JPS61140047A - Ion source of type of closed semispherical positive electrode electron bombardment - Google Patents

Ion source of type of closed semispherical positive electrode electron bombardment

Info

Publication number
JPS61140047A
JPS61140047A JP59262184A JP26218484A JPS61140047A JP S61140047 A JPS61140047 A JP S61140047A JP 59262184 A JP59262184 A JP 59262184A JP 26218484 A JP26218484 A JP 26218484A JP S61140047 A JPS61140047 A JP S61140047A
Authority
JP
Japan
Prior art keywords
anode
electrons
ion source
ions
hemispherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59262184A
Other languages
Japanese (ja)
Other versions
JPH0235416B2 (en
Inventor
Fumio Watanabe
文夫 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59262184A priority Critical patent/JPS61140047A/en
Publication of JPS61140047A publication Critical patent/JPS61140047A/en
Publication of JPH0235416B2 publication Critical patent/JPH0235416B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/14Ion sources; Ion guns using particle bombardment, e.g. ionisation chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J27/00Ion beam tubes
    • H01J27/02Ion sources; Ion guns
    • H01J27/08Ion sources; Ion guns using arc discharge

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

PURPOSE:To obtain a highly sensitive miniaturized ion source facilitated in degassing and sharply reduced in ion energy of unevenness of space charges produced by oscillating electrons. CONSTITUTION:A positive electrode 1 is constructed into a semispherical shape with use of a metal qauze capable of transmitting electrons therethrough, and further integrally finished by backing welding a substantially flat mesh gauze on the side of a semisphere cross section. In addition, a hot negative electrode 4 is arranged on the outer periphery of the positive electrode 1 on the semisphere side while an ion delivery electrode 3 arranged on the opposite side. Hereby, gas molecules are ionized by oscillating electrons in the vicinity of the positive electrode of closed type. Only ions thereamong produced within the positive electrode are taken out to the flat mesh side by making use of unevenness of space charges produced by oscillating electrons, whereby energy dissipation of the produced ions is made minimum while facilitated in degassing with a simple structure for improving the resolution of a mass analysis. Hereby, any analysis for residual gas of about 10<-8>Torr can be assured without employing a secondary-electron multiplier.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は超高真空領域に対応できる質量分析型の残留ガ
ス分析計に用いられるイオン源において、小型で単純構
造しかも脱ガス容易でありながら、高感度でイオン電流
のエネルギー分散の非常に小さい閉塞半球状陽極電子衝
撃型イオン源罠関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention is an ion source used in a mass spectrometry residual gas analyzer that can handle an ultra-high vacuum region. , a closed hemispherical anode electron impact ion source trap with high sensitivity and very small energy dispersion of ion current.

(従来の技術及び問題点) 最近の真空技術の進歩は目覚ましく 10”” Pa台
の超高真空が加速器や核融合炉などといった大型装置に
おいても容易に得られるようになり、真空め質、即ち残
留ガス分析が重要な意味を持つようになってきた。この
ため分解能100以下の小型の四重極質量分析計がこの
残留ガス分析計として好んで使用されている。特に漏洩
磁界のきられれる表面分析装置などには非磁界型のこの
形式が良いとされている。これは超高真空領域の残留ガ
ス組成は質量数44の二酸化炭素以下の低質量ガス分子
が周知とされていることと、生成イオンのエネルギー分
散がある程度大きくとも分解能の低下がおこらないとい
った特徴をもっているためであるが、しかし、まだ解決
しなければならない種々の問題が存在し、その多くはイ
オン源にある。この形式の分析計に用いられたイオン源
としての実績は、N1er型、熱陰極マグネトロン型、
冷陰極マグネトロン型、BAゲージ型、軸放射型など多
岐にわたっている。超高真空域で使用される場合はその
ほとんどがBA型である。これは比較的高感度が得られ
、脱ガスが容易という理由によってであるが、実際に超
高真空で使ってみると次のような問題が生ずる。
(Conventional technology and problems) Recent advances in vacuum technology have been remarkable. Ultra-high vacuums on the order of 10"Pa can now be easily obtained in large equipment such as accelerators and nuclear fusion reactors, and vacuum quality, i.e. Residual gas analysis has become important. For this reason, a small quadrupole mass spectrometer with a resolution of 100 or less is preferably used as this residual gas analyzer. This type of non-magnetic field type is said to be particularly suitable for surface analysis devices where leakage magnetic fields are suppressed. This is because it is well known that the residual gas composition in the ultra-high vacuum region is low-mass gas molecules below carbon dioxide with a mass number of 44, and also because the resolution does not deteriorate even if the energy dispersion of the generated ions is large to some extent. However, there are still various problems to be solved, many of which are in the ion source. The ion sources used in this type of analyzer include N1er type, hot cathode magnetron type,
There are a wide variety of types, including cold cathode magnetron types, BA gauge types, and axial radiation types. When used in ultra-high vacuum areas, most of them are BA type. This is because relatively high sensitivity can be obtained and degassing is easy, but when actually used in an ultra-high vacuum, the following problems arise.

