JPS6114002B2 - - Google Patents

Info

Publication number
JPS6114002B2
JPS6114002B2 JP54044548A JP4454879A JPS6114002B2 JP S6114002 B2 JPS6114002 B2 JP S6114002B2 JP 54044548 A JP54044548 A JP 54044548A JP 4454879 A JP4454879 A JP 4454879A JP S6114002 B2 JPS6114002 B2 JP S6114002B2
Authority
JP
Japan
Prior art keywords
solar radiation
amount
data
vehicle
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54044548A
Other languages
Japanese (ja)
Other versions
JPS55137441A (en
Inventor
Kyoshi Hara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP4454879A priority Critical patent/JPS55137441A/en
Publication of JPS55137441A publication Critical patent/JPS55137441A/en
Publication of JPS6114002B2 publication Critical patent/JPS6114002B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00735Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models
    • B60H1/0075Control systems or circuits characterised by their input, i.e. by the detection, measurement or calculation of particular conditions, e.g. signal treatment, dynamic models the input being solar radiation

Description

【発明の詳細な説明】 本発明は日射補正を含む車両用空気調和制御方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a vehicle air conditioning control method including solar radiation correction.

従来、この種のものとしては、太陽からの日射
を検出して空気調和要素を制御し、車両室内温度
を一定に保ち、あるいは送風量を増して乗員に当
たる日射感を柔らげる方法が知られており、その
日射検出のために感熱抵抗素子または光電抵抗素
子を用いることも公知である。両検出素子のうち
現在実際に採用されているのは、車室内で特に日
射を受ける位置に感熱抵抗素子を配設してその電
気信号を利用するものであるが、車室内の温度の
影響を受けて誤差を生じるとともに、日射量の変
化に対する応答が遅く車両がトンネルのような日
射遮断域に進入、退出する場合に空気調和要素の
制御量の変化に応答の遅れが生じる問題がある。
一方、実公昭48−6264号公報にみられるような光
電抵抗素子を用いる場合は、車室内温度の影響を
受けないが、日射量の変化に対する応答が速すぎ
て建築物等の影に出入するときにも空気調和要素
の制御量がいちいち変化してしまう欠点がある。
これを解消するための光電抵抗素子の電気信号を
単に電気的に平滑することも考えられるが、こう
すると前述のように応答の遅れが生じる不具合が
ある。
Conventionally, methods of this kind are known to detect solar radiation from the sun and control air conditioning elements to maintain a constant temperature inside the vehicle, or to increase the amount of air blown to soften the feeling of sunlight hitting the occupants. It is also known to use a heat-sensitive resistance element or a photoresistive element for solar radiation detection. Of these two detection elements, the one currently in use is one that uses a heat-sensitive resistance element placed in a position particularly exposed to sunlight inside the vehicle interior and utilizes the electrical signal. In addition to this, there is a problem in that the response to changes in the amount of solar radiation is slow, and when a vehicle enters or exits a solar radiation blocking area such as a tunnel, there is a delay in response to changes in the control amount of the air conditioning element.
On the other hand, when using a photoresistive element as seen in Publication of Utility Model Publication No. 48-6264, it is not affected by the temperature inside the vehicle, but the response to changes in solar radiation is too fast and the element may move into or out of the shadows of buildings, etc. There is also a drawback that the control amount of the air conditioning elements changes from time to time.
Although it is conceivable to simply electrically smooth the electrical signal of the photoresistive element to solve this problem, doing so has the disadvantage of causing a delay in response as described above.

本発明は上述の諸問題に鑑み、車室内温度の影
響を受けず、かつ通常の日中走行中は建築物等の
影に出入するときにも安定した日射量データを得
ることができ、しかもトンネルのような日射遮断
域に進入、退出する場合に応答遅れを生じること
のない空気調和制御方法を提供することを目的と
する。
In view of the above-mentioned problems, the present invention is not affected by the temperature inside the vehicle, and is capable of obtaining stable solar radiation data even when entering and leaving the shadows of buildings during normal daytime driving. It is an object of the present invention to provide an air conditioning control method that does not cause a response delay when entering and exiting a solar radiation blocking area such as a tunnel.

本発明はこの目的達成のため、光電抵抗素子等
を用いて車両の周囲光量を電気信号として検出し
この検出信号を二種類の方法にて処理しそのうち
一方で安定的な日射量データを得るとともに他方
で車両の日射遮断域の進入、退出を判定し、この
判定信号によつて上記日射量データの制御に対す
る効果を調節することを特徴とする。
In order to achieve this objective, the present invention uses a photoresistive element to detect the amount of light surrounding the vehicle as an electrical signal, processes this detection signal in two ways, and obtains stable solar radiation data using one of them. On the other hand, it is characterized in that it is determined whether the vehicle enters or exits the solar radiation cutoff area, and the effect on the control of the solar radiation amount data is adjusted based on this determination signal.

