JPS61138540A - Disproportionation catalyst of chlorosilane and continuous production of silane compound - Google Patents

Disproportionation catalyst of chlorosilane and continuous production of silane compound

Info

Publication number
JPS61138540A
JPS61138540A JP26140984A JP26140984A JPS61138540A JP S61138540 A JPS61138540 A JP S61138540A JP 26140984 A JP26140984 A JP 26140984A JP 26140984 A JP26140984 A JP 26140984A JP S61138540 A JPS61138540 A JP S61138540A
Authority
JP
Japan
Prior art keywords
catalyst
disproportionation
chlorosilane
reaction
hydrogen chloride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26140984A
Other languages
Japanese (ja)
Other versions
JPH052379B2 (en
Inventor
Masahiko Nakajima
征彦 中島
Akira Miyai
明 宮井
Shinsei Sato
佐藤 新世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP26140984A priority Critical patent/JPS61138540A/en
Publication of JPS61138540A publication Critical patent/JPS61138540A/en
Publication of JPH052379B2 publication Critical patent/JPH052379B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To produce efficiently silane in great quantities by using a mixture or a reaction product of both a nitrogen compd. which has an electron donor group other than tertiary amine and hydrogen chloride as a disproportionation catalyst of chlorosilane. CONSTITUTION:A mixture and/or a reaction product of both 98-20mol% nitrogen compd. which has an electron donor group such as oxoamines and nitriles other than tertiary amine and 2-80mol% hydrogen chloride is used as a disproportionation catalyst of chlorosilane. A silane compd. is continuously produced in the quick disproportionation velocity in hard-flocculation by the obtained catalyst.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、クロルシランの不均化触媒及びシラン化合物
の連続的製法に関する。更[$t、<は、第3@アミン
を除く電子供与基を有する窒素化合物と塩化水素との混
合物或いは反応物を触媒として用い、クロルクランを反
応塔内で不均斉化反応させると共に蒸留分離を同時に行
なわせ、シクロルシラン、モノシラン等の7ラン化合物
を連続的に取得するシラン化合物の連続的製法及び該[
法に用いる触媒に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a chlorosilane disproportionation catalyst and a continuous process for producing a silane compound. Furthermore, [$t, < means tertiary@] A mixture or reactant of a nitrogen compound having an electron-donating group other than an amine and hydrogen chloride is used as a catalyst to carry out a disproportionation reaction of chlorucrane in a reaction column and to separate it by distillation. A method for continuously producing a silane compound, which simultaneously obtains 7-rane compounds such as cyclosilane and monosilane;
It relates to catalysts used in the process.

ジクロルシラン、モノシラン等は半導体や太陽鑞池累子
に使用される原料として、近年益々需要増加が見込まれ
ており、これらを大量に9jJ!よく製造することが要
望されている。
Demand for dichlorosilane, monosilane, etc. is expected to increase in recent years as raw materials used in semiconductors and Taiyo Zuichi Seiko, and large quantities of these are expected to be produced at 9JJ! There is a demand for good manufacturing.

〔従来の技術〕[Conventional technology]

シランは下記平衡反応に従って触媒の存在下KS1HC
13の不拘β化反応により得られることは公刊である。
Silane is converted to KS1HC in the presence of a catalyst according to the equilibrium reaction below.
What is obtained by the unrestricted β-conversion reaction of No. 13 is publicly available.

ftl  28iHCA’3 .281H2CAt2 
+ 5iC14f21  2SiH2C12、:’  
5IH3C6+ 5iHCA!3(31281H3CJ
  i’  SiH4+ 5iH2CJ2全体で 14  481HC/3 4  SiH4+ 3SiC
1!4その際の不均化触媒としては櫨々のものが提案さ
れているが一長一短がある。例えば、ニトリル類を用い
る方法(U8P 2732282 )は反応温度を15
0’O以上で操作しなければならず、ジメチルフォルム
アミドやジメチルブチルアミvを用いる方法(U8P 
3222511 )は触媒が劣化しやすい等の欠点があ
った。
ftl 28iHCA'3. 281H2CAt2
+ 5iC14f21 2SiH2C12, :'
5IH3C6+ 5iHCA! 3 (31281H3CJ
i' SiH4+ 5iH2CJ2 total 14 481HC/3 4 SiH4+ 3SiC
1!4 As a disproportionation catalyst in this case, Hashira's has been proposed, but it has advantages and disadvantages. For example, in the method using nitriles (U8P 2732282), the reaction temperature is 15
The operation must be performed at 0'O or above, and methods using dimethylformamide or dimethylbutyramide (U8P
3222511) had drawbacks such as the catalyst being susceptible to deterioration.

