JPS6113891Y2 - - Google Patents

Info

Publication number
JPS6113891Y2
JPS6113891Y2 JP15332279U JP15332279U JPS6113891Y2 JP S6113891 Y2 JPS6113891 Y2 JP S6113891Y2 JP 15332279 U JP15332279 U JP 15332279U JP 15332279 U JP15332279 U JP 15332279U JP S6113891 Y2 JPS6113891 Y2 JP S6113891Y2
Authority
JP
Japan
Prior art keywords
refrigerant
filling
vacuum pump
pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15332279U
Other languages
Japanese (ja)
Other versions
JPS5670760U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP15332279U priority Critical patent/JPS6113891Y2/ja
Publication of JPS5670760U publication Critical patent/JPS5670760U/ja
Application granted granted Critical
Publication of JPS6113891Y2 publication Critical patent/JPS6113891Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Devices For Dispensing Beverages (AREA)

Description

【考案の詳細な説明】 この考案は冷房装置への冷媒の充填装置に関す
るもので、冷媒の充填に伴なう作業を自動的に行
なわせ安全な作業と確実な充填を行なえるように
したものである。従来、この種の冷媒の充填装置
に於いては、充填に伴なう作業の全てを時間設定
のできるタイマースイツチにより行なわせていた
が、このものでは単に時間のみの画一的な作業で
あり冷房装置の容量、気温等による作業条件の変
動に対しては何等の対策も成されていなかつた。
この為、特に充填作業時に於ける冷媒の充填量は
冷媒の蒸発量が温度によつて異なる為、単なる充
填時間のみで定めることはできず更に真空引き作
業時に於いても真空ポンプの実際の回転はその負
荷により大幅な変動があり、これとても時間によ
る画一的な作業で行なうには不都合なものであつ
た。又、上記した問題により生ずる作業の不確実
さから不完全な充填状態となり、この為、手動作
業による必要が生じて高圧の冷媒ガスを扱うに危
険なものであつた。
[Detailed description of the invention] This invention relates to a refrigerant filling device for air conditioners, and it automatically performs the work associated with refrigerant filling to ensure safe work and reliable filling. It is. Conventionally, in this type of refrigerant filling device, all the work associated with filling was performed by a timer switch that could set the time, but with this type of refrigerant filling device, the time was simply a uniform work. No measures were taken to deal with fluctuations in working conditions due to cooling device capacity, temperature, etc.
For this reason, the amount of refrigerant to be charged, especially during filling operations, cannot be determined solely by the filling time, as the amount of evaporation of the refrigerant varies depending on the temperature. There was a large variation in the load depending on the load, and this was very inconvenient to perform uniform work depending on the time. Furthermore, the uncertainties caused by the above-mentioned problems lead to incomplete filling, which necessitates manual work, which is dangerous when handling high-pressure refrigerant gas.

かかるにこの考案では、冷媒の充顛に伴なう作
業を完全に自動化することができ、かつ確実な充
填を行なわせることができるようにしたものであ
る。
In this invention, however, the work associated with refrigerant charging can be completely automated, and the refrigerant can be reliably filled.