以下本発明を添付図面に示す実施例について説
明する。この実施例は一般的に知られている冷風
温風混合方式の自動車用空気調和装置に本発明を
適用したもので、全体システムを示す第1図にお
いて、通風ダクト1の上流側には外気導入のため
の外気吸込口1aと内気循環のための内気吸込口
1bとが形成してあり、両吸込口は内外気ダンパ
2によつて開閉されるようになつている。通風ダ
クト1内には下流側に向つて、ブロワモータ3、
冷房サイクルccの一部をなすエバポレータ4、エ
ンジンEGの冷却水サイクルHCの一部をなすヒー
タコア5およびこのヒータコア5を通る空気とそ
のバイパス通路6を通る空気との比を調節する温
度調節ダンパ(A/Mダンパ)7が順に配置され
ている。通風ダクト11の最下流部には、ダクト
内で温度調節された空気を車室内の上部、下部に
吹出すための上、下吹出口1c,1dが形成して
あり、両吹出口は吹出口ダンパ8によつて開閉さ
れるようになつている。
The present invention will be described below with reference to embodiments shown in the accompanying drawings. In this embodiment, the present invention is applied to a generally known automobile air conditioner using a cold air/warm air mixing method. An outside air suction port 1a for internal air circulation and an internal air suction port 1b for internal air circulation are formed, and both suction ports are opened and closed by an internal and external air damper 2. Inside the ventilation duct 1, toward the downstream side, there are a blower motor 3,
An evaporator 4 that forms part of the cooling cycle cc, a heater core 5 that forms part of the cooling water cycle HC of the engine EG, and a temperature control damper that adjusts the ratio of air passing through the heater core 5 to air passing through its bypass passage 6. A/M dampers) 7 are arranged in order. At the most downstream part of the ventilation duct 11, upper and lower air outlets 1c and 1d are formed to blow out the temperature-controlled air in the duct to the upper and lower parts of the vehicle interior, and both air outlets are air outlets. It is designed to be opened and closed by a damper 8.

制御装置10は温度制御および各種の運転モー
ド制御を行なうために、各種の情報信号を受けて
予め設定された制御プログラムに基いて処理を実
行し、前記符号1〜8の機能要素の作動を電気的
に指令するものである。
In order to perform temperature control and various operation mode controls, the control device 10 receives various information signals and executes processing based on a preset control program, and electrically controls the operation of the functional elements 1 to 8. It is something that gives specific instructions.

そして、制御装置10に各種の情報信号を入力
する手段として、車室内の温度Trに応じたアナ
ログ電圧信号を生じる感熱抵抗を含む内気温セン
サ21、車室外の温度Taに応じたアナログ電圧
信号を生じる感熱抵抗を含む外気温センサ22、
設定温度Ts(設定位置)に応じたアナログ電圧
信号を生じるポテンシヨメータを含む温度設定器
23、温度調節ダンパ7の開度Arに応じたアナ
ログ電圧信号を生じるポテンシオメータを含む開
度センサ24、車両が周囲から受ける光量Ls1
応じたアナログ電圧信号を生じる光導電素子を含
む日射センサ25および運転、停止、運転モード
選定等のスイツチ群の操作によつてオンオフ信号
を生じるスイツチパネル11が設けてある。
As a means for inputting various information signals to the control device 10, an inside temperature sensor 21 including a heat-sensitive resistor that generates an analog voltage signal corresponding to the temperature Tr inside the vehicle interior, and an analog voltage signal corresponding to the temperature Ta outside the vehicle interior. an outside temperature sensor 22 including a resulting heat-sensitive resistance;
a temperature setting device 23 including a potentiometer that generates an analog voltage signal according to the set temperature Ts (set position); an opening sensor 24 including a potentiometer that generates an analog voltage signal according to the opening degree Ar of the temperature control damper 7; A solar radiation sensor 25 including a photoconductive element that generates an analog voltage signal corresponding to the amount of light Ls 1 that the vehicle receives from the surroundings, and a switch panel 11 that generates on/off signals by operating a group of switches such as operation, stop, and operation mode selection are provided. There is.

また、制御装置10からの電気的指令によつて
機能要素を作動させる手段として、エンジンEG
から冷房サイクルccへの駆動力を断続する電磁ク
ラツチ31、暖房サイクルHCにおけるヒータコ
ア5への冷却水循還路を開閉する電磁弁32、お
よび内外気ダンパ2、温度調節ダンパ7、吹出口
ダンパ8の開閉駆動力をエンジン負圧によつて与
える電磁弁制御の負圧作動器33,34,35が
設けてある。表示パネル12は制御装置10の出
力信号によつて空気調和装置および制御装置の動
作状態を表示するものである。
In addition, the engine EG is used as a means for operating functional elements according to electrical commands from the control device 10.
an electromagnetic clutch 31 that intermittents the driving force from to the cooling cycle cc, an electromagnetic valve 32 that opens and closes the cooling water circulation path to the heater core 5 in the heating cycle HC, an internal/external air damper 2, a temperature control damper 7, an outlet damper 8 Negative pressure actuators 33, 34, and 35 controlled by electromagnetic valves are provided to provide opening/closing driving force using engine negative pressure. The display panel 12 displays the operating status of the air conditioner and the control device based on the output signal of the control device 10.

なお、制御装置10は自動車のイグニツシヨン
スイツチ13の投入時に車載バツテリ14から電
源供給を受け動作可能状態となる。
The control device 10 receives power from the vehicle battery 14 when the ignition switch 13 of the vehicle is turned on, and becomes operational.