これらの欠点を改良することを目的とし、例えば、α−
オキノアミン類荷にテトラメチル尿素、NメチルビaI
Jトンなどを用いる方法(U8P4038371、US
P401B871)、テトラメチルグアニジ”%113
ゾメチルイミダ・戸リジノン、Cカプロラクタム、トリ
メチルンリルイミダゾールなどを用いる方法(特開昭5
6−1791+3号公報)、高級第5級アミンを用いる
方法(′#願昭58−149996号黛鑵)などが提案
されている。しかし、これらの触媒では不均斉化速度が
小さいか或いはクロルソランと反応して凝固性の固形物
を形成するため、攪拌を光分に行ない分散させて舷装置
内各部で凝集を起こし運転操作上いろいろトラブルを引
き起こすなどの欠点があった。
The purpose is to improve these drawbacks, for example, α-
Oquinoamines include tetramethylurea, N-methylbiaI
Method using J ton etc. (U8P4038371, US
P401B871), tetramethylguanidi”%113
A method using zomethylimida/torizinone, C-caprolactam, trimethylunrylimidazole, etc.
6-1791+3), a method using a higher tertiary amine ('#Gan Sho 58-149996), etc. have been proposed. However, these catalysts have a low disproportionation rate or react with chlorsolane to form a coagulable solid, so stirring is performed in the light to disperse them and cause agglomeration in various parts of the shipboard, causing various operational problems. It had drawbacks such as causing trouble.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、クロルシラン類の不均斉化に効果のある触
媒として、第6級アミン又は第6級アミンに塩化水素を
添加したものはクロルシランの不均斉化速度を早くでき
、さらには、その触媒はクロルシランと反応して固形物
を作ったとしてもさらさらとした凝集しくくいものとな
るため、倦買上のトラデルが低l戚することを見い出し
、先に′#許出願をした。本発明者は、さら釦倹討を進
めたところ、電子供与基を有する窒素化合物は、はぼ第
511アミンと近い性能を示すことを知り、本発明を提
案するに到ったものである。
The present inventor has discovered that, as a catalyst effective for disproportionation of chlorosilanes, a 6th class amine or a product prepared by adding hydrogen chloride to a 6th class amine can increase the rate of disproportionation of chlorosilane. Even if it reacts with chlorosilane to form a solid substance, it will be smooth and difficult to aggregate, so it was discovered that the amount of Toradel available for purchase was low, and an application for a patent was filed earlier. As a result of further research, the present inventor found that a nitrogen compound having an electron-donating group exhibits a performance similar to that of a 511-th amine, and came to propose the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

すなわち、本発明の第1は、第3吸アミンを除く電子供
与基を有する窒素化合物98〜20モルチと塩化水素2
〜80モルチとの混合物及び/又は反応物からなること
を4?徴とするクロルシランの不均化触媒であり、第2
の発明は、トリクロルシラン等の原料クロルシランを、
不均化触媒を存在させた蒸留機能を有する反応塔忙供給
し、反応塔の上部から原料クロルシランよりも水素原子
の多いシラン化合物を取得する一方、反応塔の底部から
塩素原子の多い7ラン化合物と触媒の混合液を抜き取る
方法において、前記不均化触媒が、第3級アミンを除く
電子供与基を有する窒素化合物98〜20モルチと塩化
水素2〜80モル係との混合物及び/又は反応物である
ことを特徴とするシラン化合物の連続的製法である。
That is, the first aspect of the present invention is to combine 98 to 20 mol of a nitrogen compound having an electron-donating group excluding a tertiary amine and hydrogen chloride 2.
4? Consisting of a mixture and/or reactant with ~80 molti? It is a disproportionation catalyst for chlorosilane with the characteristic
In the invention, raw material chlorosilane such as trichlorosilane,
A silane compound with more hydrogen atoms than the raw material chlorosilane is obtained from the top of the reaction tower, while a 7-rane compound with more chlorine atoms is obtained from the bottom of the reaction tower. and a catalyst, wherein the disproportionation catalyst is a mixture and/or reactant of 98 to 20 mol of a nitrogen compound having an electron-donating group other than a tertiary amine and 2 to 80 mol of hydrogen chloride. This is a continuous method for producing a silane compound characterized by the following.

以下、さらに詳しく本発明忙ついて説明する。Hereinafter, the present invention will be explained in more detail.