以下その実施例について示す図面と共に説明す
ると、1は冷媒装置で冷媒の圧縮機2と蒸発器
3、凝縮器4等より構成され、圧縮機2にこれら
の冷媒管路内への冷媒の充填を行なぬ為の低圧お
よび高圧の接続バルブ6,7が設けられている。
8は冷媒充填装置である。9は冷媒缶、10は冷
媒管9の取付バルブで逆止弁11を具備して冷媒
の一方側のみへの流入を行なわせる。12は取付
バルブ10に具備した缶切刃で冷媒缶9の取付け
に伴なつて該缶9の封口を開口させるものであ
る。13は冷媒の流出を制御する流出制御弁、1
4は膨張弁、15は冷媒を強制的に気化させる気
化器であり取付バルブ10、流出制御弁13、膨
張弁14、気化器15の順序に連結している。1
6は気化器15の出口側に対して連通される低圧
冷媒管路で冷媒の圧力及び真空度を表示する連成
計50と圧縮機2の低圧接続バルブ6に対して接
続される連結バルブ17を設けている。18は高
圧接続バルブ7に対して接続される連結バルブ1
9と高圧側の冷媒の圧力および真空度を表示する
連成計20を設けた高圧冷媒管路である。21は
該冷媒管路18の途中に具備された冷媒の充填圧
を検知する圧力スイツチ等の冷媒検知器。22は
低圧冷媒管路16と高圧冷媒管路18と連通させ
るバイパス冷媒管路で、この管路を適宜に連通さ
せる低圧開閉弁23、高圧開閉弁24を設けてあ
り更にこの互いの開閉弁23,24の中間の管路
位置から冷媒管路内の真空引き行なう真空ポンプ
25へのポンプ管路26が引き出されている。2
7はポンプ管路26に真空ポンプ25へ流通を制
御するように設けた連通弁で、真空ポンプ25の
運転時に動作して管路を連通させるものである。
28は冷媒排出弁でポンプ管路26の連通弁27
の前に具備してあり、前記の管路26の連通時に
冷媒管路内の冷媒を必要に応じて大気中に放出さ
せる。
The embodiment will be explained below with reference to the drawings. Reference numeral 1 denotes a refrigerant device, which is composed of a refrigerant compressor 2, an evaporator 3, a condenser 4, etc. Low-pressure and high-pressure connection valves 6, 7 are provided for this purpose.
8 is a refrigerant filling device. 9 is a refrigerant can, and 10 is a valve attached to the refrigerant pipe 9, which is equipped with a check valve 11 to allow the refrigerant to flow into only one side. Reference numeral 12 denotes a can opener blade provided on the mounting valve 10 for opening the seal of the refrigerant can 9 when the refrigerant can 9 is installed. 13 is an outflow control valve that controls the outflow of refrigerant;
4 is an expansion valve, and 15 is a vaporizer for forcibly vaporizing the refrigerant, which are connected in this order to the mounting valve 10, the outflow control valve 13, the expansion valve 14, and the vaporizer 15. 1
Reference numeral 6 denotes a low-pressure refrigerant pipe line that communicates with the outlet side of the vaporizer 15, and a coupling valve 17 that is connected to a compound gauge 50 that displays the refrigerant pressure and degree of vacuum, and the low-pressure connection valve 6 of the compressor 2. has been established. 18 is a connection valve 1 connected to the high pressure connection valve 7
9 and a compound gauge 20 that displays the pressure and degree of vacuum of the refrigerant on the high-pressure side. Reference numeral 21 denotes a refrigerant detector such as a pressure switch, which is provided in the middle of the refrigerant pipe 18 and detects the filling pressure of the refrigerant. Reference numeral 22 denotes a bypass refrigerant pipe that communicates with the low-pressure refrigerant pipe 16 and the high-pressure refrigerant pipe 18, and is provided with a low-pressure on-off valve 23 and a high-pressure on-off valve 24 that appropriately communicate these pipes. , 24, a pump line 26 is drawn out to a vacuum pump 25 which evacuates the refrigerant line. 2
A communication valve 7 is provided in the pump line 26 to control the flow to the vacuum pump 25, and is operated when the vacuum pump 25 is operated to connect the line.
28 is a refrigerant discharge valve, which is a communication valve 27 of the pump pipe line 26.
The refrigerant in the refrigerant pipe is discharged into the atmosphere as necessary when the pipe 26 is opened.