第2図に示すように制御装置10aは、予め設
定された制御プログラムに基いて情報処理を行な
うデジタルコンピユータ(マイクロコンピユー
タ、例えば富士通株式会社製MB8841)10a、
信号入力手段21,22,23,24,25から
のアナログ電圧信号を選択的にアナログデジタル
変換してコンピユータ10aに入力するアナログ
入力用インターフエース10b、スイツチパネル
11からの各スイツチのオンオフ信号を整形して
コンピユータ10aに入力するデジタル入力用イ
ンターフエース10c、コンピユータ10aから
出力される機能要素3,31〜35の作動指令信
号を増幅する増幅回路10d、情報処理用クロツ
ク発生回路10e、および定電圧回路、イグニツ
シヨンスイツチ13の投入直後にコンピユータ1
0aの作動を開始させるイニシヤライズ回路(い
ずれも図示せず)から構成してある。
As shown in FIG. 2, the control device 10a includes a digital computer (microcomputer, e.g. MB8841 manufactured by Fujitsu Ltd.) 10a, which performs information processing based on a preset control program;
Analog input interface 10b selectively converts analog voltage signals from signal input means 21, 22, 23, 24, and 25 into analog and digital signals and inputs them to computer 10a, and shapes on/off signals for each switch from switch panel 11. digital input interface 10c which is input to the computer 10a, an amplifier circuit 10d which amplifies the operation command signals of the functional elements 3, 31 to 35 outputted from the computer 10a, an information processing clock generation circuit 10e, and a constant voltage circuit. , immediately after turning on the ignition switch 13, the computer 1
It consists of an initialization circuit (none of which is shown) that starts the operation of 0a.

第3図および第4図はコンピユータ10aの制
御プログラムの流れを示すもので、以下この第3
図、第4図に従つて装置の作動を説明する。
3 and 4 show the flow of the control program of the computer 10a.
The operation of the device will be explained with reference to FIGS.

イグニツシヨンスイツチ13を投入すると制御
装置10は動作状態となり、主要構成要素である
デジタルコンピユータ10aがその予め設定され
た制御プログラムをステツプ100から実行開始
する。そして、初期設定ステツプ101において
情報処理に用いる各種変数(後述するb,c,
Ls2,Ls′,LsZ,N,Ms,Mso等コンピユータ1
0a内のメモリ番地に割り当てられたもの)がす
べて0に設定される。続いて、ステツプ102に
よりコンピユータ10aが有するタイマ機能をス
タートさせる。なお、コンピユータ10aを富士
通社製MB8841とするときは内蔵のタイマ1カウ
ンタを使用してそのオーバーフローの回数をコン
ピユータ10a内のメモリRAMで計数すればよ
い。タイマは後述するように平滑処理によつて作
成する日射量データによる補正を制御の開始後し
ばらくの間(6秒間)マスクするために用いる。
次にモード設定ステツプ103によりスイツチパ
ネル11のスイツチ操作状態を調べ、通常の温度
制御モードであるときは、増幅回路10dを介し
て電磁クラツチ31、電磁弁32を付勢して冷房
サイクルccおよび暖房サイクルHCを運転状態に
するとともに、ブロワモータ3に電源を供給して
ダクト1内に通風状態を形成する。また例えば負
圧作動器33,35には付勢信号を与えず内外気
ダンパ2と吹出口ダンパ8は図示状態におかれ
る。なお、このモード設定ステツプ103におい
ては、スイツチパネル11により内外気ダンパま
たは吹出口ダンパが特定の開閉状態になるように
制御モードが指令されているときは、それに従つ
て負圧作動器33,35に付勢信号を与える。
When the ignition switch 13 is turned on, the control device 10 becomes operational, and the digital computer 10a, which is a main component, starts executing the preset control program from step 100. Then, in the initial setting step 101, various variables (b, c,
Ls 2 , Ls′, LsZ, N, Ms, Mso, etc. Computer 1
(allocated to memory addresses within 0a) are all set to 0. Subsequently, in step 102, the timer function of the computer 10a is started. Note that when the computer 10a is MB8841 manufactured by Fujitsu, the number of overflows may be counted using the built-in timer 1 counter in the memory RAM in the computer 10a. The timer is used to mask the correction based on the solar radiation data created by smoothing processing for a while (6 seconds) after the start of control, as will be described later.
Next, in a mode setting step 103, the operating state of the switch panel 11 is checked, and if the mode is the normal temperature control mode, the electromagnetic clutch 31 and the electromagnetic valve 32 are energized via the amplifier circuit 10d to perform the cooling cycle CC and the heating cycle. The cycle HC is brought into operation, and power is supplied to the blower motor 3 to create a ventilation state within the duct 1. Further, for example, an energizing signal is not applied to the negative pressure actuators 33 and 35, and the inside and outside air damper 2 and the outlet damper 8 are kept in the illustrated state. In addition, in this mode setting step 103, when the control mode is commanded by the switch panel 11 so that the inside/outside air damper or the outlet damper is in a specific open/close state, the negative pressure actuators 33, 35 are set accordingly. give an energizing signal to the

次に、データ入力ステツプ104において温度
計算に必要なアナログ電圧信号をインターフエー
ス10bを介して選択的にデイジタル変換して入
力し、ステツプ104においてこれら入力データ
に基いて車室内への必要吹出空気温度、すなわち
設定温度Tsetを得るために要求される温度調節
量Taoを算出する。この演算は次式で表わされ
る。
Next, in a data input step 104, the analog voltage signal necessary for temperature calculation is selectively converted into digital data and input via the interface 10b, and in step 104, the necessary temperature of the air to be blown into the vehicle interior is determined based on these input data. That is, the temperature adjustment amount Tao required to obtain the set temperature Tset is calculated. This calculation is expressed by the following equation.