第6級アミンを除(電子供与基を有する窒素化合物(以
下、単に’を子供4基を有する窒素化合物という。)と
しては、オキソアミン類、ニトリル類、アゾ化合物、シ
ラン化合物、ニトロ化合物などがあるがオキソアミン類
が好ましく、中でも、テトラメチル尿素、Nメチルピロ
リドン、モルホリン、Cカプロラクタム、Nメチル力グ
ロラクタム、サルコシンアンハイv5イト9、ビスペン
タメチレン尿素、1.3ジメチルチオ尿素、1,6ヅメ
チルイミダ=f IJゾノンが良好で、更に、テトラメ
チルグアニシン、トリメチルシリルイミグ・t−ルも効
果がある。これらは単味でもある種変触媒作用を示すが
、塩化水素と共存させると不均斉化速度が早くなると共
に1固形物を形成しても凝集してしまうようなことはな
く、攪拌により良く分散するため系内に沈積しなくなる
Excluding the 6th class amine (nitrogen compounds having an electron-donating group (hereinafter simply referred to as nitrogen compounds having 4 groups) include oxoamines, nitriles, azo compounds, silane compounds, nitro compounds, etc. Oxoamines are preferable, and among them, tetramethylurea, N-methylpyrrolidone, morpholine, C-caprolactam, N-methylpyrrolidone, sarcosine anhyde v5 9, bispentamethyleneurea, 1.3-dimethylthiourea, 1,6-methylimida=f IJ zonone is good, and tetramethylguanisine and trimethylsilylimig-t-ol are also effective.Although these substances show some kind of catalytic action even when used alone, when they coexist with hydrogen chloride, the rate of disproportionation decreases. As it becomes faster, even if one solid substance is formed, it will not aggregate, and will be dispersed well by stirring, so it will not settle in the system.

電子供与基を育する窒素化合物と塩化水素の割合は、前
者98〜20モルチ、後者2〜80モルチであり、電子
供与基を有する窒素化合物と塩化水素は混合物及び/又
は反応物の形憬のいずれであってもよい。塩化水素の割
合が2モル%未満では、不均斉化反応速度を向上させる
効果は小さく、また、80モルチを越えると、触媒固形
物としてクロルシラン中忙殆んど存在することになり、
流動性が乏しくなる。好ましい割合は、電子供与基を有
する窒素化合物95〜70モルチ、塩化水素5〜30モ
ルチである。
The ratio of the nitrogen compound that grows the electron donating group and hydrogen chloride is 98 to 20 molar for the former and 2 to 80 molar for the latter. It may be either. If the proportion of hydrogen chloride is less than 2 mol%, the effect of improving the disproportionation reaction rate is small, and if it exceeds 80 mol%, it will mostly exist in the chlorosilane as a catalyst solid,
Liquidity becomes poor. Preferred proportions are 95 to 70 mol of the nitrogen compound having an electron-donating group and 5 to 30 mol of hydrogen chloride.

本発明の触媒は、一般式R,N (但し、Rは炭素数4
以上のアルキル基である)で示される第6級動性を改善
することができるので好ましいことである。第3級アミ
ンの併用量は、成子供与基を有する窒素化合物95〜5
モルチに対し5〜95モルチ、好ましくは50〜5モル
チに対し50〜95モルチである。第5級アミンは、成
子供与基を有する窒素化合物とあらかじめ混合してから
塩化水素を添加してもよく、また、電子供与基を有する
窒素化合物に塩化水素を添加してから第6級アミンを混
合してもよい。第31&アミンとしては、トリ0オクチ
ルアミン、トリnブチルアミン、トリDペンチルアミン
、メチルジオクチルアミンなどがあげられるが、入手と
効果の酊から、トリ0オクチルアミン及びトリnブチル
アミンが最適である。
The catalyst of the present invention has the general formula R,N (where R has 4 carbon atoms
This is preferable because it can improve the 6th class mobility shown by the above alkyl group. The combined amount of tertiary amine is 95 to 5
It is 5 to 95 molti to molti, preferably 50 to 95 molti to 50 to 5 molti. The tertiary amine may be mixed in advance with a nitrogen compound having an electron donating group before adding hydrogen chloride, or hydrogen chloride may be added to a nitrogen compound having an electron donating group and then the tertiary amine may be mixed. Examples of the 31st amine include tri-octylamine, tri-n-butylamine, tri-D-pentylamine, and methyldioctylamine, but tri-octylamine and tri-n-butylamine are most suitable from the viewpoint of availability and effectiveness.

本発明の第2は、不均化触媒を存在させた魚雷機能をも
つ反応塔に原料りaルアランを供給し、反応塔の上部よ
り原料クロルシランより水素原子の多い7ラン化合物を
取得し、一方、反応塔の底部より副生ずる塩素原子の多
いシラン化合物及び触媒からなる混合溶液を抜き取り、
その後、該シラン化合物と触媒を分離し、触媒を反応塔
に伽環させるモノシラン、モノクロルシラン、ジクロル
シラン等のシラン化合物を連続的に製造する方法におい
て、不均化触媒として、本発明の詳細な説明した触媒を
用いるものである。
The second aspect of the present invention is to supply the raw material alualane to a reaction tower with a torpedo function in which a disproportionation catalyst is present, and obtain a 7-rane compound having more hydrogen atoms than the raw material chlorosilane from the upper part of the reaction tower, while , a mixed solution consisting of a by-product silane compound containing many chlorine atoms and a catalyst is extracted from the bottom of the reaction tower,
Detailed explanation of the present invention is used as a disproportionation catalyst in a method for continuously producing silane compounds such as monosilane, monochlorosilane, dichlorosilane, etc., in which the silane compound and the catalyst are then separated and the catalyst is transferred to a reaction column. This method uses a catalyst prepared by

以下、これについてさらに詳しく説明する。This will be explained in more detail below.

