質上の欠陥となる
。一方、50%を越えると、セラミックス粒子面積が少
なく、本来の耐摩耗性、断熱性の特性が著しく低下する
The porosity of the ceramic molded body 2 is 15 to 50%. As for the porosity, the closer it is to 0%, the better it is without losing the wear resistance and heat insulation properties inherent to ceramics.
In order to form a ceramic-metal composite, it is necessary to have a minimum porosity in order to allow the metal to penetrate into the pores of the ceramic. When the porosity is less than 15%, it is necessary to make the ceramic particles smaller, which inevitably makes the pores smaller, making it difficult for molten metal to penetrate sufficiently, and creating closed pores into which metal cannot penetrate. Therefore, such a part becomes brittle and becomes a quality defect. On the other hand, if it exceeds 50%, the ceramic particle area will be small and the original wear resistance and heat insulation properties will be significantly reduced.

また、セラミックス成型体2の肉厚は、製品の直径にも
よるが2mmから30fi程度が好ましい。2−未満で
は断熱効果が少なくかつ強度が不足し取り扱い上難があ
り、一方30鶴を越えると、溶湯金属が全範囲に亘り浸
透し難いからである。
Further, the wall thickness of the ceramic molded body 2 is preferably about 2 mm to 30 fi, although it depends on the diameter of the product. If it is less than 2, the heat insulating effect will be low and the strength will be insufficient, making it difficult to handle. On the other hand, if it exceeds 30, it will be difficult for the molten metal to penetrate throughout the entire range.

このような多孔質セラミックス成型体2の成形方法には
、504〜1.5 w(Dセラミックス粒子に熱可塑性
結合剤を混合し、成型、焼成する方法、又は、所望の形
状に成形されたウレタンフオームに泥状のセラミックス
の微粒子を吸着させ、セラミックス粒子を焼成すると共
にフオームを消失させる方法等がある。
The molding method for such a porous ceramic molded body 2 includes a method of mixing 504 to 1.5 W (D ceramic particles with a thermoplastic binder, molding and firing, or a method of mixing 504 to 1.5 W ceramic particles with a thermoplastic binder, or a method of mixing 504 to 1.5 W ceramic particles with a thermoplastic binder, molding and firing, or a method of molding urethane molded into a desired shape). There is a method in which mud-like ceramic fine particles are adsorbed onto a foam, and the ceramic particles are fired and the foam disappears.

セラミックス成型体2に浸透し、また内層4を形成する
金属材質としては、用途により選択されるが、一般には
高級鋳鉄、ダクタイノJ鋳鉄、鋳鋼、その他合金鋳造材
、゛非鉄金属鋳造材が挙げられる。
The metal material that penetrates the ceramic molded body 2 and forms the inner layer 4 is selected depending on the application, but generally includes high-grade cast iron, Dactino J cast iron, cast steel, other alloy casting materials, and non-ferrous metal casting materials. .

この中で、高級鋳鉄は、セラミックス成型体への浸透が
良好である。
Among these, high-grade cast iron has good penetration into ceramic molded bodies.

次に、叙上のセラミックス−金属複合体の製造法につい
て詳述する。
Next, a method for producing the above ceramic-metal composite will be described in detail.

第2図に示すように、竪型遠心力鋳造用金型5内に、セ
ラミックス成型体2を石綿等の断熱材6を介して装着し
、その上端をバンド7で固定した後、所期の回転の下で
、前記成型体2の気孔中に浸透させると共に内層4を形
成させるべき金属溶湯を注湯樋8によって金型内へ注湯
する。曲回中、9は回転台、10は金型の砂型底面であ
る。
As shown in FIG. 2, a ceramic molded body 2 is placed in a vertical centrifugal casting mold 5 via a heat insulating material 6 such as asbestos, and its upper end is fixed with a band 7. Under rotation, the molten metal to be permeated into the pores of the molded body 2 and to form the inner layer 4 is poured into the mold through the pouring gutter 8. During turning, numeral 9 is a turntable, and numeral 10 is a sand mold bottom surface of the mold.

第2図では遠心力鋳造手段として竪型遠心力鋳造の例を
示したが、本性は竪型に限らず、水平型、傾斜型等自由
に適用できる。尤も、気孔率の少ないセラミックス成形
体2に金属溶湯を完全に浸透させるには、後述するよう
に遠心力を大きく作用させる必要があるが、安全性が十
分確保されかつ高速回転が得られ易く、経済的な面から
すると竪型遠心力鋳造法が好適である。
Although FIG. 2 shows an example of vertical centrifugal force casting as the centrifugal force casting means, it is not limited to the vertical type, but can be freely applied to horizontal types, inclined types, etc. Of course, in order to completely infiltrate the molten metal into the ceramic molded body 2 with low porosity, it is necessary to apply a large centrifugal force as described later, but safety is sufficiently ensured and high-speed rotation is easily obtained. From an economic point of view, vertical centrifugal casting is preferred.