第一に感度がまだ十分でなく、BA型全全圧ゲージ感度
より2桁以上も小さいことでろる。このためIQ−’P
a以下の超高真空の残留ガス分析を行おうとすると、ど
うしても2次電子増倍管の助けが必要となってくる。と
ころが2次電子増倍管を用いるとどうしても感度に経時
変化が起こり、再現性も悪くなるので全圧真空ゲージに
よる校正が不可欠となる。またこれを駆動させるには高
圧安定化電源が必要で、装置も大型で高価なものとなり
、全圧真空ゲージのように気軽に使用することはなかな
か離かしい。
First, the sensitivity is still insufficient, and is more than two orders of magnitude lower than the BA type total pressure gauge sensitivity. Therefore, IQ-'P
In order to perform residual gas analysis in an ultra-high vacuum of less than a, the assistance of a secondary electron multiplier becomes necessary. However, when a secondary electron multiplier tube is used, the sensitivity inevitably changes over time and the reproducibility deteriorates, so calibration using a total pressure vacuum gauge is essential. In addition, a high-voltage stabilized power supply is required to drive it, making the device large and expensive, making it difficult to use it casually like a total pressure vacuum gauge.

第2に動作中にイオン源自体から非常に多くのガス放出
が起こることである。超高真空用のイオン源は一般に電
子衝撃などによって脱ガスが行えるようになっており、
分析管も放出ガスの小さい材料で構成され400℃以上
のベークもできるようにはなっている。しかし質量分析
計のイオン源け  1イオンのエネルギー分散を小さく
しながら藁感度化を図るという相反する方法をとるため
、脱ガス容易といわれるBA型ではおっても全圧真空ゲ
ージのように単純ではなく、その構造はどうしても複雑
になり、全圧ゲージなみの高温脱ガスは難かしい。従っ
て現在使用されている超高真空残留ガス分析計は、真空
装置内の最大のガス放出源となってしまっている場合も
多く、分析計自体のガス分析を行ってしまっている。
Second, there is significant outgassing from the ion source itself during operation. Ion sources for ultra-high vacuum are generally capable of degassing by electron bombardment, etc.
The analysis tube is also made of a material that releases little gas and can be baked at temperatures of 400°C or higher. However, because the ion source of a mass spectrometer takes a contradictory method of increasing sensitivity while reducing the energy dispersion of a single ion, even if it is a BA type, which is said to be easy to degas, it is not as simple as a total pressure vacuum gauge. However, the structure is inevitably complicated, and degassing at a high temperature comparable to that of a total pressure gauge is difficult. Therefore, the ultra-high vacuum residual gas analyzers currently in use often end up being the largest source of gas emissions within the vacuum apparatus, and the analyzer itself is subjected to gas analysis.

四重極質量分析計は入射させるイオンにある程度のエネ
ルギー分散があっても、その上限さえ決めておけば分解
能の低下の恐れがないことが大きな特徴である。しかし
超高真空に用いられる四重極のロンドの長さは、100
關以下が普通なので、その入射イオンのエネルギーの上
限は1QeV位である。すなわちこれ以上では、十分な
質量分析が行われないうちに、分析ロンド間を通過して
しまい、分解能の低下となって現われてくるためである
。このためエネルギー分散が3 Q eV以上にも広が
っているBA型イオン源では、生成したすべてのイオン
を分析管に導くことができず、全圧真空ゲージなみの高
感度が得られないわけである。
A major feature of a quadrupole mass spectrometer is that even though there is some degree of energy dispersion in the incident ions, there is no risk of a decrease in resolution as long as the upper limit is determined. However, the length of the quadrupole rond used in ultra-high vacuum is 100
The upper limit of the energy of the incident ions is about 1 QeV, since the energy of the incident ions is usually less than 1 QeV. In other words, if it exceeds this range, it will pass through the analysis ronds before sufficient mass spectrometry is performed, resulting in a decrease in resolution. For this reason, BA-type ion sources, whose energy dispersion is spread over 3 Q eV, are unable to guide all of the generated ions into the analysis tube, and cannot achieve the same high sensitivity as a total pressure vacuum gauge. .

即ちBA型イオン源では、熱陰極とカゴ状陽極間に6(
1’以上の電位差を与えて電子をカゴの内外に振動させ
てイオンを作るわけであるが、生じたイオンはカゴを極
の下方の小孔から、熱陰極より低い電位においたイオン
引き出し電極の侵入してくる電界によって外に引き出さ
れるが、カゴの内外に振動する電子の振動方向は水平方
向だけでなく垂直方向にも起るため、イオンはカゴのイ
オン引き出し口からカゴ内全体に侵入電界の電位勾配に
沼って一様に生成される。ところがイオンの引き出し効
率はカゴの小孔のイオン引き出し口に近いほど高いから
、得られるイオン逸流のエネルギー幅は非常に太きく 
306V以上にも及ぶことになる。またイオン引き出し
電極を通過したイオンは8QeV以上の運動エネルギー
を持つことになり、分析管の入口で1QeVに減速しな
ければならない。ところが、イオンのエネルギー分散が
大きいので減速時にはイオンビームに発散が起こるし、
運動エネルギーの大きい一部のイオンしか使用すること
ができない。このようにしてBA型ではらっても感度の
低下は避けられないわけである。
In other words, in the BA type ion source, 6 (
Ions are created by applying a potential difference of 1' or more to cause electrons to oscillate in and out of the cage, and the generated ions are transferred from the cage through the small hole below the pole to the ion extraction electrode, which is placed at a lower potential than the hot cathode. Ions are pulled out by the incoming electric field, but since the vibration direction of the electrons that vibrate inside and outside the cage occurs not only horizontally but also vertically, the ions are drawn out by the invading electric field from the ion extraction port of the cage to the entire inside of the cage. It is generated uniformly due to the potential gradient. However, the ion extraction efficiency is higher the closer to the ion extraction port of the small hole in the cage, so the energy range of the resulting ion escape is very wide.
This will reach over 306V. Furthermore, the ions that have passed through the ion extraction electrode have a kinetic energy of 8 QeV or more, and must be decelerated to 1 QeV at the entrance of the analysis tube. However, since the energy dispersion of ions is large, the ion beam diverges when decelerating.
Only some ions with high kinetic energy can be used. Even if type BA is obtained in this way, a decrease in sensitivity cannot be avoided.