本発明において、クロルシランとは5iHCl、、8i
H2CJ2および5IH3Clから選ばれた1橿又は2
種以上のものをいう。
In the present invention, chlorosilane is 5iHCl, , 8i
1 or 2 selected from H2CJ2 and 5IH3Cl
Refers to more than a species.

原料クロルシランに対する触媒穢は2〜50モルチ好ま
しくは5〜40モルチである。@煤量が50モル幅を越
えると反応液全体の流動性がそこなわれる。また、2モ
ルチ未満であると不拘f化速度を高める効果が小さい。
The catalyst sludge relative to the raw material chlorosilane is 2 to 50 mol, preferably 5 to 40 mol. @If the amount of soot exceeds 50 moles, the fluidity of the entire reaction solution will be impaired. Moreover, if it is less than 2 molti, the effect of increasing the rate of unrestricted f is small.

本発明で使用される反応塔は、蒸留塔形式のものであり
、例えばシープトレイあるいはバブルキャップトレイ等
で仕切られた段塔あるいはラシヒリングあるいはボール
リング等の充填物を光填した充填塔である。これら蒸留
機能を有する反応塔であればどんな構造のものでもよい
が、本発明に係わるシラン化合物の不均斉化反応が液相
反応であるので、液ホールドアツプの大佐い反応塔が望
ましい。
The reaction column used in the present invention is in the form of a distillation column, and is, for example, a plate column partitioned by sheep trays or bubble cap trays, or a packed column optically filled with packing such as Raschig rings or ball rings. Any structure may be used as long as the reaction column has a distillation function, but since the disproportionation reaction of the silane compound according to the present invention is a liquid phase reaction, a reaction column with a large liquid holding capacity is desirable.

反応塔内の温度は一定ではなく、4蜜分布が生ずる。す
なわち、反応塔内では反応と同時に蒸留による分離が行
われるので、塔頂部の温度は低く、塔底部は昼くなるが
、通常、反応は10〜200°Cの範囲で行われろ。@
度10’C未満では反応速度が低く不均斉化反応が実質
的に、進行せず、また、200℃をこえると触媒の熱分
解が生じやすく好ましくない。また、反応は沸騰状態で
行われるので上記反応織度に保つため忙、ピーシ圧力は
0〜20に9/CM程度となる。反応塔に供給された原
料クロルシランは前述のように、反応と分唯が行われ、
沸点の差罠より、塔の上部から七ノブラン、モノクロル
シラン、ジクロル7ラン、トリクロル7ラン、四塩化珪
素の順に浸度分布が生ずる。
The temperature inside the reaction tower is not constant, and a four-way distribution occurs. That is, since separation by distillation is carried out simultaneously with the reaction in the reaction column, the temperature at the top of the column is low and the temperature at the bottom is daylight, but the reaction is usually carried out at a temperature in the range of 10 to 200°C. @
If the temperature is less than 10'C, the reaction rate is so low that the disproportionation reaction will not substantially proceed, and if the temperature exceeds 200C, thermal decomposition of the catalyst tends to occur, which is undesirable. In addition, since the reaction is carried out in a boiling state, the pressure is about 0 to 20 to 9/CM to maintain the reaction degree as described above. The raw material chlorosilane supplied to the reaction tower undergoes reaction and fractionation as described above.
Due to the boiling point difference trap, a immersion degree distribution occurs in the order from the top of the column: 7-tanobran, monochlorosilane, 7-dichloran, 7-trichloran, and silicon tetrachloride.

次に1図面に従って説明すると、図面は本発明の実施例
釦用いた装置の説明図である。トリクロルシラン等の原
料クロルシランは原料供給4f4を通じて反応塔1の中
上段部に供給する。反応塔1は塔径83sn、高さ2,
000順で18の段数を有するステンレス鋼製蒸留塔で
、各トレイは孔径1.5順の孔が37あるシープトレイ
である。反応塔1の上部忙はステンレス鋼夷の凝縮器3
を設けており、ジャケットにメタノールドライアイスを
通して冷却出来るよう(なっている。また、反応塔10
丁部には最大出力I KWのヒーターを内蔵するりピイ
ラ−2が設けられている。
Next, a description will be given with reference to one drawing. The drawing is an explanatory view of a device using an embodiment button of the present invention. Raw material chlorosilane such as trichlorosilane is supplied to the middle upper stage of the reaction tower 1 through the raw material supply 4f4. The reaction column 1 has a column diameter of 83 sn, a height of 2,
A stainless steel distillation column with 18 plates in order of 000, each tray being a sheep tray with 37 holes in order of pore size of 1.5. The upper part of the reaction tower 1 is a stainless steel condenser 3.
The reaction tower 10 is equipped with a jacket so that it can be cooled by passing methanol dry ice.
A pillar 2 containing a built-in heater with a maximum output of I KW is provided at the bottom.