セラミックス成型体2の金型5への装着に際しては、石
綿等の断熱材6を介するのがよい。このようにすると、
セラミックス成形体2と金型5のガタッキをなくしかつ
空気の流通があるため、セラミックス内面に注入された
溶湯が容易に外表面に浸透しやすいからである。
When attaching the ceramic molded body 2 to the mold 5, it is preferable to use a heat insulating material 6 such as asbestos. In this way,
This is because the looseness between the ceramic molded body 2 and the mold 5 is eliminated and there is air circulation, so that the molten metal injected into the inner surface of the ceramic easily penetrates into the outer surface.

断熱材6を介して金型5に装着されたセラミックス成型
体2は、G NO,で20θ以上に回転される。
The ceramic molded body 2 mounted on the mold 5 via the heat insulating material 6 is rotated by 20θ or more at GNO.

G No、は一般に 但し、N:回転数(rpm ) D:成型体の外径(釧) で示され、G No、が大きくなる程大きな遠心力が作
用する。G No、が200未満のときは、成型体2の
気孔率が50%以下になると、金属溶湯は、成型体2の
全体に亘り完全に浸透するのが困難になり、独立気孔が
多数存在し、その部分の強度が劣ることになる。
G No. is generally expressed as: N: rotational speed (rpm) D: outer diameter of the molded body (shape) The larger the G No., the greater the centrifugal force that acts. When G No. is less than 200 and the porosity of the molded body 2 becomes 50% or less, it becomes difficult for the molten metal to completely penetrate the entire molded body 2, and a large number of independent pores exist. , the strength of that part will be inferior.

畝上の如く高速回転されたセラミックス成型体2内への
金属溶湯の注湯に際しては、該成型体2を予め400〜
1200℃に予熱することが望ましい。
When pouring molten metal into the ceramic molded body 2 which is rotated at high speed like a ridge, the molded body 2 must be heated to a temperature of 400 to
It is desirable to preheat to 1200°C.

斯かる予熱は金属溶湯の浸透を容易にし、かつ鋳造によ
る熱衝撃により成型体2に割れが生じるのを防止し、ま
た鋳造後の両者の収縮差による割れ防止にも効果がある
Such preheating facilitates penetration of the molten metal, prevents cracks in the molded body 2 due to thermal shock caused by casting, and is also effective in preventing cracks due to the difference in shrinkage between the two after casting.

次に、上記予熱されたセラミックス成型体2内へ所望の
金属溶、湯が注湯されるが、セラミックス−金属複合体
1が得られるが、注湯量を適宜増量するだけで、内M4
厚さを自由に形成できる。即ち、成型体2に浸透するだ
けの溶湯量を注湯すれば、該内層4は生じないし、それ
より多く溶湯すれば所望の肉厚の内層4が形成される。
Next, a desired metal melt or hot water is poured into the preheated ceramic molded body 2, and the ceramic-metal composite 1 is obtained.
The thickness can be freely adjusted. That is, if enough molten metal is poured to penetrate into the molded body 2, the inner layer 4 will not be formed, and if more molten metal is poured, the inner layer 4 of the desired thickness will be formed.

該内層4は、機械加工により容易に高精度の軸穴を形成
できる等、ローラーへの適用に当っては好適である。
The inner layer 4 is suitable for application to rollers, as a highly accurate shaft hole can be easily formed by machining.

次に、具体的製造実施例を掲げて説明する。Next, specific manufacturing examples will be listed and explained.

外径φ250×内径φ200鶴、長さ200uBの断熱
・耐摩耗ローラ用外殻の製造実施例。
Manufacturing example of an outer shell for a heat-insulating and wear-resistant roller with an outer diameter of φ250 x inner diameter of φ200 and a length of 200 uB.

(11外径φ250×内径φ200顛、長さ200fi
”であって、第1表に示す気孔率のAl203のセラミ
ックス成型体を、第2図の如く、竪型遠心力鋳造用金型
内に同心状にセットした。このとき、金型は、内径φ2
80×長さ200■Rであり、金型内面と成型体外面と
の間に石綿が充填された。
(11 outer diameter φ250 x inner diameter φ200, length 200fi
A molded Al203 ceramic body with a porosity shown in Table 1 was set concentrically in a vertical centrifugal casting mold as shown in Figure 2.At this time, the mold had an inner diameter of φ2
The mold size was 80 mm x length 200 mm, and asbestos was filled between the inner surface of the mold and the outer surface of the molded body.

