JPS61139755A - Method for testing dispersibility of conductive material in conductive electrodeposition paint film - Google Patents
Method for testing dispersibility of conductive material in conductive electrodeposition paint filmInfo
- Publication number
- JPS61139755A JPS61139755A JP26198284A JP26198284A JPS61139755A JP S61139755 A JPS61139755 A JP S61139755A JP 26198284 A JP26198284 A JP 26198284A JP 26198284 A JP26198284 A JP 26198284A JP S61139755 A JPS61139755 A JP S61139755A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- dispersibility
- conductive material
- electrodeposition paint
- electrodeposition coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004070 electrodeposition Methods 0.000 title claims abstract description 51
- 238000012360 testing method Methods 0.000 title claims abstract description 35
- 239000004020 conductor Substances 0.000 title claims abstract description 25
- 239000003973 paint Substances 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims description 20
- 238000007747 plating Methods 0.000 claims abstract description 31
- 238000009713 electroplating Methods 0.000 claims abstract description 10
- 239000007769 metal material Substances 0.000 claims abstract description 4
- 238000000576 coating method Methods 0.000 claims description 57
- 239000011248 coating agent Substances 0.000 claims description 46
- 238000001556 precipitation Methods 0.000 abstract description 6
- 238000011156 evaluation Methods 0.000 abstract description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 17
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 15
- 229910052799 carbon Inorganic materials 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 125000002091 cationic group Chemical group 0.000 description 9
- 229910052759 nickel Inorganic materials 0.000 description 9
- 239000011701 zinc Substances 0.000 description 8
- 229910052725 zinc Inorganic materials 0.000 description 8
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 7
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 7
- 229910052802 copper Inorganic materials 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 6
- 239000011651 chromium Substances 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005370 electroosmosis Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/26—Oils; Viscous liquids; Paints; Inks
- G01N33/32—Paints; Inks
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating And Analyzing Materials By Characteristic Methods (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、導電性電着塗膜中に含まれる導電性材料の分
散性を調査するに適した試験方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a test method suitable for investigating the dispersibility of a conductive material contained in a conductive electrodeposited coating.
近年、電着塗装は特色ある塗装方法として広(実施され
ている。その概要は、被塗装物を一方の電極として、他
方の極である塗料槽内もしくは他方の電極を内部に設け
た塗料槽内に収容されている電着塗料中に浸漬し、両電
極間に直流電圧を印加することによって、被塗装物の表
面に電着塗膜を形成させる方法である。In recent years, electrodeposition coating has been widely used as a unique coating method.The outline is that the object to be coated is used as one electrode, and the other electrode is inside the paint tank, or the other electrode is installed inside the paint tank. In this method, an electrodeposition coating film is formed on the surface of an object to be coated by immersing the object in the electrodeposition paint contained in the object and applying a DC voltage between both electrodes.
そして、電着塗装によって形成される電着塗膜は、電気
泳動、電気分解、電気析出および電気浸透の過程を経て
、被塗装物の表面に塗着されるといわれている。しかし
、電着塗膜は電気浸透作用により電気抵抗が高くなるた
め、ある一定の塗装膜厚になるとそれ以上電着塗膜が析
出され難く、また、電着塗装の特徴の一つである付き回
り性によって、既成の電着塗膜形成部には塗料の析出が
されにくく未塗装部分のみに電着塗膜が形成されるとい
う事実がある。It is said that the electrodeposition coating film formed by electrodeposition coating is applied to the surface of the object to be coated through the processes of electrophoresis, electrolysis, electrodeposition, and electroosmosis. However, since the electrical resistance of electrodeposition coatings increases due to electroosmosis, once the coating thickness reaches a certain level, it becomes difficult for further electrodeposition coatings to be deposited. Due to the circularity, it is difficult for paint to be deposited on existing electrodeposited coating areas, and the electrocoated coating is formed only on unpainted areas.
