JPS6114036A - Manufacture of metallic formed part - Google Patents

Manufacture of metallic formed part

Info

Publication number
JPS6114036A
JPS6114036A JP13620984A JP13620984A JPS6114036A JP S6114036 A JPS6114036 A JP S6114036A JP 13620984 A JP13620984 A JP 13620984A JP 13620984 A JP13620984 A JP 13620984A JP S6114036 A JPS6114036 A JP S6114036A
Authority
JP
Japan
Prior art keywords
stage
formed part
forging
mold
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13620984A
Other languages
Japanese (ja)
Inventor
Akio Nakano
昭夫 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP13620984A priority Critical patent/JPS6114036A/en
Publication of JPS6114036A publication Critical patent/JPS6114036A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a precise formed part with a good productivity without requiring a post-working by supplying a specified melt-forging use formed part member being a formed part material by a forming roll, and also executing continuously a melt-forging stage and a precision pressing stage. CONSTITUTION:A molten metal M is formed to a band plate-shaped formed part material M1 of a state that a worked band M1''' of a half-melted state is hung and held by a solidified band M1' and M1'' of both the right and left sides, by upper and lower rolls a1, a2 of a forming roll A. The material M1 is brought to heat insulation through a heat insulating chamber B and shifted to a forming stage C. The stage C consists of a melt-forging stage D, a primary precision pressing stage E and the second precision pressing stage F. In the stage D, a rough formed part is formed by increasing a thickness by a portion shrinked from the final formed part size, and it is completed to a prescribed formed part size by the stage E. The precision pressing stage can be executed by only one process using a pair of forming dies, but in case a high accuracy is required, it will also do that two or three pairs of forming dies raising accuracy successively are used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属成品の製造方法に関する。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing metal products.

(従来の技術) 従来、鋳造、押出し、引抜き、圧延、鍛造などの製造法
で得られた成形品は切削加工、プレス加工、研磨仕上げ
などの後加工を行なうことにより最終仕上げ製品を成形
しており、その後加工に手数及び工費がかかり、製品コ
ストの増大の原因になっているとともに特に厳密な精度
を要求される部品にあっては、そのコスト多大なること
著しい不具合があった。
(Conventional technology) Conventionally, molded products obtained by manufacturing methods such as casting, extrusion, drawing, rolling, and forging are molded into final finished products by performing post-processing such as cutting, pressing, and polishing. However, the subsequent processing is labor-intensive and labor-intensive, causing an increase in product costs.Particularly in the case of parts that require strict precision, there is a significant problem in that the costs are high.

又、溶鍛法は相離両型を組とする成形型に溶湯を注入し
該型により溶湯に圧力及び冷却・加熱をかけながら凝固
させ金属成品を製造するものあり、その成品素材は前記
のように溶湯として成形型へ供給されるものであった。
In addition, the hot forging method involves injecting molten metal into a forming die that has a set of two separate dies, and solidifying the molten metal while applying pressure, cooling, and heating to the molten metal to produce a metal product, and the product material is the above-mentioned material. In this way, the molten metal was supplied to the mold.

しかるに前記従来法は一回の成形工程毎に溶湯を型内に
注入するものであるから、その作業性に劣るとともに溶
湯注入後の加工速度が遅くなり、又、薄肉成品を製造す
る場合には注湯直後に凝固して加圧が間に合わず品質及
び寸法精度を高め、ることかできない不具合があった。
However, since the conventional method described above involves injecting molten metal into the mold for each molding process, its workability is poor and the processing speed after injecting the molten metal is slow, and when producing thin-walled products, There was a problem in which the molten metal solidified immediately after pouring, making it impossible to pressurize it in time to improve quality and dimensional accuracy.

(発明の目的) 本発明は斯る従来事情に鑑みてなされたものでその目的
とする処は、品質及び寸法精度の高い金属成品が得られ
る素材供給方法に素材を供給すると共に、溶鍛工程と精
圧工程との連続化により作業性を高め、両工程の改良に
よって結晶組織の超微細化を促進させ成品の高精度を図
り後加工を不要にして、精密成品を安価に提供する製造
方法を得んとすることにある。
(Objective of the Invention) The present invention has been made in view of the conventional circumstances, and its purpose is to supply a material to a material supply method that can obtain metal products with high quality and dimensional accuracy, and to improve the melting process. A manufacturing method that improves workability by making the process continuous with the precision pressing process, promotes ultra-fine crystal structure by improving both processes, and achieves high precision of the finished product, eliminating the need for post-processing and providing precision products at low cost. The purpose is to try to obtain.