また、四重極質量分析型でない、他の分析計、磁場偏向
型でも事情は同じで、イオン源の問題が残留ガス分析計
の問題の主流になっている。磁場型の場合はイオンのエ
ネルギー分散の許容範囲が非常に小さいため、BA型イ
オン源の使用は難かしく事情はさらに深刻である。
Furthermore, the situation is the same for other analyzers other than the quadrupole mass spectrometer type and magnetic field deflection type, and the problem of the ion source is the main problem of the residual gas analyzer. In the case of a magnetic field type, the allowable range of energy dispersion of ions is very small, making it difficult to use a BA type ion source, and the situation is even more serious.

(発明の目的及び手段) 本発明は上述の如き実状に鑑みてなされたものであって
、その目的とするところは、三極構成の構成数を変える
ことなく陽極形状を電子通過可能な金網などによって半
球状に形成せしめると共に、半球断面側に略平網状の金
網を裏打ち溶接して一体構造に仕上げると共に、この陽
極の半球側の外周には熱陰極を、また反対側の略平断面
側にはイオン引き出し電極を配置して、この閉塞型陽極
の内外に電子を振動させて気体分子をイオン化し、その
うちの陽極内に生じたイオンだけを振動電子の作る空間
′電荷の不均一さを利用して平網側に引き出すことによ
り、単純構造で脱ガス容易でありながらも生成イオンの
エネルギー分散を最小にして質量分析の分解能を向上さ
せ、二次電子増倍管なしで1O−1lTorr台の残留
ガス分析を可能ならしめる超高感度電子衝撃型イオン源
を提供しようとするものである。
(Objects and Means of the Invention) The present invention has been made in view of the above-mentioned circumstances, and its object is to provide a wire mesh that allows electrons to pass through the anode shape without changing the number of three-electrode configurations. The anode is formed into a hemispherical shape by lining and welding a substantially flat wire mesh on the hemispherical cross-sectional side, and a hot cathode is placed on the outer periphery of the hemispherical side of this anode, and a hot cathode is placed on the opposite, substantially flat cross-sectional side. In this method, an ion extraction electrode is placed, and the gas molecules are ionized by oscillating electrons in and out of this closed anode, and only the ions generated within the anode are generated by utilizing the non-uniformity of the space charge created by the oscillating electrons. By pulling out the ion to the flat screen side, the simple structure allows for easy degassing, but it also minimizes the energy dispersion of the generated ions and improves the resolution of mass spectrometry. The aim is to provide an ultra-sensitive electron impact ion source that enables residual gas analysis.

(実施例) 以下、図示した一実施例に従って本発明の詳細な説明す
る。
(Example) Hereinafter, the present invention will be described in detail according to an illustrated example.

第1図は本発明の閉塞半球状陽極電子衝撃型イオン源を
搭載した四重極質量分析計の模式図でちる。
FIG. 1 is a schematic diagram of a quadrupole mass spectrometer equipped with a closed hemispherical anode electron impact ion source according to the present invention.

閉塞型半球状陽極1は線径0.05 amで30メツシ
ユのモリブデン製の金網を直径12wの半球面状にプレ
ス成形したものに、メツシュの拡がりを防ぐためにモリ
ブデン製の円環をはめて溶接すると共に、その円環の裏
側には同じ種類の金網を円形に切って前述の円環に溶接
して一体構造としたものでおる。なおこの裏打ちの金網
は半球面を   1形成したものと同一のものに限る必
要はなく、高融点の電極材で電子通過可能なものであれ
ばどのようなものでもかまわない。また、この裏打ちの
金網又は金属格子を第4.5.6図のように変形して、
電子やイオンの透過率を中央部が周辺部に比して大きく
なるようにし、−見開口部がらるように見せた場合であ
ってもこの発明に適合し、閉塞型を見なす。さらにこの
裏打ちの金網又は金属格子の中央部を一部変形し、ここ
に電子やイオンが集中しやすくした第7図や第8図のよ
うな場合も閉塞型半球状陽極と見なすことができる。
The closed hemispherical anode 1 is made by press-molding a molybdenum wire mesh with a wire diameter of 0.05 am and 30 meshes into a hemispherical shape with a diameter of 12w, and welding a molybdenum ring to prevent the mesh from spreading. At the same time, on the back side of the ring, a wire mesh of the same type is cut into a circle and welded to the ring to form an integral structure. The wire mesh used as the lining need not be limited to the same material as that used to form one hemisphere, and may be any material as long as it is made of a high melting point electrode material and allows electrons to pass therethrough. In addition, this backing wire mesh or metal lattice can be modified as shown in Figure 4.5.6,
Even if the transmittance of electrons and ions is made larger in the central part than in the peripheral part, so that the opening appears to be open, it is still compatible with the present invention and is considered to be a closed type. Further, cases such as those shown in FIGS. 7 and 8, in which the central portion of the wire mesh or metal lattice lining is partially deformed to facilitate concentration of electrons and ions there, can also be considered as closed hemispherical anodes.