したがって、電着塗装において厚膜塗装する際には、両
電極間に高圧電流を印加して対応する方法が採用されて
おり、電着塗装に際して危険がともなうことはもとより
、高圧電流のために析出された電着塗膜に肌荒れ、ブッ
等の塗装不良が発生することがある。Therefore, when applying a thick film in electrodeposition coating, a method is adopted in which a high voltage current is applied between both electrodes, which is not only dangerous, but also causes deposition due to the high voltage current. Coating defects such as roughness and blistering may occur in the electrodeposited film.
そこで、最近では、カーボン等の導電性材料を多量に加
えた導電性電着塗料を用いて、被塗装物の表面に導電性
の電着塗膜を形成した後、さらに、この導電性の電着塗
膜上に通常の電着塗装方法で電着塗膜を形成することに
よって、厚膜の電着塗膜とする方法が将来の電着塗装技
術として検討されている。しかるに、この導電性電着塗
料においては、カーボン等の導電性材料の分散性が後に
形成される通常の電着塗膜の付き回り性および平滑性に
大きく影響するため、析出された電着塗膜中での導電性
材料の分散性が重要な要素となっている。Therefore, recently, after forming a conductive electrodeposition coating film on the surface of the object to be coated using conductive electrodeposition paint containing a large amount of conductive material such as carbon, A method of forming a thick electrodeposition coating film by forming an electrodeposition coating film on a deposited coating film by a normal electrodeposition coating method is being considered as a future electrodeposition coating technology. However, in this conductive electrodeposition paint, the dispersibility of the conductive material such as carbon greatly affects the coverage and smoothness of the normal electrodeposition coating that is formed later. The dispersibility of the conductive material in the film is an important factor.
しかしながら、従来における導電性材料の分散性試験方
法においては、被塗装物の表面に導電性の電着塗膜を形
成し、その導電性の電着塗膜の形成面を切断するととも
に、その切断面を十分に研磨した後、該切断研磨面を電
子顕微鏡等によって観察して評価する試験方法が採用さ
れている。したがって、析出された電着塗膜中での導電
性材料の分散性を試験するのに多くの時間を必要とする
ことはもとより、評価する部位が切断研磨面の狭い範囲
であることから、評価精度が不十分となる不具合がある
。However, in the conventional method for testing the dispersibility of conductive materials, a conductive electrodeposited film is formed on the surface of the object to be coated, and the surface on which the conductive electrodeposited film is cut is cut. A test method has been adopted in which the cut and polished surface is observed and evaluated using an electron microscope or the like after the surface has been thoroughly polished. Therefore, not only does it take a lot of time to test the dispersibility of the conductive material in the deposited electrodeposited coating, but it also requires a lot of time to test the dispersibility of the conductive material in the deposited electrodeposition coating. There is a problem with insufficient accuracy.
したがって、この発明は、上記の不具合を解消するため
になされたもので、被塗装物に形成された導電性の電着
塗膜を焼付・硬化させた後、導電性の電着塗膜上に電気
めっき層を形成することによって、導電性材料の分散性
の試験を短時間で実施するとともに、評価精度を向上さ
せることにある。Therefore, this invention was made to solve the above-mentioned problems, and after baking and curing the conductive electrodeposition coating film formed on the object to be coated, By forming an electroplated layer, it is possible to test the dispersibility of a conductive material in a short time and improve evaluation accuracy.
すなわち、この発明に係る導電性電着塗膜における導電
性材料の分散性試験方法においては、導電性材料を含有
する電着塗料を用いて、被塗装物の表面に導電性の電着
塗膜を形成せしめ、この導電性の電着塗膜を焼付・硬化
した後、この被塗装物を陰極とし、他の金属材料を陽極
として電気めっき液中に浸漬し、その両電極間に直流電
流を印加して、被塗装物の表面にめっき層を形成するよ
うにしたものである。That is, in the method for testing the dispersibility of a conductive material in a conductive electrodeposition coating film according to the present invention, an electrodeposition coating material containing a conductive material is used to form a conductive electrodeposition coating film on the surface of an object to be coated. After baking and curing this conductive electrodeposition coating, the object to be coated is used as a cathode and another metal material is used as an anode, immersed in an electroplating solution, and a direct current is applied between the two electrodes. This is applied to form a plating layer on the surface of the object to be coated.