反応塔1では不均斉化反応と蒸留による分離が同時に起
こり不均斉化反応で生じた低沸点成分に富んだがスは上
方に移動し凝縮器3で冷却され同伴する高沸点成分を凝
縮した後、液体窒素で冷却されたステンレス鋼製凝縮器
6で凝縮させ、液体で補集貯槽7に回収される。
In the reaction column 1, the disproportionation reaction and the separation by distillation occur simultaneously, and the gas produced by the disproportionation reaction, which is rich in low-boiling components, moves upward and is cooled in the condenser 3, condensing the accompanying high-boiling components. It is condensed in a stainless steel condenser 6 cooled with liquid nitrogen, and collected as a liquid in a collection storage tank 7.

一方、不均斉化反応で生じたトリクロルシラン、四塩化
珪素等の高沸点成分は塔底に移行し、触媒と共に’J 
+tfイラー2よりその液面を調節しつつ蒸発槽9に抜
取られる。蒸発FII9は内容積3jの攪拌機付ステン
レス鋼製容器からなりこれにジャケットが設けられてい
る。それ(加熱された熱媒油を循環させ、蒸発槽が加温
されるよ5になっている。この蒸発槽9は不均斉化反応
で生じた四塩化珪素の沸点より高く触媒より低い温度で
操作さヘリボイラー2より抜取られたトリクロルシラン
および四塩化珪素は蒸発し、メタノールげライアイスで
冷却された凝縮器11で補集され、貯槽12に回収され
る。蒸発槽9IC残った触媒はボンデ10により抜取ら
れ、再び反応塔1の塔頂忙循環される。この場合、触媒
中の塩化水素#に度が所定111になっていないときは
、補給管13から塩化水素を補給する。
On the other hand, high-boiling components such as trichlorosilane and silicon tetrachloride generated in the disproportionation reaction migrate to the bottom of the column and together with the catalyst,
The liquid is extracted from the +tf errorer 2 into the evaporation tank 9 while its liquid level is adjusted. The evaporator FII 9 consists of a stainless steel container with an internal volume of 3j and equipped with a stirrer, and is provided with a jacket. The evaporator tank 9 is heated at a temperature higher than the boiling point of silicon tetrachloride produced in the disproportionation reaction and lower than the catalyst. Trichlorosilane and silicon tetrachloride extracted from the operated heliboiler 2 are evaporated, collected in a condenser 11 cooled with methanol and ice, and recovered in a storage tank 12.The catalyst remaining in the evaporator tank 9 is transferred to a bonder 10. The hydrogen chloride is extracted from the catalyst and circulated again at the top of the reaction tower 1. In this case, if the hydrogen chloride # in the catalyst does not reach the predetermined level of 111, hydrogen chloride is replenished from the replenishment pipe 13.

〔実施例〕〔Example〕

以下実施例と比較例をあげてさらく具体的に説明する。 A more detailed explanation will be given below with reference to Examples and Comparative Examples.

実施例1 内容f500cr−のSU8304#オー h りL/
−フ(ジャケット及び攪拌機付)にトリクロル7ラン(
5iHC7+3 ) 1モルを用いて反応温度、触媒の
1類、塩化水素の添加債及び触媒添加4:を第1表に示
すように変えて密閉状、aで不均斉化反応を行い、がス
相のクロルシラン量を経時的にがスクロマトグラフイ−
にで定置した。なお、ガス相の8iHC#3量の変化は
@換率に相当するが、ここでは5iHCAI3濃度が一
定1(]になる迄の時間とその時の5iH(V3の濃度
について第1表に示した。第1表において時間が短い程
転換速度(不均斉化速度)が速く、5iHCJ3のa闇
値が低いもの程転換率が良いことを示す。また第1表に
は計算により求めた平衡5IHC/3a度を参考として
示した。塩化水素の添加は、所定嘘に相当するがス量を
オートクレープに加圧封入して行なった。
Example 1 Contents f500cr-SU8304#auhriL/
- 7 runs of trichloride (with jacket and stirrer)
Using 1 mol of 5iHC7+3), the disproportionation reaction was carried out in a closed state in a, changing the reaction temperature, catalyst type 1, hydrogen chloride addition amount and catalyst addition amount 4: as shown in Table 1, and the disproportionation reaction was carried out in a closed state. The amount of chlorosilane was chromatographed over time.
It was placed in place. Note that the change in the amount of 8iHC#3 in the gas phase corresponds to the @conversion rate, and here Table 1 shows the time until the 5iHCAI3 concentration reaches a constant 1(] and the concentration of 5iH(V3) at that time. In Table 1, the shorter the time, the faster the conversion rate (disproportionality rate), and the lower the a value of 5iHCJ3, the better the conversion rate.Table 1 also shows the equilibrium 5IHC/3a obtained by calculation. Hydrogen chloride was added by pressurizing and sealing a predetermined amount of hydrogen chloride in an autoclave.