熱陰極フィラメント2は第2図のような状態に置かれた
閉塞半球状陽極、1に上からかぶせるように配置される
もので、線径0.125#Ijのイリジウム線に酸化ト
リウムの粉を電着させて焼結した酸化物陰極で、リング
の径は13屑1でこのフィラメントから0.Iへ以上の
エミッション電流を取り出すことが可能である。
The hot cathode filament 2 is placed so as to cover the closed hemispherical anode 1 placed in the state shown in Fig. 2.Thorium oxide powder is applied to an iridium wire with a wire diameter of 0.125 #Ij. Electrodeposited and sintered oxide cathode with a ring diameter of 13 mm and 0.0 mm from this filament. It is possible to extract more emission current than I.

このフィラメントは純タングステン線や他の物質のもの
でもよく、またその形状も円環状のものに限ったもので
はなく、半円弧状のものや直線状ヘヤピン状のものなど
、電子が放出されるものであればいかなる形状、組成の
ものであってもかまわない。
This filament may be made of pure tungsten wire or other materials, and its shape is not limited to a circular ring, but may also be a semi-circular shape, a straight hairpin shape, or other shapes that emit electrons. It may be of any shape or composition as long as it has any shape or composition.

イオン引き出し電極3は、閉塞半球状陽極の平断面から
出て来るイオンをイオン引き出し電極側に加速してイオ
ン引き出し電極の反対に送り出してやるものである。イ
オン引ぎl出し電極3は第10図のように、円環に平織
の金網を張っただけの簡単なものであるが、このイオン
引き出し電極はこの形状に限ったものでなく、第11図
、第12図のような金属円板の中央部に孔を明けただけ
のものでもよく、要するに閉塞半球状陽極1の中央部の
イオンが引き出されればいかなる形状のものであっても
かまわない。またこのイオン引き出し電極3は振動電子
を反射して、閉塞半球状陽極1の平断面側に押しやる役
目をもっている。シールド電極4は撮動電子がイオン源
から外に飛び出さないようにするための電極で、線径0
.1 ax、20メツシユのモリブデン金網を略半球面
上にプレス成形し、メツシュの拡がりを防ぐためにモリ
ブデン製の円環?はめて溶接し一体化したものである。
The ion extraction electrode 3 accelerates ions coming out of the flat section of the closed hemispherical anode toward the ion extraction electrode and sends them out in the opposite direction of the ion extraction electrode. As shown in Fig. 10, the ion extraction electrode 3 is a simple one consisting of a circular ring covered with a plain-woven wire mesh, but the ion extraction electrode 3 is not limited to this shape; , it may be a metal disk with a hole in the center as shown in FIG. 12, or it may be of any shape as long as the ions in the center of the closed hemispherical anode 1 can be drawn out. The ion extraction electrode 3 also has the role of reflecting the oscillating electrons and pushing them toward the flat cross-section side of the closed hemispherical anode 1. The shield electrode 4 is an electrode to prevent photographed electrons from flying out from the ion source, and has a wire diameter of 0.
.. A molybdenum wire mesh of 1 ax and 20 meshes is press-formed onto a substantially hemispherical surface, and a molybdenum ring is used to prevent the mesh from expanding. It is integrated by fitting and welding.

このシールド電極4も半球状のものに限ったものでなく
、電子をシールドできれば如何なる形状のものであって
もかまわない。5はアルミナセラミック製の絶縁板で、
前述の閉塞半球状陽極1、熱陰極フィラメント2、イオ
ン引き出し電極3及びシールド電極4はこの絶縁板5上
に組立てられる。
This shield electrode 4 is not limited to a hemispherical shape, but may have any shape as long as it can shield electrons. 5 is an insulating plate made of alumina ceramic.
The aforementioned closed hemispherical anode 1, hot cathode filament 2, ion extraction electrode 3, and shield electrode 4 are assembled on this insulating plate 5.

6は四重極質量分析部の外筒管であり、その中央部に位
置するイオン入射口の孔径は2.5uである。
Reference numeral 6 denotes an outer tube of the quadrupole mass spectrometer, and the diameter of the ion injection port located at the center of the outer tube is 2.5 u.

7、ケは四重゛極質量分析計の分析ロッドで、ロッド径
は6u、長さ50mである。
7. The analysis rod of the quadrupole mass spectrometer has a rod diameter of 6u and a length of 50m.

第13図はこの閉塞半球状陽極電子衝撃型イオン源を搭
載した四重極質量分析計を駆動させる場合の電源関係の
略図である。8はイオンコレクターでこの出力は真空電
流導入端子(図示せず)を介して直流イオン電流増幅器
9に同軸ケーブルを使って接続される。11#i熱陰極
フイラメント2を加熱する電源であるがこの電源11は
熱陰極フィラメント2からの電子電流が常に一定になる
ようにコントロールする自動安定化の回路が組み込まれ
ている。12は電子をシールドするためのバイアス電源
で、これは又真空内部側でイオン引き出し電極3にも接
続されている。13は熱陰極フィラメント2から放射さ
れる電子を加速するためのバイアス電源である。この状
態でイオン源全体を70−ティングにして、陽極1にグ
ランドより四重極分析部Aに入るイオンのエネルギーを
決める可変電源を接続する。また四重極分析部Aに与え
る高周波電源10は、四重極分析部Aに入射したイオン
がすべてコレクター8で集収できるように電気的条件を
決める。即ち全圧測定状態にしたときの全イオン電流1
4に対する陽極電位Vaの関係を調べてみると第14図
のような結果を得ることができる。
FIG. 13 is a schematic diagram of the power supply relationship when driving a quadrupole mass spectrometer equipped with this closed hemispherical anode electron impact ion source. Reference numeral 8 denotes an ion collector whose output is connected to a DC ion current amplifier 9 via a vacuum current introduction terminal (not shown) using a coaxial cable. 11#i This is a power source for heating the hot cathode filament 2, and this power source 11 is equipped with an automatic stabilization circuit that controls the electron current from the hot cathode filament 2 to always be constant. Reference numeral 12 denotes a bias power source for shielding electrons, which is also connected to the ion extraction electrode 3 on the inside of the vacuum. 13 is a bias power source for accelerating electrons emitted from the hot cathode filament 2; In this state, the entire ion source is set to 70-Ting, and a variable power source that determines the energy of ions entering the quadrupole analysis section A from the ground is connected to the anode 1. Further, the electrical conditions of the high frequency power supply 10 applied to the quadrupole analysis section A are determined so that all the ions incident on the quadrupole analysis section A can be collected by the collector 8. In other words, the total ion current 1 when the total pressure is measured
When the relationship between the anode potential Va and the anode potential Va is investigated, the results shown in FIG. 14 can be obtained.