そして、ここで使用される電気めっき液としては、従来
から一般に使用されているニッケルめっき液、クロムめ
っき液、銅めっき液、亜鉛めっき液等を挙げることがで
き、その際に用いられる陽極としては、クロムめっき液
の鉛を用いる以外はめっき液と同一の金属材料が用いら
れる。また、各めっき液の温度、電流密度等のめっき条
件は、各めっき液が通常使用している条件をそのまま利
用することができる。Examples of the electroplating solution used here include nickel plating solution, chromium plating solution, copper plating solution, zinc plating solution, etc. that have been commonly used in the past, and the anode used in this case is The same metal material as the plating solution is used, except for the use of lead in the chrome plating solution. Furthermore, the plating conditions such as temperature and current density of each plating solution can be the same as those normally used for each plating solution.
以下、本発明に係る導電性電着塗膜における導電性材料
の分散性試験方法を実施例によって具体的に説明するが
、本発明においては、この実施例のみに限定されるもの
ではなく、本発明の要旨を逸脱しない範囲において種々
なる変更を加え得ることは勿論である。Hereinafter, the method for testing the dispersibility of conductive materials in conductive electrodeposited coatings according to the present invention will be specifically explained with reference to Examples. Of course, various changes can be made without departing from the gist of the invention.
実施例 1
150X7QX0.8mn+の冷間圧延鋼板(J I
5−G−3141,5PCC)からなルテストヒースを
脱脂処理およびリン酸亜鉛処理した後、80℃で10分
間水切り乾燥した。その後、下記の電着塗装方法に従っ
て、テストピースの表面に導電性のカチオン電着塗膜を
形成した。Example 1 150X7QX0.8mm+ cold rolled steel plate (J I
5-G-3141,5PCC) was degreased and treated with zinc phosphate, and then drained and dried at 80°C for 10 minutes. Thereafter, a conductive cationic electrodeposition coating film was formed on the surface of the test piece according to the electrodeposition coating method described below.
カチオン電着塗装方法
(ll 電着塗料:導電性のカチオン型電着塗料(日
本ペイント社製)
カーボン添加量・・−−−−−−−2,86g / I
I加熱残分・−−−一−−−・20wt%塗料の色−−
−一−・−・黒色
(2) 塗装条件:塗料温度−−−−一−−・28℃
陽 極−−−−m−−−・ステンレス陰 極−m−
・テストピース
極間距離・・−−−−−−・150mm極間電圧−・−
・IQOV〜250V
通電時間−・−・3分
(3)析出塗膜:15ミクロン
次に、導電性の電着塗膜が嬢成されたテストピースを脱
イオン水で1分間水洗して物理的に付着している電着塗
料を除去した後、該テストピースの表面に温度40℃の
空気を流速Lm/秒で30秒間吹き付けてカチオン電着
塗膜上の水滴を除去した後、このテストピースを炉内温
度180℃に設定されている乾燥炉で20分間焼付・硬
化した。Cationic electrodeposition coating method (ll) Electrodeposition paint: Conductive cationic electrodeposition paint (manufactured by Nippon Paint Co., Ltd.) Amount of carbon added...---2,86g/I
I heating residue --- 1 --- 20wt% Paint color --
−1−・−・Black (2) Painting conditions: Paint temperature−−−−−・28℃
Anode---m---・Stainless steel cathode---m-
・Test piece distance between electrodes・・・150mm electrode voltage−・−
・IQOV ~ 250V Current application time: 3 minutes (3) Deposited coating film: 15 microns Next, the test piece on which the conductive electrodeposited coating film was formed was washed with deionized water for 1 minute to physically test it. After removing the electrodeposited paint adhering to the test piece, air at a temperature of 40°C was sprayed on the surface of the test piece for 30 seconds at a flow rate of Lm/sec to remove water droplets on the cationic electrodeposition coating. was baked and hardened for 20 minutes in a drying oven whose internal temperature was set to 180°C.