(発明の構成) 斯る本発明の金属成品の製造方法は、−成形ロールによ
り成品素材を帯板状に供出し、該素材が少なくとも両側
縁に凝固帯を有し再凝固帯間に半溶融状態の加工帯を懸
持した溶鍛用成品部材を、保温しながら移送し、加熱・
冷却機構を備えた成形型の雌型内に挿入して雄型により
加圧し且つ冷却・加熱機構により冷却・加熱をかけなが
ら凝固区間及び凝固範囲まで降温して第1成形品を成形
する溶鍛工程と、前記第1成形品を寸法精度の高い成形
型を用いて加圧及び冷却・加熱をかけながら型鍛造する
精圧工程とよりなり、両工程が連続して行なわれること
を特徴とする。
(Structure of the Invention) The method for manufacturing a metal product according to the present invention includes: - providing a product material in the form of a strip using a forming roll; the material having solidification zones at least on both sides; and a semi-molten state between the resolidification zones; The finished product for melt forging with the processed belt suspended is transferred while being kept warm, heated and heated.
Molten forging is inserted into the female die of a mold equipped with a cooling mechanism, pressurized by the male die, and cooled and heated by the cooling/heating mechanism to lower the temperature to the solidification zone and solidification range to form the first molded product. and a precision pressing step in which the first molded product is die-forged using a mold with high dimensional accuracy while applying pressure, cooling, and heating, and is characterized in that both steps are performed continuously. .

作用) 斯る本発明の金属成品の製造方法は、溶鍛用の成品素材
を帯板状であって且つ少なくとも両側縁に形成された凝
固帯により懸持される半溶融状態として供出するので、
素材の連続送りが可能となり溶鍛工程を連続化、高速化
させる。
Function) The method for manufacturing a metal product of the present invention provides the product material for melt forging in a semi-molten state in the form of a strip and suspended by solidification zones formed at least on both side edges.
Continuous feed of material becomes possible, making the melt forging process continuous and faster.

又、溶鍛工程において、成形型により前記溶鍛・用成品
素材を冷却・加熱及び加圧をかけながら液相と固相が共
存する凝固区間及び凝固範囲まで降温させることによっ
て、結、晶粒の超微細化を強制的に進行させ、引は巣等
がなく安定した結晶組織を得て粗形品の精度を高め、さ
らに精圧工程においても冷却・加熱及び加圧をかけるこ
とにより精度を高めて超精密製品を製造するものである
。                     へ(実
施例) 本発明の、実施例を図面により説明す”れば、第1図〜
第2図において(A)は上下2個のロール(a、+ >
  (a 2 )を組とする成形ロールである。
In addition, in the melt forging process, by cooling, heating, and pressurizing the melt forging and manufactured product material using a forming die, the temperature is lowered to the solidification zone and solidification range where the liquid phase and solid phase coexist, thereby forming crystal grains. By forcibly advancing the ultra-fine refinement of the material, we obtain a stable crystal structure with no shrinkage cavities, improving the precision of rough-formed products, and further improving precision by applying cooling, heating, and pressure in the precision pressing process. It is used to manufacture ultra-precise products. (Embodiment) An embodiment of the present invention will be explained with reference to the drawings.
In Fig. 2, (A) shows the upper and lower two rolls (a, + >
(a 2 ) is a forming roll set.

下ロール(al)は第3図に示す如くそのロール本体(
1)内に水等の冷媒を流通させる冷却・加熱機構(2)
を具備するとともに外周面に金属リング(3)(4)を
間隔をおいて両端側に配設し、両リング(3)(4)間
にセラミック(5)を設ける。
The lower roll (al) has its roll body (
1) Cooling/heating mechanism that circulates refrigerant such as water (2)
metal rings (3) and (4) are disposed on the outer peripheral surface at both ends at intervals, and a ceramic (5) is provided between both rings (3) and (4).

上記各リング(3)(4)(5)は夫々ロール本体(1
)外周に嵌着一体的に取付け、その金属リング(3)(
4)はセラミックリング(5)より突出状にするととも
に該リング(3)(4)には環状溝(3’ )(4’ 
)を形成してなる。
Each of the above rings (3), (4), and (5) is connected to the roll body (1), respectively.
) The metal ring (3) (
4) is made to protrude from the ceramic ring (5), and the rings (3) and (4) are provided with annular grooves (3') and (4').
).

金属リング(3)(4)には耐熱金属(焼結材を含む)
を使用する。
Metal rings (3) and (4) are made of heat-resistant metal (including sintered material)
use.