これによれば、イオン電流xtFiva?sv位から急
激に増大し、Va=13V位で増加は一旦止まりVa=
13以上では複雑に変化している。
According to this, the ionic current xtFiva? It increases rapidly from around sv, and the increase stops once at around Va=13V, and Va=
For numbers 13 and above, the changes are complex.

これは8〜13vの間にイオンがtlとんど集中してい
ることを物語っているといえる。従っC’Va    
J=13vに設定すれば入射してくるイオンのエネルギ
ーは0〜5eVの間に分布し、非常に高い分解能が得ら
れることになる。またVa=13Vに設定したときのイ
オン電流はIf = 3 X 10’″9Aでこの時の
電子電流は2mAで圧力はI X 1O−1sPaであ
るから、このイオン源の感度Sは となってくる。
This can be said to indicate that ions are mostly concentrated between 8 and 13V. Follow C'Va
If J is set to 13v, the energy of the incident ions will be distributed between 0 and 5eV, and very high resolution will be obtained. Also, when Va = 13V is set, the ion current is If = 3 x 10'''9A, the electron current at this time is 2mA, and the pressure is I x 1O-1sPa, so the sensitivity S of this ion source is come.

従来のBAゲージ型イオン源を本発明のイオン源に用い
た電源と同じ電気条件にして求め九場合の感度Sは、S
中3.5 ×10−’(Pa−1)であるから、その差
は歴然としており、本発明によるイオン源を搭載した四
重極質量分析計の感度は約50倍高感度化されることに
なる。
The sensitivity S when a conventional BA gauge ion source is found under the same electrical conditions as the power supply used in the ion source of the present invention is S
The difference is obvious, and the sensitivity of a quadrupole mass spectrometer equipped with the ion source according to the present invention is about 50 times higher. become.

このように本発明によるイオン源が非常に高感度でかつ
エネルギー分散を小さくすることができたのは、とシも
なおさず、陽極を半球状金網と円形金網との接合によっ
て2重構造にして、この中に生成したイオンだけを効率
よく集収することができたことによる。図中14はイオ
ンの入射エネルギー決定用バイアス電源である。
The reason why the ion source according to the present invention is able to have extremely high sensitivity and reduce energy dispersion is that the anode has a double structure made by joining a hemispherical wire mesh and a circular wire mesh. This is due to the fact that only the ions generated therein could be efficiently collected. In the figure, 14 is a bias power supply for determining the incident energy of ions.

(発明の動作原理) 熱陰極フィラメント2から飛び出した電子は、閉塞半球
状陽極1に吸引されて陽極1内に飛び込む。陽極1内は
完全な閉鎖系なので、この電子は飛び込んだ時の運動エ
ネルギーを持ったまま直進し、反対側の半球断面の中心
に向いこの平金網即ち閉塞半球状陽極を突き抜ける。と
ころがその直後KFi熱陰極フィラメント電位より低い
電位に置かれたイオン引き出し電極3があるため、この
電子はこの電極3によって直ちに反発され再び閉塞半球
状陽極1内に加速吸引され、その時の速度で閉塞半球陽
極10半球側に向い、これを突き抜ける。ところがここ
にも熱陰極フィラメント2より低い電位に置かれたシー
ルド電極4があるため、電子はさらにこの電極4によっ
て反発され、再び閉塞半球状陽極1に向って加速吸引さ
れることになる。このようにして電子はシールド電極4
とイオン引き出し電極3の間を多数回往復運動すること
になる。熱陰極フィラメント2を飛び出してからの電子
はこの運動をくり返しながら往復運動をするが、電子は
その反発のたびにそのいくらかづつは陽極1の金網にと
らえられて減少してゆく。
(Operating principle of the invention) Electrons ejected from the hot cathode filament 2 are attracted to the closed hemispherical anode 1 and fly into the anode 1. Since the inside of the anode 1 is a completely closed system, the electrons move straight with the kinetic energy they had when they jumped in, and pass through this flat wire mesh, that is, the closed hemispherical anode, toward the center of the cross-section of the opposite hemisphere. However, immediately after that, there is an ion extraction electrode 3 placed at a potential lower than the KFi hot cathode filament potential, so these electrons are immediately repelled by this electrode 3 and are accelerated and attracted into the occluding hemispherical anode 1 again, causing the occlusion to occur at that speed. Hemisphere anode 10 faces toward the hemisphere side and penetrates through it. However, since there is also a shield electrode 4 placed at a lower potential than the hot cathode filament 2, the electrons are further repelled by this electrode 4 and are accelerated and attracted toward the closed hemispherical anode 1 again. In this way, electrons are transferred to the shield electrode 4
and the ion extraction electrode 3. After jumping out of the hot cathode filament 2, the electrons move back and forth while repeating this movement, but each time the electrons are repelled, some of them are captured by the wire mesh of the anode 1 and decrease.