上述で得られた導電性のカチオン電着塗膜が形成された
テストピースの表面に、下記に示す電気めっき方法に従
って、ニッケルめっき層を形成した。A nickel plating layer was formed on the surface of the test piece on which the conductive cationic electrodeposition coating film obtained above was formed, according to the electroplating method shown below.
ニッケルめっき方法
(11ニッケルめっき液
(a) 硫酸ニッケル・−・−280g//1(b)
塩化ニッケル・−−−−−一−・45 g/1(C
) 硼 酸−−−−−・−・40g/1(2)めっき
条件
(a) 液温度・−−−−−−・50 ’C(bl
陽 極−一−−−−・・ニッケル(C1陰 極・〜・
−テストピース
(dl 極間距離・−−一−−−−・150sn(e
) 電流密度・−−−−−−= 4 A / d m
”(f) 通電時間−・−・−・3分
得られたテストピースを、カチオン電着塗装後と同様に
して水洗および水滴を除去した。Nickel plating method (11 Nickel plating solution (a) Nickel sulfate ---280g//1 (b)
Nickel chloride ------45 g/1 (C
) Boric acid---------40g/1(2) Plating conditions (a) Liquid temperature---------50'C (bl
Anode-1---- Nickel (C1 cathode...
-Test piece (dl distance between poles・---1---・150sn(e
) Current density -------= 4 A/d m
(f) Current application time: 3 minutes The obtained test piece was washed with water and water droplets were removed in the same manner as after cationic electrodeposition coating.
その後、白色電球下で目視観察によって、ニッケルの析
゛出状態から電着塗膜中に分散するカーボンの分散性を
判断した。その際、電着塗膜中でのカーボンの分散状態
が良好な部位には、微細粒状のニッケルが全面に均一に
析出していたが、分散状態が不良の部位にはニッケルが
偏析し、未着部ができていた。Thereafter, the dispersibility of carbon dispersed in the electrodeposited coating was determined from the state of nickel precipitation by visual observation under a white light bulb. At that time, fine nickel particles were uniformly precipitated over the entire surface of the electrodeposited coating in areas where carbon was well dispersed, but nickel was segregated in areas with poor carbon dispersion and remained undistributed. The kimono section was ready.
実施例 2
実施例1と同様なカチオン電着塗装方法によって得られ
た導電性の電着塗膜が形成されたテストピースの表面に
、下記に示す電気めっき方法に従うて、クロムめっき層
を形成した。Example 2 A chromium plating layer was formed on the surface of a test piece on which a conductive electrodeposition film was formed using the same cationic electrodeposition coating method as in Example 1, according to the electroplating method shown below. .
クロムめっき方法
(1) クロムめっき液
(al クロム酸−−−−−−−・250g/1(b
l硫 酸−・2.5g/β
(2)めっき条件
fal 液温度−・−45°C
(bl 陽 極−−−−−−・・鉛
(C1陰 極・−・−・テストピース
(d) 極間距離・−−−−−−−150mmte+
電流密度−−−−−−I OA / d m ”(
f) 通電時間−一−−−−−・4分得られたテスト
ピースを、実施例1と同様にして水洗および水滴を除去
した。Chromium plating method (1) Chromium plating solution (al chromic acid--250g/1 (b
l Sulfuric acid - 2.5g/β (2) Plating conditions fal Liquid temperature - -45°C (bl Anode - - Lead (C1 cathode - - Test piece (d ) Distance between poles・---150mmte+
Current density---IOA/dm''(
f) Current application time: 1-4 minutes The obtained test piece was washed with water and water droplets were removed in the same manner as in Example 1.