下ロール(al)のセラミックリング(5)には該リン
グを周方向に分断する3個の金属片(6)(6)(6)
を突設し、金属リング(3)(4)に一体に形成する。
The ceramic ring (5) of the lower roll (al) has three metal pieces (6) (6) (6) that divide the ring in the circumferential direction.
are provided protrudingly and are integrally formed on the metal rings (3) and (4).

上ロール(al)は前記下ロール(al)上に所定間隔
をおいて回転自在に配設するもので、図面には金属材か
らなる一般的なロール構造のものを示すが、前述下ロー
ル(al)と同一の構造とすることもよい。
The upper roll (al) is rotatably disposed on the lower roll (al) at a predetermined interval, and the drawing shows a general roll structure made of metal material. It may also have the same structure as al).

前記成形ロール(A)は金属リング(3)(4)及び金
属片(6)(6)(6)と、セラミックリング(5)と
では伝導率を異にし、金属リング(3)(4)は放熱性
が高く、セラミックリング(5)は保温性が高く、した
がって成形ロール(A)に溶湯を通した場合にリング(
3)(4)とリング(5)との各接触面では溶湯の進行
速度を異にする。
The forming roll (A) has different conductivities between the metal rings (3) (4) and the metal pieces (6) (6) (6) and the ceramic ring (5), and the metal rings (3) (4) has high heat dissipation, and the ceramic ring (5) has high heat retention, so when the molten metal is passed through the forming roll (A), the ring (
3) The molten metal advances at different speeds at each contact surface between (4) and the ring (5).

尚、図中(20)は溶融炉、(21)は溶湯(M)の案
内路であり、溶湯(M)を案内して上下両ロール(al
)(al)間を通過させて成品素材(Ml)を連続的に
成形する。
In the figure, (20) is a melting furnace, and (21) is a guide path for the molten metal (M), which guides the molten metal (M) and connects both upper and lower rolls (al
) (al) to continuously form the product material (Ml).

成品素材(Ml)は、金属リング(3)(4)に接する
訊分が強く冷却或は加熱調整°されて凝固し凝固帯(M
’ + >(M’ + )となると共に、金属片(6)
(6)(6)に接する部分も強冷却或は加熱調整されて
凝固し、左右凝固帯(M’ + )(M’ + )を連
結する凝固帯(M”1)が一定間隔毎に形成され、セラ
ミックリング(5)に接する部分の凝固速度が遅く固相
と液相とが共存する半溶融状態となり該部分を加工帯(
M″’+)とする。
The part of the product material (Ml) that is in contact with the metal rings (3) and (4) is strongly cooled or heated to solidify and form a solidification zone (Ml).
' + >(M' + ) and the metal piece (6)
(6) The part in contact with (6) is also solidified by strong cooling or heating adjustment, and coagulation zones (M"1) connecting the left and right coagulation zones (M' + ) (M' + ) are formed at regular intervals. The solidification rate of the part in contact with the ceramic ring (5) is slow, and the solid phase and liquid phase coexist in a semi-molten state, and the part comes into contact with the processing zone (
M″'+).

すなわち成品素材(Ml)は半溶融状態の加工帯(M″
’+)を左右両側の凝固帯(M’ + )(M’ + 
)及び凝固帯(M” + )(M” + )により懸持
する形態に成形される(第4図)。
In other words, the product material (Ml) is in a semi-molten state (M″
'+) to the left and right coagulated zones (M'+) (M'+
) and a coagulation zone (M" + ) (M" + ) (Fig. 4).

上記凝固帯(M’ + )(M” + )及び加工帯(
M″’+)の凝固速度は冷却機構(2)を調整すること
によって所定の凝固状態、半溶融状態が得られるように
設定する。
The coagulation zone (M' + ) (M" + ) and the processing zone (
The solidification rate of M'''+) is set by adjusting the cooling mechanism (2) so that a predetermined solidified state or semi-molten state can be obtained.

尚、図中(19)は加熱器であり、成品素材(MI )
が冷却され過ぎないようにするものである。
In addition, (19) in the figure is a heater, and the product material (MI)
This prevents the water from becoming too cool.

図中(B)は保温庫であり、この保温庫<B)を通して
成形部f!(C)に成品素材(Ml)を移送するもので
ある。
In the figure, (B) is a heat storage, and the molded part f! The finished product material (Ml) is transferred to (C).