(2)  これを、竪型遠心力鋳造1にセントし、第1
表に示すG No、で回転させ、注湯前までガスバーナ
ーで赤熱状態までセラミックス成型体を予熱した。
(2) Place this in the vertical centrifugal force casting 1, and
The ceramic molded body was rotated at the G No. shown in the table, and the ceramic molded body was preheated to a red-hot state with a gas burner before pouring.

第  1  表 (3)  高級鋳鉄30i+gを1500℃の温度で注
湯し、凝固完了後、高温で型バランして、熱処理炉にて
徐冷した。
Table 1 (3) High grade cast iron 30i+g was poured at a temperature of 1500°C, and after completion of solidification, the mold was balanced at a high temperature and slowly cooled in a heat treatment furnace.

(4)  この結果、実施例1及び2ともセラミックス
成型体の外面まで高級鋳鉄層が形成されており、セラミ
ックス成型体全体に溶湯が浸透し、完全なるAl120
3−高級鋳鉄の複合体が得られた。
(4) As a result, in both Examples 1 and 2, a high-grade cast iron layer was formed up to the outer surface of the ceramic molded body, and the molten metal penetrated into the entire ceramic molded body, making it completely Al120.
3-A composite of high grade cast iron was obtained.

尚、前記成型体の外面に形成された鋳鉄層は、機械加工
により除去した。
Note that the cast iron layer formed on the outer surface of the molded body was removed by machining.

実施例2につき、その横断面における金属組織顕微鏡写
真(X50)を第3図に示す。該組織写真より鋳鉄金属
がセラミック反成型体の気孔に完全に充填されているの
が確認される。
A metallographic micrograph (X50) of a cross section of Example 2 is shown in FIG. The microstructure photograph confirms that the cast iron metal completely fills the pores of the ceramic anti-molded body.

〈発明の効果〉 以上述べたように、本発明によれば、気孔率が15〜5
0%のセラミックス成型体を用いて、所望の金属溶湯を
前記成型体にGNo、200以上で遠心力鋳造するから
、セラミックスを体積割合で50%を越えて含有するが
故に耐摩耗性、耐熱性に極めて優れ、しかも鋳造金属の
未浸透部が皆無の高品質のセラミックス−金属複合体を
容易かつ工業的に得ることができる。このように、本発
明は、セラミックスー金属複合体の製造方法として工業
的価値は著大である。
<Effects of the Invention> As described above, according to the present invention, the porosity is 15 to 5.
Using a 0% ceramic molded body, a desired molten metal is centrifugally cast into the molded body at a GNo of 200 or more, so the ceramic content exceeds 50% by volume, resulting in excellent wear resistance and heat resistance. It is possible to easily and industrially obtain a high quality ceramic-metal composite having excellent properties and having no unpermeated areas of cast metal. As described above, the present invention has great industrial value as a method for producing a ceramic-metal composite.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の製造法の目的とするセラミックス−
金属複合体及び該複合体の金属浸透前の状態を示すセラ
ミックス成型体の縦断面図、第2図は、竪型遠心力鋳造
法によるセラミックス−金属複合体の製造過程における
竪型遠心力鋳造機の概略要部断面図、第3図は、本発明
実施例のセラミックス−金属複合体の金属組織顕微鏡写
真(50倍)を示す。 1・・・セラミックス−金属複合体、2・・・セラミッ
クス成型体、3・・・浸透層、4・・・内層、5・・・
遠心力鋳造用金型、7・・・バンド、8・・・注湯樋。 第7図 第3図 ネ
FIG. 1 shows the ceramics intended for the production method of the present invention.
A vertical cross-sectional view of a metal composite and a ceramic molded body showing the state of the composite before metal infiltration, FIG. 2 is a vertical centrifugal casting machine in the process of manufacturing a ceramic-metal composite by the vertical centrifugal casting method. FIG. 3 shows a metallographic micrograph (50 times magnification) of a ceramic-metal composite of an example of the present invention. DESCRIPTION OF SYMBOLS 1... Ceramic-metal composite, 2... Ceramic molded body, 3... Penetration layer, 4... Inner layer, 5...
Mold for centrifugal force casting, 7... band, 8... pouring gutter. Figure 7 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、遠心力鋳造用金型内に、気孔率15〜50%の多孔
質の円筒状セラミックス成型体を装着し、該成型体をG
_N_O_.で200以上に回転した後、前記成型体の
内面に金属溶湯を注湯し、該成型体の気孔中に前記溶湯
を完全に浸透させることを特徴とするセラミックス−金
属複合体の製造法。
1. A porous cylindrical ceramic molded body with a porosity of 15 to 50% is placed in a centrifugal casting mold, and the molded body is placed in a G
_N_O_. 2. A method for producing a ceramic-metal composite, which comprises: rotating the molded body at 200 degrees or more, and then pouring molten metal onto the inner surface of the molded body to completely infiltrate the molten metal into the pores of the molded body.
JP13361984A 1984-06-27 1984-06-27 Production of ceramic-metal composite body Granted JPS6114064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13361984A JPS6114064A (en) 1984-06-27 1984-06-27 Production of ceramic-metal composite body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13361984A JPS6114064A (en) 1984-06-27 1984-06-27 Production of ceramic-metal composite body