29はパルス発生器でたとえば冷媒管路25の
回転に同期するように真空ポンプ25の回転軸3
1に取付けた磁性体32とこの磁気を検出する磁
気感応素子33とより成つており回転に同期した
パルス信号を発生させる。34はパルスカウンタ
ーで該信号をカウントして予かじめパルス数を設
定した設定回路35からの信号との一致をゲート
回路36により出力させスイツチング回路37を
制御させる。尚この時スイツチング回路37は電
源の投入と共に閉じゲート回路36からの出力信
号により開き真空引き作業の停止をさせると共に
流出制御弁13の作動を行なわせる。38は電源
スイツチ、39aはスイツチング回路37の真空
引きポンプ回路へのリレー接点、39bは該回路
37の流出制御弁へのリレー接点、40は真空ポ
ンプ25の電動機である。次に動作について説明
すると、まず冷房装置1と冷媒充填装置8を接続
し、電源スイツチ38を閉路させると常閉のリレ
ー接点39aにより真空ポンプ25の回転と高
圧、低圧の開閉弁23,24、連通弁27を開い
て全ての冷媒管路内の真空引きを行なうと共に、
真空ポンプ25の回転によるパルス発生器29の
パルス信号をパルスカウンター34によりカウン
トし、この計数値を予じめ設定回路35により設
定されたパルス数に一致するまでカウントしてこ
の一致をゲート回路36によりスイツチング回路
37の信号として出力させてリレー接点39aを
開路させ真空ポンプ25等の動作を停止さ真空引
き作業を停止させる。そしてこの終了と共にリレ
ー接点39bにより流出制御弁13を動作させ冷
媒管路内への冷媒の充填を開始させこの充填量を
圧力スイツチ等の冷媒検知器21により検知して
流出制御弁13を閉じ充填を停止させるものであ
る。尚この例では、充填作業の基本作業を示した
が充填の作業の終了を検知する冷媒検知器21の
信号により再び真空ポンプ回路を作動させ適宜作
業をくり返すようにすればより完全な充填作業を
行なうことができる。又、切換スイツチ41,4
2により任意に単独の運転も行なわせることがで
きるようにしたとえば充填停止後、切換スイツチ
42を閉じて冷媒の充填を行なわせ前記の圧縮機
2を強制的に回転させれば冷媒の充填を更に強制
的に行なわせることができ最適な充填量とさせる
ことができるものであり真空引き作業も切換スイ
ツチ41により任意に運転させることができる。
Reference numeral 29 denotes a pulse generator which is connected to the rotating shaft 3 of the vacuum pump 25 in synchronization with the rotation of the refrigerant pipe 25, for example.
It consists of a magnetic body 32 attached to the magnet 1 and a magnetically sensitive element 33 that detects this magnetism, and generates a pulse signal synchronized with rotation. A pulse counter 34 counts the signal, and a gate circuit 36 outputs a signal that matches the signal from a setting circuit 35 in which the number of pulses has been set in advance, thereby controlling a switching circuit 37. At this time, the switching circuit 37 closes when the power is turned on, and opens in response to an output signal from the gate circuit 36 to stop the evacuation operation and to operate the outflow control valve 13. 38 is a power switch, 39a is a relay contact to the vacuum pump circuit of the switching circuit 37, 39b is a relay contact to the outflow control valve of the circuit 37, and 40 is the electric motor of the vacuum pump 25. Next, the operation will be explained. First, the cooling device 1 and the refrigerant charging device 8 are connected, and when the power switch 38 is closed, the normally closed relay contact 39a rotates the vacuum pump 25, and the high-pressure and low-pressure on-off valves 23, 24, Opening the communication valve 27 and evacuating all the refrigerant pipes,
The pulse signal of the pulse generator 29 due to the rotation of the vacuum pump 25 is counted by the pulse counter 34, this counted value is counted until it matches the number of pulses set in advance by the setting circuit 35, and this match is detected by the gate circuit 36. This causes the signal to be output from the switching circuit 37 to open the relay contact 39a, thereby stopping the operation of the vacuum pump 25, etc., and stopping the evacuation operation. When this is completed, the outflow control valve 13 is operated by the relay contact 39b to start charging the refrigerant into the refrigerant pipe.The refrigerant detector 21, such as a pressure switch, detects the amount of refrigerant charged, and the outflow control valve 13 is closed to start filling. This is to stop the Although this example shows the basic filling operation, a more complete filling operation can be achieved by activating the vacuum pump circuit again based on the signal from the refrigerant detector 21 that detects the end of the filling operation and repeating the operation as appropriate. can be done. In addition, the changeover switches 41, 4
For example, after stopping charging, closing the changeover switch 42 to perform refrigerant charging and forcibly rotating the compressor 2 will further increase the refrigerant charging. This can be done forcibly and the optimum filling amount can be achieved, and the evacuation operation can also be operated as desired by the changeover switch 41.