保温庫(B)は断熱材を箱状に組立て、その前後面に開
口を設けて入口(B1)及び出口(B2)を形成すると
共に、内部上下にはヒーター(B3 )  (84)“
を各々設け、前記入口(B1)から出口(B2)にかけ
て所定間隔毎に移送ローラ(Bs )  (B’s )
  (Bs )  (Bs )を配設してなる。
The heat storage (B) is made of heat insulating material assembled into a box shape, with openings on the front and rear surfaces to form an inlet (B1) and an outlet (B2), and heaters (B3) (84) located above and below the interior.
are provided respectively, and transfer rollers (Bs) (B's) are provided at predetermined intervals from the entrance (B1) to the exit (B2).
(Bs) (Bs) is arranged.

而して、成品素材(MI )は保温されながら成形工程
(C)に移送される。
The finished product material (MI) is then transferred to the molding step (C) while being kept warm.

成形工程(C)は、溶鍛工程(D>、1次精圧工程(E
)及び2次精圧工程(F)よりなる。
The forming process (C) includes a melting process (D>), a primary precision pressing process (E
) and a secondary refinement process (F).

溶鍛工程においては最終成品寸法より凝縮する分だけ加
肉して粗形品を成形し、該第1成形品を精圧工程により
所定の成品寸法に完成させる。
In the melt forging process, a rough-shaped product is formed by increasing the thickness by an amount condensed from the final product size, and the first molded product is completed into a predetermined product size by a precision pressing process.

上記精圧工程は1組の成形型を用いる1工程     
  1.。
The above pressing process is one process using one set of molds.
1. .

でも可能であるが、高精度が要求される場合は、順次に
寸法、精度を上げた2〜3組の成形型を用0る複数工程
とすることも任意である。
However, if high precision is required, it is also optional to perform multiple steps using two to three sets of molds whose dimensions and precision are successively increased.

尚、溶鍛工程と精圧工程との間に時間をおいて加工して
もよいが、その間は温度保持された金属結晶が成長して
は成品精度及び強度がおちるため、成品形状及び温度に
より加工速度を設定する。
It should be noted that processing may be performed with a time interval between the melt forging process and the precision pressing process, but during that time, the metal crystals that are maintained at temperature will grow and the precision and strength of the product will deteriorate. Set the machining speed.

溶鍛工程(D)について説明すれば、成形型(d )は
雌型(dl)と雄型(dl)との組からなり、雌型(d
l)はその成形部をゼラミック方として保温性を具有せ
しめる。
To explain the melt forging process (D), the forming die (d) consists of a female die (dl) and a male die (dl).
In l), the molded part is made of a geramic material to provide heat retention.

雌型(dl)には冷却機構(11)及び加熱機構(12
)を配設し、両機構(11)  (12)の配置構成は
成品の材質、形状に応じて設定する。
The female mold (dl) has a cooling mechanism (11) and a heating mechanism (12).
), and the arrangement of both mechanisms (11) and (12) is set according to the material and shape of the finished product.

雄型(dl)はハイクロムモリブデン鋼などの耐熱金属
型を用い、該型内に冷却11i(13)及び加熱機構(
14)を配設する。
The male mold (dl) is made of a heat-resistant metal mold such as high chromium molybdenum steel, and a cooling 11i (13) and a heating mechanism (
14).

又、雄型(dl)にセラミック型を用いてもよい。Furthermore, a ceramic mold may be used as the male mold (dl).

溶鍛工程(D)は前記雌型(dl)及び雄型(dl)の
冷却機構(11)  (13) 、加熱機構(12) 
 (14)により適度に成形部に冷却、加熱をかけなが
ら該成形部内に前記成品素材(MI)を装入した後、雄
型(B2)を型合せし該型によって溶湯を冷却し且つ加
圧しながら溶S(イ)の凝固区間まで降温させ、第1成
形品(M2)に成形する。
The melt forging process (D) includes cooling mechanisms (11) (13) and heating mechanisms (12) for the female mold (dl) and male mold (dl).
After charging the product material (MI) into the molding part while applying appropriate cooling and heating to the molding part according to (14), the male mold (B2) is fitted, and the molten metal is cooled and pressurized by the mold. While cooling, the temperature is lowered to the solidification zone of the molten S (A), and the first molded product (M2) is formed.

例えば成品素材(Ml)が22%N −ZT1合金の場
合(溶融温度540〜580℃)には、290℃〜35
0℃位まで降温させて第1成形品(M2)を成形する。
For example, when the product material (Ml) is a 22% N-ZT1 alloy (melting temperature 540 to 580°C), the melting temperature is 290°C to 35°C.
The temperature is lowered to about 0° C. and a first molded product (M2) is molded.