実施例2 実施例1において原料5iHCAi3を5ta2c/2
に変更し、第2表に示す4汁で不均斉化速度6させその
がス相のElIH,4度をがスクロマトグラフイーで定
数し一度が一定となる時間とその時の濃度を第2表に示
した。
Example 2 In Example 1, the raw material 5iHCAi3 was changed to 5ta2c/2
The disproportionation rate was changed to 6 with the 4 juices shown in Table 2, and the time when 4 degrees of ElIH in the phase becomes a constant in chromatography, and the concentration at that time are shown in Table 2. Indicated.

参考として計算により求められた平衡SiH,のがス相
濃度を第2表に示した。
For reference, the equilibrium SiH and gas phase concentrations determined by calculation are shown in Table 2.

実施例6 触媒として、第3級アミンと成子供与基を何する窒素化
合物との混合物に塩化水素を添加したものを用いた以外
は実施例1と同様にして実験を行なった。その結果を第
3表に示す。
Example 6 An experiment was carried out in the same manner as in Example 1, except that a mixture of a tertiary amine and a nitrogen compound serving as a child-donating group to which hydrogen chloride was added was used as a catalyst. The results are shown in Table 3.

実施例4 実施例3尾おいて、原料をジクロル7ラン((変更した
ところ、実施例2で示した結果とけず同等の値が得られ
た。
Example 4 In Example 3, the raw material was changed to 7 runs of dichloride ((), and the same value as that shown in Example 2 was obtained.

比較例1 実施例1に示したと同様の方法で、HCIを添加しない
場合と多すぎる場合につぎ実験した。その結果を第1表
に示した。
Comparative Example 1 In the same manner as shown in Example 1, an experiment was conducted in which HCI was not added and in which it was added too much. The results are shown in Table 1.

比較例2 実権例2に示したと同様の方法で、 HC/を添加しな
い場合と、多電添加の場合につぎ実暎じた。
Comparative Example 2 Using the same method as shown in Practical Example 2, experiments were carried out in the case where HC/ was not added and in the case where polyelectrode was added.

比較例3 触媒として、トIJ fiオクチルアミンと、テトラメ
チル尿素又はテトラメチルグアニジンとの7#、金物(
MCIは添加せず)を用い実施例6と同様の実1験を行
なった。その時果をH,3表に示す。
Comparative Example 3 As a catalyst, IJ fi octylamine and 7# of tetramethylurea or tetramethylguanidine, metal (
An experiment similar to that in Example 6 was conducted using the same method as in Example 6 (without adding MCI). The results are shown in Table H.3.

以下糸自 実施例5 蒸発槽9にトリnオクチルアミンを21.テトラメチル
尿素を1j充填し、塩化水素がスを21g吹込んで、触
媒(テトラメチル尿素69モルチ、トlJnオクチルア
ミン23モル%、HCl8モルチ)を調整し、ジャケッ
トの熱媒油を加熱して100’0に保った。一方、反応
塔上部梁#!i 3を一60″Cのメタノールドライア
イスで冷却した後、反応塔下部りヴイラ−2を電気ヒー
ターにより加熱し、反応塔I K トIJクロル7ラン
を4.01# / hrの流量で原料供給導管4から連
続的に供給した。同時釦、触媒循環ポンプ10を@動し
て蒸発槽9内の触媒を1.07 kg/ hrf)流量
で反応塔1に循環した。反応塔1の内部圧力は調節弁5
により調節しり調節し、リボイラー内の触媒を含んだ反
応液を蒸発49に抜き取った。回収触媒に補給管13よ
り塩化水素ガスを50に/ minの流量で補給しなが
ら連続的に反応塔に循環した。
The following is Example 5: 21. Fill 1 j of tetramethyl urea, blow in 21 g of hydrogen chloride, adjust the catalyst (69 mol of tetramethyl urea, 23 mol of trioctylamine, 8 mol of HCl), and heat the heat transfer oil in the jacket to 100 g. 'Kept at 0. On the other hand, the upper beam of the reaction tower #! After cooling the I3 with methanol dry ice at 160"C, the lower part of the reaction tower - 2 was heated with an electric heater, and 7 runs of chlorine were added to the reactor at a flow rate of 4.01#/hr. It was continuously supplied from the supply conduit 4. At the same time, the catalyst circulation pump 10 was operated to circulate the catalyst in the evaporator 9 to the reaction tower 1 at a flow rate of 1.07 kg/hrf. Inside the reaction tower 1 Pressure is controlled by control valve 5
The reaction liquid containing the catalyst in the reboiler was extracted to the evaporator 49. The recovered catalyst was continuously circulated to the reaction tower while being supplied with hydrogen chloride gas through the supply pipe 13 at a flow rate of 50/min.