以上のようにこの考案は構成されるものであ
り、冷媒管路内の真空引き行なう真空ポンプの回
転に伴つて回転する磁性体に磁気感応素子を対設
して構成したパルス発生器のパルス信号を計数し
て真空ポンプの動作時間を制御させると共に、こ
の御の終了に伴つて冷媒管路内への冷媒の供給を
行なう充填管路の流出制御弁を開放し、かつこの
冷媒の供給を冷媒管路内の冷媒圧力を検知する冷
媒検知器により制御するようにしたので冷媒充填
時に於ける作業を自動的に行なわせることができ
て取扱いが手軽に行なえて都合の良いものであ
り、冷媒管路内の真空引きを真空ポンプの実回転
量に比例したパルス信号を検出して制御するので
電動機の回転と真空ポンプの回転とが伝達装置の
不都合により相違したり負荷の変動による作業量
の変化に対しても実際の作業量による制御ができ
て確実な真空引きを行なわせことができ従来の単
なる時間による画一的な制御と比較して確実な真
空引きを行なえ冷媒中への空気の混入を防ぐので
冷房効果を高め、円滑な圧縮機の回転を行なわせ
て圧縮機の故障も防止できるものである。又、冷
媒管路内への冷媒の充填も真空引きの終了後、冷
媒検知器が検知するまで冷媒を充填させるので気
温、冷房装置の容量などの充填条件の相違に対し
ても常に設定量だけの充填を行なうことができ、
確実な充填をすることができて従来のタイマーに
よる画一的な充填に見られた低温時の冷媒蒸発量
の不足による充填不足、或いは大型冷房装置に充
填時の充填量の不足といつた作業の不完全をなく
し確実な作業を行なわせることができる利点を有
するものであり、これら作業を自動的に行なえる
点、確実に行なえる点などから作業時の安全性に
も優れものである。
As described above, this invention is configured to generate a pulse signal from a pulse generator, which is constructed by placing a magnetic sensing element in opposition to a magnetic body that rotates with the rotation of a vacuum pump that vacuums the refrigerant pipe. The operation time of the vacuum pump is counted and the operating time of the vacuum pump is controlled. At the end of this control, the outflow control valve of the filling pipe, which supplies refrigerant to the refrigerant pipe, is opened, and the supply of refrigerant is stopped. Since it is controlled by a refrigerant detector that detects the refrigerant pressure in the pipe, the work during refrigerant filling can be done automatically, making it convenient and easy to handle. Since the vacuum in the passage is controlled by detecting a pulse signal proportional to the actual rotation amount of the vacuum pump, there is no possibility that the rotation of the electric motor and the rotation of the vacuum pump may differ due to an inconvenience in the transmission device, or the amount of work may change due to fluctuations in load. It is also possible to control according to the actual amount of work and perform a reliable vacuum, and compared to the conventional uniform control based on time, it is possible to perform a reliable vacuum and prevent air from entering the refrigerant. This prevents the compressor from breaking down by increasing the cooling effect and allowing the compressor to rotate smoothly. In addition, the refrigerant pipes are filled with refrigerant until the refrigerant detector detects the refrigerant after the evacuation is completed, so the refrigerant is always filled only at the set amount even if there are differences in charging conditions such as temperature and capacity of the cooling device. can be filled with
It is possible to perform reliable filling, and it is possible to prevent filling problems caused by insufficient evaporation of refrigerant at low temperatures, or insufficient filling amount when filling large air conditioners, which was seen with uniform filling using a conventional timer. It has the advantage of being able to eliminate imperfections and ensure reliable work, and is also excellent in safety during work because these works can be performed automatically and reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1,2図はこの考案の構成の説明図。第3図
は電気回路例図。第4図は取付バルブ部の説明
図。第5図はパルス発生器とその制御構成図であ
る。 13は流出制御弁、21は冷媒検知器、25は
真空ポンプ、29はパルス発生器。
Figures 1 and 2 are explanatory diagrams of the configuration of this invention. FIG. 3 is an example of an electric circuit. FIG. 4 is an explanatory diagram of the mounting valve part. FIG. 5 is a diagram showing a pulse generator and its control configuration. 13 is an outflow control valve, 21 is a refrigerant detector, 25 is a vacuum pump, and 29 is a pulse generator.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 冷媒管路内の真空引きを行なう真空ポンプの回
転に伴つて回転する磁性体に磁気感応素子を対設
して構成したパルス発生器のパルス信号を計数し
て真空ポンプの動作時間を制御させると共に、こ
の制御の終了に伴つて冷媒管路内への冷媒供給を
行なう充填管路の流出制御弁を開放し、かつこの
冷媒の供給を冷媒管路内の冷媒圧力を検知する冷
媒検知器により制御するようにして成る冷媒充填
装置。
The operation time of the vacuum pump is controlled by counting the pulse signals of a pulse generator, which is composed of a magnetic material that rotates with the rotation of the vacuum pump that evacuates the refrigerant pipe, and a magnetically sensitive element is provided oppositely to the magnetic body. Upon completion of this control, the outflow control valve of the filling pipe that supplies refrigerant to the refrigerant pipe is opened, and the supply of refrigerant is controlled by a refrigerant detector that detects the refrigerant pressure in the refrigerant pipe. A refrigerant filling device configured to do this.
JP15332279U 1979-11-05 1979-11-05 Expired JPS6113891Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15332279U JPS6113891Y2 (en) 1979-11-05 1979-11-05