1次精圧■程(E)において、(e)は成形型であり、
雌型(el)と雄型(B2)とがらなり、2次精圧l1
(F)の凝縮分だけ加肉した寸法とする。
In the primary precision pressure step (E), (e) is the mold,
The female type (el) and the male type (B2) are separated, and the secondary seminal pressure l1
The dimensions are increased by the amount of condensation in (F).

前記成形型(e )は冷却機構(11)  (13)及
び加熱機構(12)  (14)を備えたセラミック型
であるが、冷却機構を備えた耐熱金属型でもよい。
The mold (e) is a ceramic mold equipped with cooling mechanisms (11) (13) and heating mechanisms (12) (14), but may also be a heat-resistant metal mold equipped with a cooling mechanism.

1次精圧工程(E)においては、前記第1成形品(M2
.)を所定温度で型入れし、′雄型(e2)により加圧
し、冷却機構(11)  (13)、加熱機構(12)
  <14)にて冷却・加熱をかけて所定温度に降温さ
せ、第2成形品(M3)を成形する。
In the primary pressing process (E), the first molded product (M2
.. ) is placed in a mold at a predetermined temperature, pressurized by a male mold (e2), cooling mechanism (11) (13), heating mechanism (12)
<14) Cooling and heating are applied to lower the temperature to a predetermined temperature, and a second molded product (M3) is molded.

上記成形型における第1成形品(M2)の型入れ温度は
前記22%M −Zn合金の場合で240℃〜450℃
とし、第1成形品(M2)は前記成形型(e)の型出し
時に該温度に保持され又加熱機構により前記温度に加温
された後に成形型(f)に型入れされる。
The molding temperature of the first molded product (M2) in the above mold is 240°C to 450°C in the case of the 22% M-Zn alloy.
The first molded product (M2) is held at the temperature when the mold (e) is ejected, and after being heated to the temperature by the heating mechanism, it is placed into the mold (f).

成形型(e)の型出し温度は100℃〜300℃とする
The molding temperature of the mold (e) is 100°C to 300°C.

2次精圧加工(F)において、成形型(f)は雌型(f
+)と雄型(r2)とからなり、最終仕上寸法に形成さ
れていて、冷却機構(11)(13)を備えた耐熱金属
型である。
In the secondary precision pressure processing (F), the forming die (f) is a female die (f
+) and a male mold (r2), it is a heat-resistant metal mold that is formed to the final finished size and equipped with cooling mechanisms (11) and (13).

又、成形型(e)から型出した第2成形品(M3)’の
型入温度は、前記22%M −ZT+合金の場合で80
℃〜260℃であり、第2成形品(M3)を成形して@
終成形品(M4)を作る。
In addition, the molding temperature of the second molded product (M3)' molded from the mold (e) was 80% in the case of the 22% M-ZT+ alloy.
°C to 260 °C, and the second molded product (M3) was molded @
Make the final molded product (M4).

尚、実施例において端圧工程を1次(E)。In addition, in the example, the end pressure process is primary (E).

2次(F)の2工程で説明したが、成品精度が極度に要
求されない場合には2次工程(F)を省略し、1次精圧
工程(E)により成品(M4)を完成させることも自由
である。
As explained in the two steps of the secondary (F), if extremely high product accuracy is not required, the secondary step (F) can be omitted and the finished product (M4) can be completed by the primary precision pressure step (E). is also free.

尚、成品素材はとくに制限されるものではないが、好ま
しくは超塑性金属、例えば亜鉛(Zn)を主材料とし、
O〜6Bwt%N、O〜5wt%SL。
Although the material for the product is not particularly limited, it is preferable that the main material is a superplastic metal such as zinc (Zn),
O~6Bwt%N, O~5wt%SL.