Tao=Kset・Tset−Kr・Tr−Kam・Tam+C (1) ただし、Tset…目標温度(設定温度) Tr………車室内温度 Tam……車室外温度 Kset,Kr,Kam,C…予め設定され制御
上の利得を示す定数 次に、日射補正ステツプ106へ進み、ステツ
プ105で得られた温度調節量Taoを日射量に応
じて補正し、かつ温度調節ダンパ7の目標開度を
表わすデータA0に変換する。この変換は次式で
表わされる。
Tao=Kset・Tset−Kr・Tr−Kam・Tam+C (1) However, Tset...Target temperature (set temperature) Tr...Interior temperature Tam...Outdoor temperature Kset, Kr, Kam, C...Preset temperature Constant indicating control gain Next, the process proceeds to solar radiation correction step 106, where the temperature adjustment amount Tao obtained in step 105 is corrected according to the solar radiation amount, and data A 0 representing the target opening degree of the temperature adjustment damper 7 is obtained. Convert to This conversion is expressed by the following equation.

Ao=Tao+Ms (2) ここで、日射補正項Msは第4図に示すタイマ
割込ルーチンによつて算定されるものである。な
お、温度制御が開始されてから約3秒間はoとさ
れ補正をしない。
Ao=Tao+Ms (2) Here, the solar radiation correction term Ms is calculated by the timer interrupt routine shown in FIG. Note that the temperature is set to o for about 3 seconds after temperature control is started, and no correction is made.

次に判定ステツプ107,108および負圧作
動器34の付消勢ステツプ109,110,11
1により、そのときのダンバ開度Arが目標開度
Aoを中心とした目標領域(Ao−ao)乃至(Ao+
ao)に入つているか否かを判定して、その判定結
果によりダンパ開度の大、小あるいは停止(保
持)を示す電気信号を増幅回路10dを介して出
力する。ここで、「ダンバ開度が大」とは第1図
のバイパス通路6の上流がより大きく開かれ、
「ダンパ開度が小」とはヒータコア5の上流がよ
り大きく開かれる状態を言うものである。そし
て、日射量が検出されると補正項Msによつて目
標開度Aoが増加し、ステツプ109によつて
「ダンパ開度が大」とされバイパス通路6を通る
空気の量が増してより冷たい空気が車室内に吹出
される。ステツプ103〜111は循環的にくり
返し実行処理される。
Next, determination steps 107, 108 and energizing/deenergizing steps 109, 110, 11 of the negative pressure actuator 34 are performed.
1, the damper opening Ar at that time is the target opening.
Target area centered around Ao (Ao−ao) to (Ao+
ao), and depending on the determination result, an electric signal indicating whether the damper opening degree is large, small, or stopped (maintained) is outputted via the amplifier circuit 10d. Here, "the damper opening degree is large" means that the upstream side of the bypass passage 6 in FIG. 1 is opened more widely,
"The damper opening degree is small" refers to a state in which the upstream side of the heater core 5 is opened more widely. When the amount of solar radiation is detected, the target opening degree Ao is increased by the correction term Ms, and in step 109, the "damper opening degree is set to be large", and the amount of air passing through the bypass passage 6 increases, making it cooler. Air is blown into the passenger compartment. Steps 103 to 111 are cyclically and repeatedly executed.

第4図のタイマ割込ルーチンはコンピユータ1
0aの外部割込端子IRQに対してクロツク発生回
路10eより50ミリ秒周期で印加される割込信号
に基いて処理される演算の流れを示している。ス
タートステツプ200においてこの割込処理が受
付けられると、まずデータ入力ステツプ201に
より、日射センサ25のアナログ電圧信号をイン
ターフエース10dを介して日射光量Ls1を表わ
すデイジタル値として入力する。
The timer interrupt routine in Figure 4 is executed by computer 1.
It shows the flow of calculations processed based on an interrupt signal applied from the clock generation circuit 10e at a period of 50 milliseconds to the external interrupt terminal IRQ of 0a. When this interrupt processing is accepted in the start step 200, first in the data input step 201, the analog voltage signal of the solar radiation sensor 25 is inputted as a digital value representing the amount of solar radiation Ls1 via the interface 10d.

次にステツプ202において、前回(50ミリ秒
前)入力した日射光量Ls2(第1回目は0)との
偏差aを算出し、ステツプ203において前回、
前々回に算出した偏差b,cとの合計値Aを算出
する。この偏差合計値Aは後述する判定ステツプ
214,218で日射光量の立ち下がりおよび立
ち上がりを判定するために使用される。
Next, in step 202, the deviation a from the previous input (50 milliseconds ago) of the amount of sunlight Ls 2 (0 for the first time) is calculated, and in step 203,
A total value A of deviations b and c calculated two times before is calculated. This total deviation value A is used in determination steps 214 and 218, which will be described later, to determine the fall and rise of the amount of solar radiation.

