JPS61138530A - Inorganic cobalt adsorbent and its production - Google Patents

Inorganic cobalt adsorbent and its production

Info

Publication number
JPS61138530A
JPS61138530A JP25910684A JP25910684A JPS61138530A JP S61138530 A JPS61138530 A JP S61138530A JP 25910684 A JP25910684 A JP 25910684A JP 25910684 A JP25910684 A JP 25910684A JP S61138530 A JPS61138530 A JP S61138530A
Authority
JP
Japan
Prior art keywords
titania
adsorbent
sol
raw material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25910684A
Other languages
Japanese (ja)
Inventor
Tadahiro Yoneda
忠弘 米田
Midori Kamo
みどり 鴨
Shigefumi Kuramoto
成史 倉本
Takeshi Satake
剛 佐竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP25910684A priority Critical patent/JPS61138530A/en
Publication of JPS61138530A publication Critical patent/JPS61138530A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the shape crumbling of the titled adsorbent in under-water and to improve the maintenance of the mechanical strength by molding the cobalt adsorbent from a molded body of titania hydrate and/or titanium oxide contg. titania short fiber. CONSTITUTION:Titania sol is mixed uniformly and dispersively with a mixture of the titania short fiber and the titania particles and this mixture is molded. Then a titania cobalt adsorbent is produced by dehydrating the molded material at least partially. As the proportion of raw material of the titania short fiber, at least 2wt% expressed in terms of TiO2 is preferably for the raw material of total titania. Also as the added quantity of titania sol, 1-50wt% expressed in terms of TiO2 is preferable for the raw material of total titania. Alkali metal and alkaline earth metal capable of dissolving into high-temp. water are not necessarily contained in the raw material to the utmost.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は無機コバルト吸着剤をよびその製造方法に関す
る。詳しくはチタニア短繊維を含有するチタニア水和物
および/またはチタン酸化物成型体からなることを特徴
とする機械的強度および耐熱水性に優れ九チタニア系コ
バルト吸着剤に関する。更に本発明社上記チタニア系コ
バルト吸着剤の製造に際し、チタニア短繊維とチタニア
粒子の混合物にチタニアゾルを均一に分散、混練する工
程と、該混線物を成型する工程と、該成型物を減圧脱水
、加熱脱水などくよシ少なくとも部分的に脱水せしめる
工程とからなるチタニア成型体からなるコバルト吸着剤
の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an inorganic cobalt adsorbent and a method for producing the same. Specifically, the present invention relates to a titania-based cobalt adsorbent having excellent mechanical strength and hot water resistance and characterized by being made of a titania hydrate and/or titanium oxide molded body containing titania staple fibers. Furthermore, when manufacturing the above-mentioned titania-based cobalt adsorbent of the present invention, the steps of uniformly dispersing and kneading titania sol in a mixture of titania short fibers and titania particles, molding the mixed material, dehydrating the molded product under reduced pressure, The present invention relates to a method for producing a cobalt adsorbent made of a titania molded body, which comprises a step of at least partially dehydrating such as heating and dehydrating.

本発明の無機コバルト吸着剤は捌々の被処理液を対象と
するが、例えはぷ子炉の被曝の要因である一次冷却水中
に溶存するコバルトの吸着除去剤として有効に利用され
る。
Although the inorganic cobalt adsorbent of the present invention is intended for a large amount of liquid to be treated, it can be effectively used as an adsorbent and remover for cobalt dissolved in the primary cooling water, which is a cause of radiation exposure in a Pushi reactor, for example.

本発明の吸着剤は機械的強度、吸着能力および耐熱水性
に優れているために炉水温度を低下せしめることなく高
温高圧下に使用することが可能である〇 〈従来技術〉 現在、炉水浄化の目的で実用化されている炉水浄化装置
にはすべて有機物系のイオン交換樹脂が用いられている
。しかし耐熱性に問題があるため浄化装置の入口で通水
の温度を60℃以下に低下させる必要がある。その場合
、熱゛的損失を最小限に防ぐために全循環水量の一部の
みを所定温度まで冷却し処理を行ない残部は未処理の1
ま再循環される。故にその処理能力においても熱的効率
も悪く、炉水温度を低下せしめることなく高温高圧下に
使用することができる優れた無機イオン吸着剤の開発が
強く要望されておシ、これまでも耐熱水性、耐放射線性
のある無機イオン吸着剤が柚々検討されてきている。
The adsorbent of the present invention has excellent mechanical strength, adsorption ability, and hot water resistance, so it can be used under high temperature and high pressure without lowering the reactor water temperature. All reactor water purification systems that have been put into practical use for this purpose use organic ion exchange resins. However, since there is a problem with heat resistance, it is necessary to lower the temperature of water flowing to 60° C. or lower at the inlet of the purifier. In that case, in order to minimize thermal loss, only a portion of the total circulating water is cooled to a predetermined temperature and treated, and the remainder is left untreated.
Well, it gets recirculated. Therefore, its processing capacity and thermal efficiency are poor, and there is a strong demand for the development of an excellent inorganic ion adsorbent that can be used under high temperature and high pressure without lowering the reactor water temperature. , radiation-resistant inorganic ion adsorbents have been extensively studied.