O〜10wt%侃、0〜5wt%−1O〜5wt%Mn
、O〜3wt%Fe、0〜3wt%Ti、−0〜5wt
%NL、O〜3Wj%Cr、O〜3wt%Pb、O〜1
Qwt%Sn 、 O〜I CLvt%Be、O〜5w
t%p、6〜4Qwt%C,O〜5wt%W、O〜3w
t%BからなるZη系合金を例示し、又、アルミニウム
l)を主材料とし、O〜20wt%SL、0〜20wt
%Ctt、 O〜10wt%〜、0〜2Qwt%Zn、
 ’C)〜12Wj%1yln 、 Q 〜5wt%F
e、0〜3wt%Ti、O〜5wt%NL、0〜5wt
%Cr、0〜3wt%Pb、 O〜3wt%3n、O〜
10wt%C9−〇〜5wt%Be、O〜3wt%W、
O−’3wt%〜。
O~10wt%侃, 0~5wt%-1O~5wt%Mn
, O~3wt%Fe, 0~3wt%Ti, -0~5wt
%NL, O~3Wj%Cr, O~3wt%Pb, O~1
Qwt%Sn, O~I CLvt%Be, O~5w
t%p, 6~4Qwt%C, O~5wt%W, O~3w
A Zη-based alloy consisting of t%B is exemplified, and the main material is aluminum l), O~20wt%SL, 0~20wt
%Ctt, O~10wt%~, 0~2Qwt%Zn,
'C) ~12Wj%1yln, Q ~5wt%F
e, 0-3wt%Ti, O-5wt%NL, 0-5wt
%Cr, 0~3wt%Pb, O~3wt%3n, O~
10wt%C9-〇~5wt%Be, O~3wt%W,
O-'3wt%~.

O〜5wt%BからなるM系合金、あるいは銅(侃)を
主材料とし、0〜2Qwt%Si、O〜2Qwt%#、
O〜5wt%−,0〜30wt%Zn 。
M-based alloy consisting of O~5wt%B or copper (侃) as the main material, 0~2Qwt%Si, O~2Qwt%#,
O~5wt%-, 0~30wt%Zn.

0〜20wt%Mn、O〜3wt%Fe、O〜5wt%
Ti  、  O〜 10wt %Nし 、 0〜10
wt %Cr、O〜5wt%Pc+、O〜5wt%Sn
、O〜20wt%C1O〜5wt%3e、O〜10wt
%W、O〜5wt%B、0〜5wt%鑓、からなる侃系
合金、さらには鉄(Fe)を主材料とし、O〜40wt
%C,O〜5 wt%1yln、Q’〜5wt%si、
O〜10wt%Cr 。
0~20wt%Mn, O~3wt%Fe, O~5wt%
Ti, O~10wt%N, 0~10
wt%Cr, O~5wt%Pc+, O~5wt%Sn
, O~20wt% C1O~5wt%3e, O~10wt
%W, O ~ 5wt% B, 0 ~ 5wt% iron, furthermore, iron (Fe) is the main material, O ~ 40wt%
%C, O~5 wt%1yln, Q'~5wt%si,
O~10wt%Cr.

0〜2 0wt%NL、  O〜 5wt%Mo、  
0〜3wt% ■。
0~20wt%NL, O~5wt%Mo,
0-3wt% ■.

O〜5wt%P、O〜2wt%S、O〜3wt%h。O~5wt%P, O~2wt%S, O~3wt%h.

0〜10wt%Sn、0〜10wt%Be、′0〜3w
t%Aa、 O〜24wt%(a、 O〜20wt%W
、 0〜5wt%BからなるFe系合金などである。
0~10wt%Sn, 0~10wt%Be, '0~3w
t%Aa, O~24wt% (a, O~20wt%W
, Fe-based alloy consisting of 0 to 5 wt% B, etc.

(効果) 本発明は以上のように、成形ロールにより成品素材を帯
板状に供出し、該素材が少なくとも両側縁に凝固帯を有
し再凝固帯間に半溶融状態の加工帯を懸持した溶鍛用成
品部材を、保温しながら移送したので、溶鍛用の成品素
材を帯板状であって且つ少なくとも両側縁に形成された
凝固帯により懸持される半溶融状態として供出するので
、素材の連続送りが可能となり溶鍛工程を連続化、高速
化させることができ作業性を高めることができるととも
に加工帯が半溶融状態であるので、溶湯を直接に溶鍛成
形型に注入する場合に較べ加工速度が速まり作業工程時
間を短縮してより一層作業の高速化を図ることかできる
(Effects) As described above, the present invention provides a product material in the form of a strip using a forming roll, and the material has coagulation zones on at least both side edges, and a semi-molten processing zone is suspended between the re-solidification zones. Since the melt-forged finished product member is transferred while being kept warm, the finished product material for melt-forging is delivered in a semi-molten state that is in the form of a strip and is suspended by solidification zones formed on at least both side edges. , it is possible to continuously feed the material, making the melt forging process continuous and faster, improving workability, and since the processing zone is in a semi-molten state, the molten metal can be directly injected into the melt forging mold. The machining speed is faster than in the conventional case, and the working process time can be shortened, making it possible to further speed up the work.