ステツプ205〜212は入力した日射光量を
平滑処理するもので、200ミリ秒毎に、128回分す
なわち約6秒間に入力した日射光量Ls1の平均値
を算出し更進する。ステツプ205,206,2
07および212は日射光量Ls1の4回の合計を
求めるステツプ、ステツプ208はその合計値の
平均を求めるステツプ、ステツプ209,210
および211は128回分の平均値をTsun(日射量
データ)を求めるステツプである。
Steps 205 to 212 are for smoothing the input amount of sunlight, and the average value of the amount of sunlight Ls 1 input for 128 times, that is, about 6 seconds, is calculated every 200 milliseconds, and the process is further advanced. Steps 205, 206, 2
07 and 212 are steps for calculating the four totals of the amount of solar radiation Ls 1 , step 208 is a step for calculating the average of the total values, and steps 209 and 210.
and 211 is a step to obtain Tsun (solar radiation amount data) from the average value of 128 times.

判定ステツプ213において、タイマがオン
(スタート)となつてから6秒を経過していない
(YES)かいる(NO)かが判定され、YESのと
きは日射補正をマスクするために直ちステツプ2
22に進む。ステツプ222では新しい日射光量
Ls1を前回の値Ls2に置換し、またステツプ22
3において、前回の偏差bを前々回の偏差cに、
ステツプ224において偏差aを前回の偏差bに
置換して次の割込処理に備え、リターンステツプ
225で主制御プログラムの中断点に復帰する。
In determination step 213, it is determined whether 6 seconds have not elapsed since the timer was turned on (started) (YES) or has passed (NO), and if YES, step 2 is immediately executed to mask the solar radiation correction.
Proceed to step 22. In step 222, the new amount of solar radiation is
Replace Ls 1 with the previous value Ls 2 and also in step 22
In 3, the previous deviation b is changed to the deviation c from the previous time,
In step 224, deviation a is replaced with the previous deviation b in preparation for the next interrupt process, and in return step 225, the main control program is returned to the interruption point.

判定ステツプ214,215は車両の日射遮断
域への進入を判定するステツプで、ステツプ21
4で日射光量の偏差合計値Aが設定値aより大き
いか否かによつて、日射光量が急激に低下したか
を判定し、ステツプ215でそのときの日射光量
Ls1が設定値β以下にまで低下したかを判定し
て、両判定がYESのときステツプ216へ進
む。ステツプ216では車両が日射遮断域にある
か否かを示すプラグをオンさせ、車両が日射遮断
域に入つていることを示す。このプラグがオンに
なると次回の割込処理からは判定ステツプ204
でYESと判定して演算処理をステツプ218へ
分岐する。ステツプ217では日射補正項をoと
おき、第3図の主制御ルーチンのステツプ106
における日射補正を実質的に停止する。
Judgment steps 214 and 215 are steps for judging whether the vehicle enters the solar radiation blocking area, and step 21
In step 4, it is determined whether the solar radiation amount has suddenly decreased depending on whether the total deviation value A of the solar radiation amount is larger than the set value a, and in step 215, the solar radiation amount at that time is determined.
It is determined whether Ls 1 has decreased to below the set value β, and if both determinations are YES, the process proceeds to step 216. In step 216, a plug indicating whether or not the vehicle is in the solar radiation shielding area is turned on, indicating that the vehicle is in the solar radiation shielding area. When this plug is turned on, judgment step 204 is executed from the next interrupt processing.
If the result is YES, the arithmetic processing branches to step 218. In step 217, the solar radiation correction term is set to o, and step 106 of the main control routine in FIG.
This effectively stops solar radiation correction.

また、判定ステツプ214,215のいずれか
の判定結果がNOで、従つて日射遮断域に進入し
ていないときはステツプ221へ進み日射補正項
Msを次式によつて算出する。
Furthermore, if the judgment result in either judgment step 214 or 215 is NO, and therefore the solar radiation blocking area has not been entered, the process proceeds to step 221 and the solar radiation correction parameter is determined.
Calculate Ms using the following formula.

Ms=Ksun・Tsun (3) ただし、Ksunは制御上の利得を示す定数で日
射量データTsunに応じて温度調節量Taoの補正
量を決めるものである。
Ms=Ksun・Tsun (3) However, Ksun is a constant indicating control gain and determines the correction amount of the temperature adjustment amount Tao according to the solar radiation data Tsun.