そこで熱陰極フィラメント2からはこの減少を補う電子
が放出され(エミッション電流)系としては定常状態が
保たれることになる。そしてこの間にこの振動電子によ
ってシールド電極4と閉塞半球状陽極1間、閉塞半球状
陽極1内部、閉塞半球の平断面とイオン引き出し電極3
間の3つの部分にイオンが生成される。この3つの空間
では閉塞半球状陽極1内部が最も空間が広く、生成され
るイオンも多い。しかし陽極1は金網によって完全に閉
じられているので、この中に電位勾配が存在しなければ
これらのイオンを取り出すことはできない。しかし、こ
の閉塞半球状陽極1内部は理論的には無電界であるから
、もし何らかの方法でこれを引き出すことができれば、
得られるイオンのエネルギー分散は理論的にはゼロとな
って理想的なイオン源となりうろことができる。
Therefore, electrons are emitted from the hot cathode filament 2 to compensate for this decrease (emission current), and a steady state is maintained as a system. During this time, the oscillating electrons are generated between the shield electrode 4 and the closed hemispherical anode 1, inside the closed hemispherical anode 1, between the flat cross section of the closed hemisphere, and the ion extraction electrode 3.
Ions are generated in the three areas in between. Among these three spaces, the inside of the closed hemispherical anode 1 is the largest space, and many ions are generated. However, since the anode 1 is completely closed by the wire mesh, these ions cannot be extracted unless a potential gradient exists within the anode 1. However, theoretically there is no electric field inside this closed hemispherical anode 1, so if there is some way to extract it,
The energy dispersion of the resulting ions is theoretically zero, making it an ideal ion source.

ここで特筆すべきことは、このイオン引き出しをこの閉
塞半球状陽極1の内外に振動している電子に行わせよう
ということである。即ち本発明は正にここにあるわけで
、振動電子の作る空間電荷の不均一さを利用して閉塞系
からイオンを引き出させる訳で、今までの世の全てのイ
オン引き出しは、外部電界の作用で行うことに対し、原
子、分子が放出した電子そのものによって電子集団に引
かせようというもので、根本的に異る考えである。
What should be noted here is that this ion extraction is performed by electrons vibrating inside and outside the closed hemispherical anode 1. In other words, this is precisely where the present invention lies.Ions are extracted from a closed system by utilizing the non-uniformity of the space charge created by oscillating electrons. This is a fundamentally different idea, as opposed to what is done through action, in that the electrons emitted by atoms and molecules themselves are used to attract electrons to the electron population.

即ち電子が閉塞半球状陽極1の内外に振動する場合、半
球側から入射するイオンは球の中心に集束しようとする
が、この中心を突き抜けてイオン引き出し電極3で反射
されて平断面の中心から入射する電子は発散しようとす
る。このため閉塞半球状陽極1の中心の平網附近の電子
密度は非常に高い、即ち電子の空間電荷によって形成さ
れる負の勾配は中心附近では非常に強い、これに対し半
球金網附近では電子空間密度は逆に非常に弱くなる。
That is, when electrons oscillate in and out of the closed hemispherical anode 1, ions incident from the hemisphere side try to focus on the center of the sphere, but they pass through this center and are reflected by the ion extraction electrode 3, leaving the center of the flat cross section. Incoming electrons try to diverge. Therefore, the electron density near the central flat mesh of the closed hemispherical anode 1 is very high, that is, the negative gradient formed by the space charge of electrons is very strong near the center; On the contrary, the density becomes very weak.

このため閉鎖系であってもこのような空間電荷の**−
g“1044“’DCm@N(DEWyF   。
Therefore, even in a closed system, such space charge **−
g"1044"'DCm@N(DEWyF.

ンは、電子密度の最も強い電極の中心に向って引かれ、
加速電圧なしでも、この空間電荷による電位差のエネル
ギーを得て電極の中心に集まり金網の間から外部へ飛び
出してくるわけである。従って、そのイオンが閉塞型半
球電球内のどの位置から出発したかによって加速のされ
方が異るし、中心からの放出のされ方にも方向の乱れが
あるので閉鎖系から得られるイオン電流であっても、あ
るエネルギー巾を持つことにはなる。しかしそのエネル
ギー巾は他の電子衝撃型イオン源に比べれば一桁以上小
さく2mAの電子電流の時で0〜4eV位である。
The electrons are drawn toward the center of the electrode where the electron density is highest,
Even without an accelerating voltage, the energy of the potential difference due to this space charge is collected at the center of the electrode and ejected from between the wire meshes. Therefore, the way the ions are accelerated depends on where they start from within the closed hemispherical bulb, and there is also a directional disturbance in the way they are emitted from the center, so the ionic current obtained from the closed system is Even if there is, it will still have a certain energy range. However, its energy range is about 0 to 4 eV at an electron current of 2 mA, which is more than an order of magnitude smaller than that of other electron impact ion sources.