反応塔塔底のりサイラ−2の@度を85’OK保持して
20時間の連続運転を行ったところ、塔頂からは低沸点
がスが175.9/hrの速度で取得され、補集貯槽γ
の補集液をゴスクロマトグラフィーにより分析したとこ
ろ、モノシラン80チ、モ/りoルクラ710.5%、
ジクロルシラン9.5チであった。
When continuous operation was carried out for 20 hours while maintaining the temperature of siler 2 at the bottom of the reaction column at 85'OK, low boiling point gas was obtained from the top of the column at a rate of 175.9/hr and collected. Storage tank γ
Analysis of the collected liquid by Goschromatography revealed that 80% monosilane, 710.5% monosilane, 710.5% monosilane,
The amount of dichlorosilane was 9.5%.

一方、蒸発槽9で蒸発したクロルンランを凝縮器11で
冷却し3.83klF/hrの速度で貯[12に回収し
た。回収液の組成をがスクロマトグラフイ−により分析
したところ、モル比でトリクロルシラン48チ、四塩化
珪素52チであった。
On the other hand, the chlorouran evaporated in the evaporator 9 was cooled in the condenser 11 and collected at a rate of 3.83 klF/hr. When the composition of the recovered liquid was analyzed by chromatography, it was found that the molar ratio was 48% trichlorosilane and 52% silicon tetrachloride.

実施例6 蒸発槽9にテトラメチル尿素を21光填し、塩化水素が
スを381吹込んで触媒(テトラメチル尿素89モルチ
、HCぎ11モルチ)を調整し、それを5709/hr
の流量で反応塔1に循環する以外は実施例5と同様に行
った。その結果、塔頂からは低沸点ガスが164.9/
hrの速度で取得され、その補集、液のモルM或は、モ
ノ7ラン79.5チ、モノクロルシラン11.0%、シ
クロルシラン8.0チ、)ジクロルシラン1.5チであ
った。一方、蒸発[9で蒸発したクロルノランを凝縮器
11で冷却し5.84 k!;l / hrの速度で貯
槽12に回収した。回収液のモル組成はトリクロルンラ
ン55%、四塩化珪素45%であった。
Example 6 The evaporation tank 9 was charged with 21 mol of tetramethyl urea, 381 mol of hydrogen chloride was blown in to prepare a catalyst (89 mol of tetramethyl urea, 11 mol of HC), and it was heated at 5709/hr.
The same procedure as in Example 5 was carried out except that the mixture was circulated to the reaction column 1 at a flow rate of . As a result, a low boiling point gas of 164.9/
The moles M of the liquid collected were 79.5% mono7ran, 11.0% monochlorosilane, 8.0% cyclosilane, and 1.5% dichlorosilane. On the other hand, the chlornorane evaporated in evaporation [9] is cooled in condenser 11 to 5.84 k! ; l/hr into storage tank 12. The molar composition of the recovered liquid was 55% trichlorane and 45% silicon tetrachloride.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、以下の効果を奏する。 According to the present invention, the following effects are achieved.

!11  従来の触媒忙比べて、150’O以下の低温
で平衡転換率に近い転換率が得られる。
! 11 Compared to conventional catalysts, a conversion rate close to the equilibrium conversion rate can be obtained at a low temperature of 150'O or less.

(21平衡転換率に達する時間が短く、不均斉化速度が
大きくなるので装#ヤ小型化できる。
(Since the time to reach the 21 equilibrium conversion rate is short and the disproportionation rate is high, the equipment can be made smaller.

(3)触媒が凝集することがないので長期の連続運転が
可能となる。
(3) Since the catalyst does not aggregate, long-term continuous operation is possible.