ステツプ218,219は車両の日射遮断域か
らの退出を判定するステツプで、ステツプ218
で日射光量の偏差合計値Aが設定値−aより小さ
いか否かによつて、日射光量が急激に上昇したか
を判定し、ステツプ219でそのときの日射光量
Ls1が設定値r以上かを判定して両判定がYESの
ときステツプ220へ進む。ステツプ220では
前記フラグをオフさせ、車両が日射遮断域から出
ていることを示す。次にステツプ221に進み日
射補正項Msの算出を行ない日射補正を復活す
る。このとき、日射量データTsunはステツプ2
16でフラグ、オンとしたときのデータがそのま
ま記憶されているため、まずその記憶データによ
つて日射補正項Msが決定される。その後はステ
ツプ205〜212の平滑処理が実行されるため
実際の日射量に応じて日射量データTsunが更進
され、適切な日射補正項Msが得られる。
Steps 218 and 219 are steps for determining whether the vehicle leaves the solar radiation blocking area.
In step 219, it is determined whether the amount of solar radiation has increased rapidly based on whether the total deviation value A of the amount of solar radiation is smaller than the set value -a, and in step 219, the amount of solar radiation at that time is determined.
It is determined whether Ls 1 is greater than or equal to the set value r, and if both determinations are YES, the process proceeds to step 220. In step 220, the flag is turned off to indicate that the vehicle is out of the solar radiation shielding area. Next, the process proceeds to step 221, where the solar radiation correction term Ms is calculated and the solar radiation correction is restored. At this time, the solar radiation data Tsun is
Since the data when the flag was turned on in step 16 is stored as is, the solar radiation correction term Ms is first determined based on the stored data. After that, the smoothing process of steps 205 to 212 is executed, so that the solar radiation data Tsun is advanced according to the actual solar radiation amount, and an appropriate solar radiation correction term Ms is obtained.

なお、判定ステツプ218,219のいずれか
の判定結果がNOで、従つて車両日射遮断域に入
つているときはステツプ222へ進みリターンス
テツプ225へ進む。このため日射量データ
Tsunは記憶データとして記憶され続ける。
Incidentally, if the judgment result in either judgment step 218 or 219 is NO, and therefore the vehicle is within the solar radiation cut-off area, the process proceeds to step 222 and then to return step 225. Therefore, solar radiation data
Tsun continues to be stored as memory data.

第4図の割込処理ルーチンによる日射補正項
Msの算定を第5図にタイムチヤートとして示
す。車両が日射遮断域へ入る前すなわち第5図1
の“外”にあるときは、入力される日射光量Ls1
(第5図2)をステツプ205〜212で平滑処
理して日射量データTsun(第5図3)を作成
し、ステツプ221で日射補正項Msを日射量デ
ータTsunに応じて算定する(第5図5)。このと
き、日射光量Ls1がゆつくり変化したり、あるい
は変化量が小さかつたり、あるいは日射センサ2
5からの信号線に電気雑音が誘導されて瞬時的に
変化しても、判定ステツプ214,215のいず
れかでNOと判定されるため日射補正項Msは安定
的に決定される。
Solar radiation correction term by the interrupt processing routine in Figure 4
The calculation of Ms is shown in Figure 5 as a time chart. Before the vehicle enters the solar radiation shielding area, that is, Fig. 5 1
When it is “outside”, the input solar radiation amount Ls 1
(Fig. 5, 2) is smoothed in steps 205 to 212 to create solar radiation data Tsun (Fig. 5, 3), and in step 221, the solar radiation correction term Ms is calculated according to the solar radiation data Tsun. Figure 5). At this time, the amount of solar radiation Ls 1 changes slowly, or the amount of change is small, or the amount of solar radiation sensor 2
Even if electrical noise is induced in the signal line from 5 and causes an instantaneous change, the solar radiation correction term Ms is stably determined because a negative determination is made in either determination step 214 or 215.

P地点で車両が日射遮断域に進入すると、日射
光量Ls1が急激に設定値以下に低下すると判定ス
テツプ214,215を経てステツプ216でフ
ラグ、オン(第5図4)となり、ステツプ217
で日射補正項Msがoに固定されて日射補正を中
止し、さらに日射量データTsunはそのまま記憶
データTsun′として記憶される。P地点以前の日
射光量が小さいときは変化量も小さいので日射遮
断域への進入とは判定されない。
When the vehicle enters the solar radiation blocking area at point P, if the amount of solar radiation Ls 1 suddenly decreases below the set value, the flag is turned on in step 216 after passing through determination steps 214 and 215 (FIG. 5, 4), and then in step 217.
At this point, the solar radiation correction term Ms is fixed to o, the solar radiation correction is stopped, and the solar radiation amount data Tsun is stored as is as storage data Tsun'. When the amount of solar radiation before point P is small, the amount of change is also small, so it is not determined that the solar radiation blocking area has entered.

Q地点で車両が日射遮断域から退出すると判定
ステツプ218,219を経てステツプ220で
フラグ、オフとなり、はじめは記憶データ
Tsun′を含みその後は入力される日射光量Ls1
応じてゆつくり変化する日射量データTsunが算
出され日射補正項Msとして温度調節量Taoの日
射補正に供される。
When the vehicle exits the solar radiation blocking area at point Q, the flag is turned off in step 220 after passing through determination steps 218 and 219, and the stored data is initially
The solar radiation data Tsun, which includes Tsun′ and thereafter gradually changes according to the input solar radiation amount Ls 1 , is calculated and used as the solar radiation correction term Ms for the solar radiation correction of the temperature adjustment amount Tao.