又、成品素材を半溶融状態で溶鍛工程へ保温しながら供
給し溶鍛加工を施すので、薄物成品を成形する場合の従
来不具合、すなわち溶湯注入直後に薄肉部分が凝固して
しまい加圧が間に合わなくなる不具合を解消し、所定の
加圧をかけながら溶鍛加工することができ、したがって
成品の超微細化結晶が得られて品質を安定化し、且つ寸
法精度を高めることができる。
In addition, since the product material is supplied in a semi-molten state to the melt-forging process while being kept warm, it eliminates the conventional problem when forming thin products, namely, the thin part solidifies immediately after pouring the molten metal and pressure is not applied. It is possible to solve the problem of not being able to complete the work in time, and to carry out melt forging while applying a predetermined pressure.Therefore, it is possible to obtain ultra-fine crystals in the finished product, to stabilize the quality, and to improve the dimensional accuracy.

又、前記溶鍛用成品部材を、冷却・加熱機構を備えた成
形型の雌型内に挿入Cて雄型により′加圧し且つ冷却・
加熱機構により冷却・加熱をかけながら凝固区間及び凝
固範囲まで降温して第1成形品を成形する溶鍛工程と、
前記第1成形品を寸法精度の高い成形型を用いて加圧及
び冷却・加熱をかけながら型鍛造する精圧工程とよりな
り、両工程が連続して行なわれることを特徴とする金属
成品の製造方法に構成したので成形される第1成形品は
強制的にガス抜きされるとともに結晶粒の超微細化が促
進され、したがって引は巣等の欠陥がなく且つ結晶組織
が安定して第1成形品の品質及び寸法精度を高めること
ができ、次いで精圧工程において前記第1成形品をさら
に加圧及び冷却をかけながら型鍛造するので、従来法に
較べて著しく寸法精度の高い精密部品などの金属成品を
成形することができる。
Further, the product member for melt forging is inserted into the female die of a forming die equipped with a cooling/heating mechanism, pressurized by the male die, and cooled/heated.
A melt forging process in which the first molded product is formed by lowering the temperature to a solidification zone and solidification range while applying cooling and heating using a heating mechanism;
A metal product comprising a precision pressing process in which the first molded product is die-forged using a mold with high dimensional accuracy while applying pressure and cooling/heating, and both processes are performed continuously. Since the manufacturing method is configured, the first molded product is forcibly degassed and ultra-fine crystal grains are promoted, so that the first molded product is free from defects such as shrinkage cavities and has a stable crystal structure. The quality and dimensional accuracy of the molded product can be improved, and since the first molded product is then die-forged while being further pressurized and cooled in the precision pressing process, precision parts etc. with significantly higher dimensional accuracy than conventional methods can be produced. metal products can be formed.

従って、従来法の如き仕上げ工程である後処理加工を不
要にするとともに、原料供給工程。
Therefore, it eliminates the need for post-processing, which is a finishing process as in conventional methods, and also reduces the raw material supply process.

前記溶鍛工、程及び精圧工程を連続して行なうので、そ
の作業性が改善され、生産性を向上させることができる
Since the melt forging process, the process and the pressing process are performed continuously, the workability is improved and the productivity can be improved.

依って、所期の目的を達成し得る。Therefore, the intended purpose can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案実施例の一部切欠せる正面図、第2図は
同一部切欠せる平面図、第3図は下ロールの一部切欠せ
る側面図、第4図は成形ロールで成形された成形素材の
立体図である。 図中、 (A)・・・成形ロール (al)・・・上ロール(a
2)・・・下ロール  (B)・・・保温庫(C)・・
・成形工程   (D)・・・溶鍛工程(E)・・・1
次精圧工程 (F)・・・2次精圧工稈 (M)・・・溶湯    (Ml)・・・成品素材(M
’ + )(M” 1)・・・凝固帯(M″’+・)・
・・加工帯 である。 へ
Fig. 1 is a partially cutaway front view of the embodiment of the present invention, Fig. 2 is a partially cutaway plan view of the same, Fig. 3 is a partially cutaway side view of the lower roll, and Fig. 4 is a partially cutaway side view of the lower roll. It is a three-dimensional view of the molded material. In the figure, (A)...forming roll (al)...upper roll (a
2)...Lower roll (B)...Heat storage (C)...
・Forming process (D)... Melting forging process (E)...1
Next pressure process (F)...Second pressure process culm (M)...Molten metal (Ml)...Product material (M
' + ) (M" 1)...Coagulation zone (M"'+)・
...It is a processing band. fart

Claims (1)