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15332279U JPS6113891Y2 (en) 1979-11-05 1979-11-05

Publications (2)

Publication Number Publication Date
JPS5670760U JPS5670760U (en) 1981-06-11
JPS6113891Y2 true JPS6113891Y2 (en) 1986-04-30

Family

ID=29384100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15332279U Expired JPS6113891Y2 (en) 1979-11-05 1979-11-05

Country Status (1)

Country Link
JP (1) JPS6113891Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5336039B2 (en) 2006-07-21 2013-11-06 ダイキン工業株式会社 Refrigerant charging method in refrigeration apparatus using carbon dioxide as refrigerant

Also Published As

Publication number Publication date
JPS5670760U (en) 1981-06-11

Similar Documents

Publication Publication Date Title
JPH0755617B2 (en) Air conditioner for vehicle
US4068980A (en) Compressor startup control
GB1501228A (en) Compressor control system
CN111649509A (en) Intelligent refrigerant filling control system
EP0275155B1 (en) Fluid leak detector
JPS6113891Y2 (en)
KR910001254A (en) Screw Compressors and their Controls
JPS63161375A (en) Method of filling heat pump device
JPH03111295A (en) Oil filling apparatus
CN110146232A (en) A kind of vacuum tank hydrogen test leak system and its operating method
US5481883A (en) Method and apparatus for reduction of refrigerant gases escaping from refrigeration systems
KR102582651B1 (en) Refrigerant recovery apparatus
JPH0569994B2 (en)
JP3002520U (en) CFC recovery oil separator
JPH025333Y2 (en)
WO1989012792A1 (en) Method and apparatus for full evacuation of air conditioner or refrigeration system
JPS6311576Y2 (en)
JP2000088417A (en) Ice maker
TWI746111B (en) Vacuum control method of intelligent vacuum packaging machine
JP3356807B2 (en) No-load operation device and stop method for engine compressor
CN218653907U (en) Automatic gas distribution device
KR0129654Y1 (en) Automatic door opening device of a refrigerator
JPH0814717A (en) Refrigerant quantity detector for refrigerating cycle
JPS6136141Y2 (en)
JPH04353201A (en) Driving device for compressor