無機吸着剤として、鉄、錫、チタニワム、ジルコニワム
、マンガン、ニオブおヨヒタンタルなどの酸化物、含水
酸化物または上記金属のリン酸またはタングステン酸と
の塩などの化合物が有効であることは公知である。しか
し上述した無機物質の中で、コバルト吸着特性、i%温
水中での安定性および吸着材の一部が炉内に持ち込まれ
たときの放射化のでれ難さなどを総合的に評価した場合
、チタン酸化物が好ましく、チタン酸化物を吸着剤とし
て実用化するべく糧々の方法が提案されている。
It is known that compounds such as oxides and hydrous oxides of iron, tin, titanium, zirconium, manganese, niobium and tantalum, or salts of the above metals with phosphoric acid or tungstic acid are effective as inorganic adsorbents. . However, among the above-mentioned inorganic substances, when we comprehensively evaluate the cobalt adsorption characteristics, stability in i% hot water, and the difficulty of activating when a part of the adsorbent is brought into the reactor, , titanium oxide is preferred, and numerous methods have been proposed to put titanium oxide into practical use as an adsorbent.

例えば、粉末酸化チタンを凝集性金ll4rR化物と共
に凝集体として用いる方法(%%%陥59−80327
号公報明細書)、多孔質チタン金属の表面にチタン欧化
物を焼結担持した吸着剤(%開昭59−62343号公
報明細書)、多孔性アルミナに酸化チタンを担持させた
吸着剤(#j開昭57−40692号公報明細書)など
である。
For example, a method using powdered titanium oxide as an aggregate together with an agglomerated gold compound (%%
(Specification of Japanese Patent Publication), Adsorbent with titanium oxide supported by sintering on the surface of porous titanium metal (Specification of Japanese Patent Publication No. 59-62343), Adsorbent with titanium oxide supported on porous alumina (# (Japanese Patent Publication No. 57-40692).

これらはいずれもチタン酸化物をコバルト吸着活性物質
として用いるものであり、実用化に際しての固液分離の
問題、あるいは固定床として用いる際での担体による機
械的強度の保持と多孔質担体とすることによる活性物質
の高分散および非吸着剤物質であるコバルトの細孔内で
の物質移動の改良などを目的としたものであると考えら
れる。
All of these use titanium oxide as a cobalt adsorption active material, and there are problems with solid-liquid separation in practical use, and the need to maintain mechanical strength and use a porous carrier when used as a fixed bed. It is thought that the purpose of this is to improve the high dispersion of active substances and the mass transfer within the pores of cobalt, which is a non-adsorbent material.

しかし上述した方法のいずれも連続操作上に問題がある
とか、吸着能力が低いとか担持物質が剥離しやすいとい
う問題があシ未だ工業的に使用するには種々の改良すべ
き点が多い。
However, all of the above-mentioned methods have problems in continuous operation, low adsorption capacity, and easy peeling of supported substances, and there are still many points that need to be improved before they can be used industrially.