またイオンは電極の中心に向って集束されてくるので、
その外のイオン引き出し電極が最も単純な平織の金網で
あってもイオンビームを容易にコリメートすることがで
き、四重極部の通過確率が高めることができるので、小
型ながらも超高感度のイオン源を提供できるようになっ
た訳である。
Also, since the ions are focused towards the center of the electrode,
Even if the ion extraction electrode is the simplest plain-woven wire mesh, the ion beam can be easily collimated and the probability of passing through the quadrupole region can be increased, making it possible to achieve ultra-high sensitivity ions despite its small size. This means that we can now provide a source.

また三極構成のイオン源の陽極、イオン引き出し電極が
これまで述べて来たような理由からすべて透過率の高い
金網で製作することができるため、これら電子衝撃によ
って脱ガスすることは容易で30ワツト以下の小電力で
BA型真空ゲージ音の高温脱ガスが可能で超高真空域で
使用してもまったく問題になることはない。
Furthermore, because the anode and ion extraction electrode of a three-electrode ion source can be made of wire mesh with high transmittance for the reasons mentioned above, it is easy to degas through electron bombardment. It is possible to degas at a high temperature similar to the sound of a BA type vacuum gauge with a small power consumption of less than watts, and there is no problem at all even when using it in an ultra-high vacuum region.

以上、本発明を四重極質量分析計に搭載した一実施例に
基づいて説明してきたが、このイオン源は、これに限定
されるものではなく、他の種類の分析計、例えば磁場偏
向型の質量分析計や、ヘリームリークディテクターや、
電離真空計、イオンビームモニターなどあらゆる椎類の
イオン源に活用できることは明らかである。
Although the present invention has been described above based on one embodiment installed in a quadrupole mass spectrometer, this ion source is not limited to this, and can be applied to other types of analyzers, such as magnetic field deflection type. mass spectrometer, helium leak detector,
It is clear that it can be used for all kinds of vertebral ion sources, such as ionization vacuum gauges and ion beam monitors.

(効果) これまで述べて来たように本発明は、陽極、熱陰極及び
イオン引き出し電極の3極構造を基本とする電子衝撃型
イオン源において、陽極を電子通過可能な格子や金網な
どを用いて半球形状に成形せしめると共に、この半球断
面側にも類似の格子や金網などを断面に合わせて配置し
て半球部と接合して一体構造として配置すると共に、半
球側の外周には熱陰極フィラメントを、また陽極の断面
側にはイオン引き出し電極を配置した結果、小型で脱ガ
スが非常に容易ながらも、イオンのエネルギー分散が著
′ 小さく、非常に高感度のイオン源を得ることができ
た。その結果io−’ Pa台の残留ガス分析を二次電
子増倍管を用いずに行えるようになっただけでなく、イ
オン源から放出されるガスも非常に小さく信頼性の高い
残留ガス分析の行える質量分析計を提供することができ
るに至った。
(Effects) As described above, the present invention uses a grid, wire mesh, etc. that allows electrons to pass through the anode in an electron impact ion source based on a three-pole structure of an anode, a hot cathode, and an ion extraction electrode. At the same time, a similar grid or wire mesh is placed on the cross-section side of the hemisphere according to the cross-section and joined to the hemisphere to form an integral structure, and a hot cathode filament is placed on the outer periphery of the hemisphere. In addition, as a result of placing an ion extraction electrode on the cross-section side of the anode, we were able to obtain an ion source that is small and very easy to degas, but has extremely low ion energy dispersion and is extremely sensitive. . As a result, not only has it become possible to perform residual gas analysis on the io-'Pa level without using a secondary electron multiplier, but the gas emitted from the ion source is also extremely small, making it possible to perform highly reliable residual gas analysis. We have now been able to provide a mass spectrometer that can perform these functions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を搭載した四重極質量分析計の断面図、
、第2図及び第“3図は本発明における閉塞半球状陽極
の夫々斜視図、第4図乃至第8図は閉塞半球状陽極の他
の実施例を示す夫々斜視図、第9図乃至第12図はイオ
ン引き出し電極の構造を示す夫々斜視図、第13図は本
発明を搭載した四重極質量分析計の電源関係の概略図、
第14図は本発明のイオン源を使用した場合の陽極のグ
ランドに対する電位とイオンコレクターの電流の関係を
表わすグラフである。 図中、1は閉塞半球状陽極、2は熱陰極フィラメント、
3はイオン引き出し′成極。 第2図 第5図   第6図 第3図   第4図 第7図   第8図 第11図   第12図
Figure 1 is a cross-sectional view of a quadrupole mass spectrometer equipped with the present invention.
, 2 and 3 are perspective views, respectively, of a closed hemispherical anode according to the present invention, FIGS. 4 to 8 are perspective views, respectively, showing other embodiments of the closed hemispherical anode, and FIGS. Figure 12 is a perspective view showing the structure of the ion extraction electrode, Figure 13 is a schematic diagram of the power supply of a quadrupole mass spectrometer equipped with the present invention,
FIG. 14 is a graph showing the relationship between the potential of the anode with respect to the ground and the current of the ion collector when the ion source of the present invention is used. In the figure, 1 is a closed hemispherical anode, 2 is a hot cathode filament,
3 is ion extraction' polarization. Figure 2 Figure 5 Figure 6 Figure 3 Figure 4 Figure 7 Figure 8 Figure 11 Figure 12

Claims (3)