【図面の簡単な説明】[Brief explanation of drawings]

図画は、本発明の実施例に用いた装置の説明図である。 1 反応塔      2 リ〆イラー3 凝縮器  
    4 原料供給導管5  tA節弁      
6 鍛縮器7 補集貯槽    8 ニードルパルプ槽 9 蒸発器     10 ビンデ 11 凝縮器    12 貯槽 13 塩化水素補給管
The drawing is an explanatory diagram of an apparatus used in an example of the present invention. 1 Reaction tower 2 Refiller 3 Condenser
4 Raw material supply conduit 5 tA control valve
6 Forging machine 7 Collection storage tank 8 Needle pulp tank 9 Evaporator 10 Binde 11 Condenser 12 Storage tank 13 Hydrogen chloride supply pipe

Claims (2)

【特許請求の範囲】[Claims] (1)第3級アミンを除く電子供与基を有する窒素化合
物98〜20モル%と塩化水素2〜80モル%との混合
物及び/又は反応物からなることを特徴とするクロルシ
ランの不均化触媒。
(1) A catalyst for disproportionation of chlorosilane characterized by being composed of a mixture and/or reactant of 98 to 20 mol% of a nitrogen compound having an electron-donating group other than a tertiary amine and 2 to 80 mol% of hydrogen chloride. .
(2)トリクロルシラン等の原料クロルシランを、不均
化触媒を存在させた蒸留機能を有する反応塔に供給し、
反応塔の上部から原料クロルシランよりも水素原子の多
いシラン化合物を取得する一方、反応塔の底部から塩素
原子の多いシラン化合物と触媒の混合液を抜き取る方法
において、前記不均化触媒が、第3級アミンを除く電子
供与基を有する窒素化合物98〜20モル%と塩化水素
2〜80モル%との混合物及び/又は反応物であること
を特徴とするシラン化合物の連続的製法。
(2) Supplying raw material chlorosilane such as trichlorosilane to a reaction column having a distillation function in which a disproportionation catalyst is present,
In a method in which a silane compound having more hydrogen atoms than the raw material chlorosilane is obtained from the upper part of the reaction tower, and a mixed liquid of a silane compound having more chlorine atoms and a catalyst is extracted from the bottom of the reaction tower, the disproportionation catalyst is a third 1. A continuous method for producing a silane compound, which is a mixture and/or reactant of 98 to 20 mol% of a nitrogen compound having an electron-donating group other than a primary amine and 2 to 80 mol% of hydrogen chloride.
JP26140984A 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound Granted JPS61138540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26140984A JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26140984A JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Publications (2)

Publication Number Publication Date
JPS61138540A true JPS61138540A (en) 1986-06-26
JPH052379B2 JPH052379B2 (en) 1993-01-12

Family

ID=17361465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26140984A Granted JPS61138540A (en) 1984-12-11 1984-12-11 Disproportionation catalyst of chlorosilane and continuous production of silane compound

Country Status (1)

Country Link
JP (1) JPS61138540A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847958B2 (en) * 2004-09-17 2011-12-28 エボニック デグサ ゲーエムベーハー Apparatus and method for producing silane
US11028289B2 (en) 2014-12-16 2021-06-08 3M Innovative Properties Company Adhesive article with a barrier layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847958B2 (en) * 2004-09-17 2011-12-28 エボニック デグサ ゲーエムベーハー Apparatus and method for producing silane
US11028289B2 (en) 2014-12-16 2021-06-08 3M Innovative Properties Company Adhesive article with a barrier layer

Also Published As

Publication number Publication date
JPH052379B2 (en) 1993-01-12

Similar Documents

Publication Publication Date Title
JPS5988492A (en) Continuous manufacture of monomer or oligomer alkoxysilane
US4610858A (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
JP4922303B2 (en) Monosilane production method
KR101397349B1 (en) Process for continuously producing monosilane
JPH01283817A (en) Evaporation of semiconductor silicon by cvd
US4470959A (en) Continuous production of silicon tetrafluoride gas in a vertical column
US20150123038A1 (en) Advanced off-gas recovery process and system
JPS60145907A (en) Continuous production of silane compound
JPS61138540A (en) Disproportionation catalyst of chlorosilane and continuous production of silane compound
WO2014100705A1 (en) Conserved off gas recovery systems and processes
JPH0511045B2 (en)
JPS60215513A (en) Continuous preparation of silane compound
JPS61191513A (en) Continuous production of silane compounds
JPH02196014A (en) Production of high purity dichlorosilane
JPH0359077B2 (en)
JPS6163519A (en) Production of monosilane
JPH0470249B2 (en)
RU2152902C2 (en) Method of preparing silanes
JPH0472764B2 (en)
EP0213215B1 (en) Chlorosilane disproportionation catalyst and method for producing a silane compound by means of the catalyst
CA1158835A (en) Method for producing sodium hydrogen-carbonate and hydrogen-chloride
CA1254716A (en) Chlorosilane dispropotionation catalyst and method for producing a silane compound by means of the catalyst
JPH06211878A (en) Continuous production of 3-(n-@(3754/24)2-aminoethyl)) aminoropylkoxysilane and its production apparatus
JPS6153107A (en) Continuous production of silane compound
JP2013536793A (en) Method for producing monosilane from dichlorosilane