【特許請求の範囲】[Claims] 成形ロールにより成品素材を帯板状に供出し、該素材が
少なくとも両側縁に凝固帯を有し両凝固帯間に半溶融状
態の加工帯を懸持した溶鍛用成品部材を、保温しながら
移送し、冷却・加熱機構を備えた成形型の雌型内に挿入
して雄型により加圧し且つ冷却・加熱機構により冷却・
加熱をかけながら凝固区間及び凝固範囲まで降温して第
1成形品を成形する溶鍛工程と、前記第1成形品を寸法
精度の高い成形型を用いて加圧及び冷却・加熱をかけな
がら型鍛造する精圧工程とよりなり、両工程が連続して
行なわれることを特徴とする金属製品の製造方法。
A finished product material is provided in a band shape by a forming roll, and a finished product member for melt forging in which the material has coagulation zones on at least both side edges and a semi-molten processing zone is suspended between both coagulation zones is heated. It is transferred, inserted into the female mold of a mold equipped with a cooling/heating mechanism, pressurized by the male mold, and cooled/heated by the cooling/heating mechanism.
A melt forging process in which the temperature is lowered to a solidification zone and a solidification range while applying heat to form a first molded product, and the first molded product is molded using a mold with high dimensional accuracy while applying pressure, cooling, and heating. A method for manufacturing metal products, which consists of a precision pressing process for forging, and is characterized in that both processes are performed consecutively.
JP13620984A 1984-06-30 1984-06-30 Manufacture of metallic formed part Pending JPS6114036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13620984A JPS6114036A (en) 1984-06-30 1984-06-30 Manufacture of metallic formed part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13620984A JPS6114036A (en) 1984-06-30 1984-06-30 Manufacture of metallic formed part

Publications (1)

Publication Number Publication Date
JPS6114036A true JPS6114036A (en) 1986-01-22

Family

ID=15169865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13620984A Pending JPS6114036A (en) 1984-06-30 1984-06-30 Manufacture of metallic formed part

Country Status (1)

Country Link
JP (1) JPS6114036A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550211A (en) * 1991-08-22 1993-03-02 Leotec:Kk Method for forming semi-solidified metal

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316342A (en) * 1976-07-30 1978-02-15 Topy Ind Method of directly forging steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5316342A (en) * 1976-07-30 1978-02-15 Topy Ind Method of directly forging steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0550211A (en) * 1991-08-22 1993-03-02 Leotec:Kk Method for forming semi-solidified metal
JP2518981B2 (en) * 1991-08-22 1996-07-31 株式会社レオテック Method for forming semi-solid metal

Similar Documents

Publication Publication Date Title
KR100661199B1 (en) Manufacturing method for aluminum wheel
JPS60244456A (en) Production of metallic product
CN102873096B (en) A kind of solid/semi-solid compound molding device and method preparing composite metal plate band
JPS6114036A (en) Manufacture of metallic formed part
CN110735060A (en) continuous orthogonal rolling method for improving performance of aluminum alloy
CN102689159B (en) Liquid die forging and rolling compound formation method for 6061 aluminum alloy irregular-section large ring piece
CN107598129A (en) A kind of magnesium alloy seamless closure frame and its semi-solid forming method
CN102689162B (en) Liquid die forging and rolling compound formation method for 7050 aluminum alloy irregular-section large ring piece
CN102689152B (en) Liquid die forging rolling compound forming method for 2014 aluminium alloy large ring member with different cross sections
JP2002361352A (en) Forming method for magnesium alloy product
JPS58125328A (en) Manufacture of forging
JPS60261656A (en) Molding die for die casting
CN112792273A (en) Titanium alloy forging method, titanium alloy watch back shell and manufacturing method thereof
US2480426A (en) Method of making precision molds
JPS60247453A (en) Forming mold for liquid metal forging
JPS61245913A (en) Production of cladding bar steel wire rod
CN102689160B (en) Liquid die forging rolling compound forming method for 2A70 aluminium alloy large ring member with different cross sections
CN111041347B (en) Continuous rolling roller and preparation method thereof
CN110373609B (en) Casting method of tool part blank for producing shearing thin-wall steel plate
CN109877181B (en) Preparation method of high-uniformity aluminum alloy plate
CN117965940A (en) Composite metal porous body and preparation method thereof
SU602572A1 (en) Method of making bimetallic die castings
CN116944444A (en) Control method for electric weld scar defect on surface of bloom high-carbon chromium bearing steel
JPS6349342A (en) Manufacture of connection rod
JPS60180648A (en) Production of ferritic stainless steel sheet