その後、白色電球下で目視観察によって、クロムの析出
状態から電着塗膜中に分散するカーボンの分散性を判断
した。その際、電着塗膜中でのカーボンの分散状態が良
好な部位には、微細粒状のクロムが全面に均一に析出し
ていたが、分散状態が不良の部位はニッケルが偏析し、
未着部ができていた。Thereafter, the dispersibility of carbon dispersed in the electrodeposited coating was determined from the state of chromium precipitation by visual observation under a white light bulb. At that time, fine grained chromium was uniformly precipitated over the entire surface in areas where carbon was well dispersed in the electrodeposited coating, but nickel was segregated in areas where carbon was poorly dispersed.
There was an unattached part.
実施例 3
実施例1と同様なカチオン電着塗装方法によって得られ
た導電性の電着塗膜が形成されたテストピースの表面に
、下記に示す電気めっき方法に従って、銅めっき層を形
成した。Example 3 A copper plating layer was formed on the surface of a test piece on which a conductive electrodeposition coating film obtained by the same cationic electrodeposition coating method as in Example 1 was formed, according to the electroplating method shown below.
銅めっき方法
(1) liiめっき液
(al 硫酸銅・−−−−−−−・220 g/lc
b> 硫 酸・−−−−−−−・55 g / 1(
2) めっき条件
Tal 液温度・−一−−−−−・23℃(b)
陽 極・−−−−−−−一銅(C1陰 極−−−一−−
−テストピース(dl 極間距離・−−−−−−=
150 Illm(e)電流密度・−−−−−−3A
/ d m ”(f) 通電時間−−−−−・−・3
分得られたテストピースを、実施例1と同様にして水洗
および水滴を除去した。Copper plating method (1) Lii plating solution (al copper sulfate・220 g/lc
b> Sulfuric acid・---・55 g/1(
2) Plating conditions Tal Liquid temperature -1-------23℃ (b)
Anode・----Copper (C1 cathode----
-Test piece (dl distance between electrodes・------=
150 Illm(e) Current density・---3A
/ d m ”(f) Energizing time-----3
The obtained test piece was washed with water and water droplets were removed in the same manner as in Example 1.
その後、白色電球下で目視観察によって、銅の析出状態
から電着塗膜中に分散するカーボンの分散性を判断した
。その際、電着塗膜中でのカーボンの分散状態が良好な
部位には、微細粒状の銅が全面に均一に析出していたが
、分散状態が不良の部位には銅が偏析し、未着部ができ
ていた。Thereafter, the dispersibility of carbon dispersed in the electrodeposition coating film was determined from the state of copper precipitation by visual observation under a white light bulb. At that time, fine grained copper was uniformly precipitated over the entire surface in areas where carbon was well dispersed in the electrodeposited coating, but copper was segregated in areas where carbon was poorly dispersed and remained unused. The kimono section was ready.
実施例 4
実施例1と同様なカチオン電着塗装方法によって得られ
た導電性の電着塗膜が形成されたテストピースの表面に
、下記に示す電気めっき方法に従って、亜鉛めっき層を
形成した。Example 4 A galvanized layer was formed on the surface of a test piece on which a conductive electrodeposition coating film obtained by the same cationic electrodeposition coating method as in Example 1 was formed, according to the electroplating method shown below.