なお、上述した実施例は本発明方法の実施態様
の一例であつて本発明の主旨に従う範囲でいくつ
かの変形を行なうことができる。以下にその例を
示す。
Note that the above-mentioned embodiment is an example of the embodiment of the method of the present invention, and several modifications can be made within the scope of the gist of the present invention. An example is shown below.

(1) 車両退出による日射補正再開時の記憶データ
は車両進入時の日射量データと完全に一致する
必要はなく、車両進入時の日射量データに応じ
て段階的に定めたデータであつてもよいし、ま
た単に相当の日射補正が必要な日射があつたか
否かを示すデータであつてもよい。
(1) The stored data when resuming solar radiation correction due to vehicle exit does not have to completely match the solar radiation data at the time of vehicle entry, and even if the data is determined in stages according to the solar radiation data at vehicle entry. Alternatively, the data may simply be data indicating whether or not there has been solar radiation that requires considerable solar radiation correction.

(2) 車両進入時の日射補正データが十分大きいと
きは日射補正再開時の記憶データを車両進入時
の日射補正データより適当な値だけ小さくして
日射補正を再開してもよい。これによると車両
が日射遮断域にある時間が長いときは、退出時
の日射が変化している可能性も大きくなるので
その場合にも比較的速やかに追従制御できる。
(2) When the solar radiation correction data at the time of the vehicle approach is sufficiently large, the solar radiation correction may be restarted by making the stored data at the time of restarting the solar radiation correction smaller by an appropriate value than the solar radiation correction data at the time of the vehicle approach. According to this, when the vehicle remains in the solar radiation cut-off area for a long time, there is a high possibility that the solar radiation at the time of exit has changed, so that follow-up control can be performed relatively quickly in that case as well.

(3) 車両の日射遮断域への進入、退出を判定する
のに、日射光量自体の変化の傾きの大きさを調
べる代わりに、平滑処理された日射量データが
充分大きい値であるときに入力される日射光量
が数回続けて設定値以上となることで進入を判
定、その後日射光量が数回続けて設定値以上と
なることで退出を判定してもよい。また平滑処
理された日射量データの傾きの大きさによつて
日射光量の急激な変化があるか否かを判定して
もよい。
(3) To determine whether a vehicle enters or exits a solar radiation cutoff area, instead of checking the slope of the change in the amount of solar radiation itself, it is possible to determine whether a vehicle enters or exits a solar radiation cut-off area. Entry may be determined when the input amount of sunlight exceeds the set value several times in a row, and exit may be determined when the input amount of sunlight exceeds the set value several times in succession. Alternatively, it may be determined whether there is a sudden change in the amount of solar radiation based on the magnitude of the slope of the smoothed solar radiation amount data.

(4) 日射遮断域からの退出の判定の誤りに対する
安全策として、例えばフラグ、オンの時間が数
分間を越えるときは強制的にフラグ、オフとす
るようにしてもよい。
(4) As a safety measure against erroneous determination of exit from the solar radiation blocking area, for example, if the flag is on for more than a few minutes, the flag may be forcibly turned off.

(5) 日射補正を温度調節によつて行なうほか、装
置が冷房側で作動するときはブロワーモータ3
の送風量を増すようにしてもよい。
(5) In addition to solar radiation correction by temperature control, when the device operates on the cooling side, the blower motor 3
The amount of air blown may be increased.

(6) 日射遮断域への進入、退出の判定結果により
内外気ダンパを作動させて強制的に内気循環と
してもよいし、また、車両の前照灯の点灯、消
灯信号として取出すようにしてもよい。
(6) Depending on the judgment result of entering or exiting the solar radiation cut-off area, an internal/external air damper may be operated to force internal air circulation, or it may be output as a signal to turn on or off the vehicle's headlights. good.

以上述べたように本発明においては、車両が受
ける日射光量を電気信号として検出し、その平滑
処理によつて日射量データを得るとともに、日射
光量の変化度合から車両の日射遮断域への進入、
退出を判定して、日射補正制御を調節するから、
車室内外の温度の影響を受けることがなく、建築
物の影に出入するときのように受ける日射光量の
変化が小さいときはゆつくり変化する日射量デー
タを得ることができ、さらに日射遮断域に進入、
退出する場合に補正制御の応答遅れを生じること
がないという優れた効果を発揮する。
As described above, in the present invention, the amount of solar radiation received by a vehicle is detected as an electrical signal, the amount of solar radiation data is obtained by smoothing the signal, and the solar radiation cut-off area of the vehicle is determined based on the degree of change in the amount of solar radiation. approach,
It determines the exit and adjusts the solar radiation correction control.
It is not affected by the temperature inside or outside the vehicle, and when the change in the amount of sunlight received is small, such as when entering and leaving the shadow of a building, it is possible to obtain data on the amount of sunlight that changes slowly. enter the area,
This provides an excellent effect in that there is no response delay in correction control when exiting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法を適用した空気調和制御装
置の全体構構成図、第2図は電気制御系を示すブ
ロツク線図、第3図および第4図は電気制御系の
主構成要素をなすデジタルコンピユータの制御プ
ログラムを示す演算流れ図で、第3図は主制御ル
ーチン、第4図は割込処理ルーチンを示す、第5
図は作動説明に供するタイムチヤート図である。 7…空気調和要素としての温度調節ダンパ、1
0…制御装置、25…日射センサ、106…日射
補正ステツプ、201…日射光量の入力ステツ
プ、205〜212…平滑処理を行なうステツ
プ、214,215…進入判定ステツプ、21
7,221…日射補正項算定ステツプ、218,
219…退出判定ステツプ、Ls1…日射光量の入
力値、Tsun…日射量データ、Tsun′…記憶デー
タ、Ms…日射補正項。
Figure 1 is an overall configuration diagram of an air conditioning control device to which the method of the present invention is applied, Figure 2 is a block diagram showing the electrical control system, and Figures 3 and 4 are the main components of the electrical control system. These are operation flowcharts showing the control program of a digital computer, in which Fig. 3 shows the main control routine, Fig. 4 shows the interrupt processing routine, and Fig. 5 shows the interrupt processing routine.
The figure is a time chart for explaining the operation. 7...Temperature control damper as an air conditioning element, 1
0...Control device, 25...Solar radiation sensor, 106...Solar radiation correction step, 201...Solar radiation amount input step, 205-212...Smoothing processing step, 214, 215...Entry determination step, 21
7,221...Solar radiation correction term calculation step, 218,
219...Exit judgment step, Ls1 ...Input value of solar radiation amount, Tsun...solar radiation amount data, Tsun'...memorized data, Ms...solar radiation correction term.