Publications (2)

Publication Number Publication Date
JPS6114064A true JPS6114064A (en) 1986-01-22
JPH0157989B2 JPH0157989B2 (en) 1989-12-08

Family

ID=15109050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13361984A Granted JPS6114064A (en) 1984-06-27 1984-06-27 Production of ceramic-metal composite body

Country Status (1)

Country Link
JP (1) JPS6114064A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316543U (en) * 1986-03-28 1988-02-03
EP0350124A2 (en) * 1988-07-05 1990-01-10 Shell Internationale Researchmaatschappij B.V. Centrifugal casting of metal matrix composites
US5746801A (en) * 1993-06-18 1998-05-05 Sumitomo Electric Industries, Ltd. Process of producing fluoride glass
CN108571443A (en) * 2018-04-11 2018-09-25 合肥工业大学 A kind of the metal-ceramic composite cylinder jacket and its manufacturing method of double skeleton combinations
CN111283176A (en) * 2020-03-16 2020-06-16 昆明理工大学 Preparation method of extrusion roller

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6316543U (en) * 1986-03-28 1988-02-03
EP0350124A2 (en) * 1988-07-05 1990-01-10 Shell Internationale Researchmaatschappij B.V. Centrifugal casting of metal matrix composites
US5746801A (en) * 1993-06-18 1998-05-05 Sumitomo Electric Industries, Ltd. Process of producing fluoride glass
CN108571443A (en) * 2018-04-11 2018-09-25 合肥工业大学 A kind of the metal-ceramic composite cylinder jacket and its manufacturing method of double skeleton combinations
CN111283176A (en) * 2020-03-16 2020-06-16 昆明理工大学 Preparation method of extrusion roller
CN111283176B (en) * 2020-03-16 2021-12-07 昆明理工大学 Preparation method of extrusion roller

Also Published As

Publication number Publication date
JPH0157989B2 (en) 1989-12-08

Similar Documents

Publication Publication Date Title
CA1266159A (en) Composite and durable forming model with permeability
JPS60127067A (en) Production of composite ceramics-metal body
CA2000802A1 (en) A method for forming metal matrix composite bodies with a dispersion casting technique and products produced thereby
CA1170815A (en) Mold facing for cladding a metallic centrifugal ingot mold for copper or its alloys and process for applying such a mold facing
JPS6114064A (en) Production of ceramic-metal composite body
JP3271737B2 (en) Porous mold material for casting and method for producing the same
US20010033038A1 (en) Method of producing metal/ceramic composite, and method of producing porous ceramic body
US6490793B1 (en) Method of manufacture of as-cast composite roll
JPS59147769A (en) Production of composite casting
JPS642181B2 (en)
JPH0343334B2 (en)
JPS6037260A (en) Production of composite ceramic casting material
JPS6046237A (en) Ceramics-metal composite material and manufacture thereof
JPS6046988A (en) Ceramic-metal composite body and manufacture
JPS60191652A (en) Composite ceramic-metal casting and production thereof
JPH01148448A (en) Two layers centrifugal casting method
JPS5830265B2 (en) Refractories for continuous casting
JPS6046861A (en) Highly wear resistant composite material and its production
JP2541691B2 (en) Core for forming the socket of cast iron pipe
JPH0152110B2 (en)
CN1004260B (en) Compound alloying technique on metal surface for sealed vacuum components
JPH01193496A (en) Metal-ceramics composite slide member including lubricating oil
JP2555236B2 (en) Centrifugal casting method for casting pipe with socket
JPH03106558A (en) Nozzle member for casting and production thereof
JPS60124458A (en) Production of wear resistant composite casting