亜鉛めっき方法
(1) 亜鉛めっき液
(a) 塩化亜鉛・−−−−−−−200g / 1
(b) 塩化アンモニウム−・−・240 g/j2
(2)めっき条件
fal 液温度−・−・40℃
(1)) 陽 極・−−一−−−−・亜鉛(C)
陰 極・−−−一−−−テストピース(dl 極間距
離・−−−−−−−150am(e+ 電流密度−−
−−−−一−4A / d m ”(fl 通電時間
・−・−−−〜−・4分得られたテストピースを、実施
例1と同様にして水洗および水滴を除去した。Zinc plating method (1) Zinc plating solution (a) Zinc chloride---200g/1
(b) Ammonium chloride--240 g/j2
(2) Plating conditions fal Liquid temperature - 40℃ (1)) Anode - - - - Zinc (C)
Cathode・---1---Test piece (dl Distance between electrodes・---150am (e+ Current density---
----1-4A/d m'' (fl Current application time: -----4 minutes The obtained test piece was washed with water and water droplets were removed in the same manner as in Example 1.
その後、白色電球下で目視観察によって、亜鉛の析出状
態から電着塗膜中に分散するカーボンの分散性を判断し
た。その際、電着塗膜中でのカーボンの分散状態が良好
な部位には、微細粒状の亜鉛が全面に均一に析出してい
たが、分散状態が不良の部位には亜鉛が偏析し、未着部
ができていた。Thereafter, the dispersibility of carbon dispersed in the electrodeposited coating was determined from the state of zinc precipitation by visual observation under a white light bulb. At that time, fine particles of zinc were uniformly precipitated over the entire surface in areas where carbon was well dispersed in the electrodeposited coating, but zinc was segregated in areas where carbon was poorly dispersed and remained undistributed. The kimono section was ready.
以上説゛明したように、本発明に係る導電性電着塗膜に
おける導電性材料の分散性試験方法においては、被塗装
物に形成された導電性の電着塗膜を焼付・硬化させた後
、導電性の電着塗膜上に電気めっき層を形成するように
したから、電着塗膜上に形成されるめっき層の析出状態
で導電性材料の分散状態が判断できるので、導電性材料
の分散性の試験を短時間に評価することができる効果が
ある。As explained above, in the method for testing the dispersibility of conductive materials in conductive electrodeposited coatings according to the present invention, the conductive electrodeposition coating formed on the object to be coated is baked and cured. After that, since an electroplating layer is formed on the conductive electrodeposition coating, the state of dispersion of the conductive material can be judged from the state of precipitation of the plating layer formed on the electrodeposition coating. This has the effect of allowing material dispersibility tests to be evaluated in a short time.
また、本発明に係る導電性材料の分散性試験方法におい
ては、導電性材料の分散状態が良好な場合には微細粒状
のめっき層が全面に均一に析出され、分散状態が不良の
場合にはめっき層が偏析したり、未着部ができたりする
ので、導電性材料の分散性の評価を精度よく行うことが
できる効果がある。In addition, in the method for testing the dispersibility of conductive materials according to the present invention, when the conductive material is well dispersed, a fine grained plating layer is deposited uniformly over the entire surface, and when the dispersion state is poor, Since the plating layer is segregated and unattached areas are formed, this method has the effect that the dispersibility of the conductive material can be evaluated with high accuracy.
また、本発明に係る導電性材料の分散性試験方法におい
ては、従来の試験方法のように切断面を精度よく研磨す
る必要がないので、熟練者以外にも分散性の試験を行う
ことができる効果がある。Furthermore, in the method for testing the dispersibility of conductive materials according to the present invention, there is no need to polish the cut surface with high precision as in conventional testing methods, so that even non-experts can perform the dispersibility test. effective.