Claims (1)

【特許請求の範囲】[Claims] 1 車両への日射量を示すデータを含む各種制御
条件に応じて空気調和要素を制御する車両用空気
調和制御方法において、車両が周囲から受ける光
量を電気信号として検出し、この検出された信号
を平滑処理して前記制御条件としての日射量デー
タを作成するとともに前記検出信号の急激な立ち
下がりおよび立ち上がりによつて車両の日射遮断
域への進入および退出を判定し、前記進入を判定
するとそのときの日射量に応じたデータを記憶デ
ータとして記憶するとともに前記制御条件から日
射量データを除き、前記退出を判定すると前記記
憶データを暫定的に含む日射量データを前記制御
条件に復活させることを特徴とする車両用空気調
和制御方法。
1. In a vehicle air conditioning control method that controls air conditioning elements according to various control conditions including data indicating the amount of solar radiation on the vehicle, the amount of light that the vehicle receives from the surroundings is detected as an electrical signal, and this detected signal is Smoothing processing is performed to create solar radiation amount data as the control condition, and the entry and exit of the vehicle into the solar radiation cut-off area is determined based on the sudden fall and rise of the detection signal, and when the entrance is determined, then Data corresponding to the amount of solar radiation is stored as storage data, and the amount of solar radiation data is removed from the control conditions, and when the exit is determined, the amount of solar radiation data that temporarily includes the stored data is restored to the control conditions. A vehicle air conditioning control method.
JP4454879A 1979-04-11 1979-04-11 Controlling method for car air-conditioning Granted JPS55137441A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4454879A JPS55137441A (en) 1979-04-11 1979-04-11 Controlling method for car air-conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4454879A JPS55137441A (en) 1979-04-11 1979-04-11 Controlling method for car air-conditioning

Publications (2)

Publication Number Publication Date
JPS55137441A JPS55137441A (en) 1980-10-27
JPS6114002B2 true JPS6114002B2 (en) 1986-04-16

Family

ID=12694546

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4454879A Granted JPS55137441A (en) 1979-04-11 1979-04-11 Controlling method for car air-conditioning

Country Status (1)

Country Link
JP (1) JPS55137441A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6433408U (en) * 1987-08-26 1989-03-01
DE4040846C2 (en) * 1990-12-20 1993-10-28 Hella Kg Hueck & Co Device for regulating the interior temperature of motor vehicles
JP4518035B2 (en) * 2006-03-28 2010-08-04 株式会社デンソー Air conditioner for vehicles

Also Published As

Publication number Publication date
JPS55137441A (en) 1980-10-27

Similar Documents

Publication Publication Date Title
US4325426A (en) Air conditioner system
US4368843A (en) Air conditioner control method and apparatus
JPS6021887B2 (en) Vehicle air conditioning control device
JPS6114002B2 (en)
JPS5934915A (en) Controller for air-conditioning of automobile
JP2817291B2 (en) Vehicle air conditioning controller
JPS625804B2 (en)
JPS6226923B2 (en)
JP2661129B2 (en) Outside air temperature detector for vehicles
JPH0569006B2 (en)
JPH0221964B2 (en)
JP2682288B2 (en) Vehicle air conditioner
JPH0641243B2 (en) Car air conditioner controller
JPS59160645A (en) Dew-condensation preventer for outside of window glass of vehicle
JPS625085B2 (en)
JP2763642B2 (en) Automotive air conditioning controller
JPS61215111A (en) Air conditioner for vehicle
JP2665808B2 (en) Vehicle air conditioning controller
JPS625805B2 (en)
JPH0550832A (en) Outside air temperature detecting device for automobile
JPH0349042Y2 (en)
JPS6213209B2 (en)
JP2933146B2 (en) Outside air temperature detector for automobiles
JPH036488Y2 (en)
JPS5889414A (en) Controller for car air conditioner