【特許請求の範囲】[Claims] (1)少くとも熱陰極、陽極及びイオン引き出し電極の
三極構造を有する電子衝撃型イオン源において、該陽極
を電子通過可能な金属格子又は金網等の電子透過部材を
用いて略半球状に形成せしめると共に、該略半球状陽極
の開放端縁側に金属格子又は金網等の電子透過部材を接
合して一体構造にした閉塞状の半球状陽極と、この陽極
の半球側の外周に配置した熱陰極と、この陽極の断面側
にイオン引き出し電極を配置することによつて構成した
ことを特徴とする閉塞半球状陽極電子衝撃型イオン源。
(1) In an electron impact ion source having at least a three-pole structure of a hot cathode, an anode, and an ion extraction electrode, the anode is formed into a substantially hemispherical shape using an electron-transmissive member such as a metal grid or wire mesh through which electrons can pass. a closed hemispherical anode formed integrally by bonding an electron-transmissive member such as a metal grid or wire mesh to the open edge side of the substantially hemispherical anode; and a hot cathode disposed around the outer periphery of the hemispherical side of the anode. A closed hemispherical anode electron impact ion source is constructed by arranging an ion extraction electrode on the cross-sectional side of the anode.
(2)略半球状陽極の開放端縁側に接合する金属格子又
は金網等の電子透過部材において、その中央部の形状を
他の部分の形状と異るようにして、電子又はイオンの透
過率を他の部分より高くなるようしたことを特徴とする
特許請求範囲第一項記載の閉塞半球状陽極電子衝撃型イ
オン源。
(2) In an electron transmitting member such as a metal grid or wire mesh that is bonded to the open edge side of the approximately hemispherical anode, the shape of the central part is made different from the shape of the other parts to increase the transmittance of electrons or ions. A closed hemispherical anode electron impact type ion source according to claim 1, wherein the closed hemispherical anode electron impact ion source is higher than other parts.
(3)略半球状陽極の開放端縁側に接合する金属格子又
は金網等の電子透過部材において、その中央部の形状を
他の部分の形状と異るようにして、電子又はイオンの運
動方向を他の部分で変化する場合に比べて、中央部での
変化が著るしく異るようにしたことを特徴とする特許請
求範囲第一項記載の閉塞半球状陽極電子衝撃型イオン源
(3) In an electron-transmissive member such as a metal grid or wire mesh that is bonded to the open edge side of the approximately hemispherical anode, the shape of the central part is made different from the shape of the other parts, so that the direction of movement of electrons or ions is controlled. The closed hemispherical anode electron impact ion source according to claim 1, wherein the change in the central portion is significantly different from that in other portions.
JP59262184A 1984-12-12 1984-12-12 Ion source of type of closed semispherical positive electrode electron bombardment Granted JPS61140047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262184A JPS61140047A (en) 1984-12-12 1984-12-12 Ion source of type of closed semispherical positive electrode electron bombardment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262184A JPS61140047A (en) 1984-12-12 1984-12-12 Ion source of type of closed semispherical positive electrode electron bombardment

Publications (2)

Publication Number Publication Date
JPS61140047A true JPS61140047A (en) 1986-06-27
JPH0235416B2 JPH0235416B2 (en) 1990-08-10

Family

ID=17372232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262184A Granted JPS61140047A (en) 1984-12-12 1984-12-12 Ion source of type of closed semispherical positive electrode electron bombardment

Country Status (1)

Country Link
JP (1) JPS61140047A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003976A (en) * 2010-06-17 2012-01-05 Ulvac Japan Ltd Quadrupole mass spectrometer
US20120025072A1 (en) * 2009-03-27 2012-02-02 Msi. Tokyo, Inc. Ion Source, And Mass Spectroscope Provided With Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120025072A1 (en) * 2009-03-27 2012-02-02 Msi. Tokyo, Inc. Ion Source, And Mass Spectroscope Provided With Same
US9373474B2 (en) * 2009-03-27 2016-06-21 Osaka University Ion source, and mass spectroscope provided with same
JP2012003976A (en) * 2010-06-17 2012-01-05 Ulvac Japan Ltd Quadrupole mass spectrometer

Also Published As

Publication number Publication date
JPH0235416B2 (en) 1990-08-10

Similar Documents

Publication Publication Date Title
JP3121157B2 (en) Microtron electron accelerator
US20080290269A1 (en) Time-Of-Flight Mass Spectrometer
US4620102A (en) Electron-impact type of ion source with double grid anode
JP7238249B2 (en) electron source
US3453482A (en) Efficient high power beam tube employing a fly-trap beam collector having a focus electrode structure at the mouth thereof
US4988869A (en) Method and apparatus for electron-induced dissociation of molecular species
CA1059656A (en) Charged particle beam apparatus
US3567983A (en) X-ray tube with magnetic focusing means
EP1133784B1 (en) X-ray tube providing variable imaging spot size
US8081734B2 (en) Miniature, low-power X-ray tube using a microchannel electron generator electron source
US10431415B2 (en) X-ray tube ion barrier
JPS61140047A (en) Ion source of type of closed semispherical positive electrode electron bombardment
JP2017204342A (en) Insulation structure, charged particle gun, and charged particle beam application device
JPH0378741B2 (en)
CN112599397B (en) Storage type ion source
US4977348A (en) Electron discharge tube with bipotential electrode structure
JPS6318297B2 (en)
US2919380A (en) Electron discharge devices
US4123655A (en) Arrangement for preventing the alteration of the primary beam by unwanted particles, such as sputter products, charged ions and electrons and their secondary processes
US2611878A (en) Particle source
EP0206216A1 (en) Cathode ray tube
US4205232A (en) Arrangement for preventing the alteration of the primary beam by unwanted particles, such as sputter products, charged ions and electrons and their secondary processes
AU763548B2 (en) High energy X-ray tube
JPH10269983A (en) Scanning proton microscope
JPH1012176A (en) Shape observer