Claims (1)
面に電着塗膜を形成せしめ、その電着塗膜中に含まれる
導電性材料の分散性を試験するにあたり、前記被塗装物
の表面に形成された電着塗膜を焼付・硬化した後、該被
塗装物を陰極とし、他の金属材料を陽極として電気めっ
き液中に浸漬し、その両電極間に直流電流を印加して、
被塗装物の表面にめっき層を形成することを特徴とする
導電性電着塗膜における導電性材料の分散性試験方法。When forming an electrodeposition coating film on the surface of an object to be coated using an electrodeposition paint containing a conductive material, and testing the dispersibility of the conductive material contained in the electrodeposition coating film, After baking and curing the electrodeposited coating film formed on the surface of an object, the object to be coated is used as a cathode and another metal material is used as an anode, immersed in an electroplating solution, and a direct current is applied between the two electrodes. do,
A method for testing the dispersibility of a conductive material in a conductive electrodeposition coating film, which is characterized by forming a plating layer on the surface of an object to be coated.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26198284A JPS61139755A (en) | 1984-12-12 | 1984-12-12 | Method for testing dispersibility of conductive material in conductive electrodeposition paint film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26198284A JPS61139755A (en) | 1984-12-12 | 1984-12-12 | Method for testing dispersibility of conductive material in conductive electrodeposition paint film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61139755A true JPS61139755A (en) | 1986-06-27 |
Family
ID=17369354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26198284A Pending JPS61139755A (en) | 1984-12-12 | 1984-12-12 | Method for testing dispersibility of conductive material in conductive electrodeposition paint film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61139755A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016028236A (en) * | 2014-07-11 | 2016-02-25 | 神東アクサルタコーティングシステムズ株式会社 | Evaluation method of cationic electrodeposition paint |
US10465168B2 (en) | 2014-11-20 | 2019-11-05 | Unist (Ulsan National Institute Of Science And Technology) | Particle filtering device and method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215401A (en) * | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | Alloy steel powder for powder metallurgy and its production |
-
1984
- 1984-12-12 JP JP26198284A patent/JPS61139755A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215401A (en) * | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | Alloy steel powder for powder metallurgy and its production |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016028236A (en) * | 2014-07-11 | 2016-02-25 | 神東アクサルタコーティングシステムズ株式会社 | Evaluation method of cationic electrodeposition paint |
US10465168B2 (en) | 2014-11-20 | 2019-11-05 | Unist (Ulsan National Institute Of Science And Technology) | Particle filtering device and method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE3031501C2 (en) | ||
JPH0791667B2 (en) | Mandrel for electroforming | |
US4067782A (en) | Method of forming an electroforming mandrel | |
JPS63303090A (en) | Continuous electroplating method | |
EP0426327B1 (en) | Electrodeposition coating composition and method | |
US4092224A (en) | Process of zinc coating fasteners | |
EP0366941B1 (en) | Process for the electrophoretic coating of chromizable metal surfaces | |
JPS61139755A (en) | Method for testing dispersibility of conductive material in conductive electrodeposition paint film | |
US3349014A (en) | Method and composition for the treatment of an aluminum surface | |
EP0426328B1 (en) | Coating composition and process for the production of coated metal article | |
US3227637A (en) | Method of bonding coatings | |
US3855106A (en) | Process for electrodeposition of paint | |
DE4012086A1 (en) | Surface treating metals before cathodic electro-dip lacquering | |
JPS5934799B2 (en) | Method for producing rough surface electrodeposition coating film and electrodeposition coating composition thereof | |
JPS59208097A (en) | Manufacture of transparent coating | |
JPS607039B2 (en) | Electrodeposition coating method for aluminum or aluminum alloys | |
JPS58210194A (en) | Production of surface treated steel plate | |
US3479268A (en) | Method of applying a binder to electro phoretically deposited porous matrix | |
US3470072A (en) | Process for the electro-deposition of paint coating onto article having predeposited porous zinc layer | |
US3658677A (en) | Electroflow method of electrocoating | |
JPH01208494A (en) | Formation of fluororesin coating film on surface of zinc, zinc alloy or galvanized material | |
US2932609A (en) | Electroforming millimeter wave components | |
JPS60211080A (en) | Treatment with zinc phosphate by immersion | |
KR20120033213A (en) | Measurement method for electro-deposited exterior panel using surface resistance | |
JPH032391A (en) | Production of zinc plated steel sheet excellent in chemical convertibility and performance after coating |