一方、層状構造を有するチタニア水和物繊維をその層中
に有するH s OまたはHとCo ”をイオン交換す
ることによりイオン交換材として使用しうろことは公知
である(セラミックス、19(1984)、No、2.
P126−P133)。又、チタニア水和物繊維、非晶
質のチタニア繊維およびチタニア繊維が陽イオン吸着剤
として用いうろことも公知である(特開昭55−337
1号公報明細書)。しかし、いずれも本発明が開示繊維
のみを使用して工業的に連続的にコバルトを吸着分離す
るKは依然として問題が残る。なぜなら上記文献に掲げ
られているチタニア系線維は長さがせいぜい数醜である
(本発明においては該形状を短繊維とよぷ)のでそれら
の集合体は乾いている時は粉末状で1)、水に分散させ
た時は懸濁液となシ、本質的にチタニア粒子と変らない
。従って上記チタニア線維を単味で吸着剤として用いた
場合チタニア粒子と同様固液の分離が必要となる。
On the other hand, it is known that titania hydrate fibers having a layered structure can be used as an ion exchange material by ion-exchanging H s O or H with Co'' in the layers (Ceramics, 19 (1984)). , No, 2.
P126-P133). Furthermore, titania hydrate fibers, amorphous titania fibers, and scales in which titania fibers are used as cation adsorbents are also known (Japanese Patent Laid-Open No. 55-337
1 publication specification). However, in both cases, there still remains a problem in the industrial continuous adsorption and separation of cobalt using only the fiber disclosed in the present invention. This is because the length of the titania-based fibers listed in the above-mentioned document is at most a few digits long (in the present invention, this shape is referred to as short fibers), so when their aggregates are dry, they are powder-like (1) When dispersed in water, it becomes a suspension and is essentially the same as titania particles. Therefore, when the above-mentioned titania fibers are used alone as an adsorbent, separation of solid and liquid is required as in the case of titania particles.

また、チタニア水和物またはチタン酸化物を触媒担体、
吸着剤として工業的使用に耐えうる成型体とする方法は
以前より検討されてきている。例えば“rナターゼ型も
しくは無定形の結晶構造を有するチタンの水利酸化物に
無機酸を混合して成型する方法(特開昭55−8844
号公報明細書)、硫酸チタンに微粒子ケイ酸を添加し、
熱加水分解後焼成する方法(特開昭59−35025号
明細書など)および水利チタンの一部を解膠して焼成、
粉砕した粉体にチタニアゾルを添加して成型する二段焼
成法(特開昭59−123532号公報明細書)などで
ある。
In addition, titania hydrate or titanium oxide can be used as a catalyst carrier,
Methods for producing molded bodies that can withstand industrial use as adsorbents have been studied for some time. For example, "a method of mixing an inorganic acid with a titanium water-use oxide having a natase type or amorphous crystal structure and molding it" (Japanese Patent Application Laid-open No. 55-8844
(specification of the publication), adding fine particle silicic acid to titanium sulfate,
A method of calcining after thermal hydrolysis (Japanese Patent Application Laid-Open No. 59-35025, etc.), a method of peptizing a part of Iruri titanium and calcining,
Examples include a two-stage firing method (Japanese Patent Laid-Open No. 123532/1983) in which titania sol is added to pulverized powder and molded.

しかしながら、これらは原子炉−次戸水の高温高圧下処
理に用いた場合、その強度、コバルト吸着性能において
まだ不満足なものである。
However, when these are used for high-temperature, high-pressure treatment of nuclear reactor water, their strength and cobalt adsorption performance are still unsatisfactory.

また、特に成型体の強度を上けるために使用するバイン
ダーがチタン以外の放射線の影響を受けやすい金属成分
を含有するものであった場合には、上記処理中にその成
分が剥離し放射化されるという危険を帯びている。
In addition, especially if the binder used to increase the strength of the molded product contains a metal component other than titanium that is easily affected by radiation, that component will peel off during the above treatment and become radioactive. There is a danger that

またチタニア短繊維のみ、あるいはチタニア短繊維とチ
タニア粒子との混合物に上記した公知技術を適用してみ
ても、水中で崩壊するなど機械的強度および耐熱水性が
不十分なものにしかならない。
Furthermore, even if the above-mentioned known techniques are applied to only short titania fibers or a mixture of short titania fibers and titania particles, the mechanical strength and hot water resistance will be insufficient, such as disintegration in water.

〈発明が解決しようとする問題点〉 上述した従来技術のチタニア系吸着剤が原子炉−火炉水
中のコバルト吸着剤として実用化に至ら炉水との分離を
効果的に行なうことが困難である。
<Problems to be Solved by the Invention> Although the titania-based adsorbent of the prior art described above has been put into practical use as an adsorbent for cobalt in nuclear reactor-fire reactor water, it is difficult to effectively separate it from reactor water.

■チタニア水和物またはチタン酸化物を多孔性担体に担
持せしめたものは吸着活性成分でるるチタニア含有量が
不十分でしかめシえないために吸着能力の低下が大きく
またチタニア成分が剥離しやすい。■チタニア水和物ま
たはチタン酸化物の成型体としたものは機械的強度、耐
熱水性、低表面積による吸着能力の低下、成型時に混入
する不純物による悪影響等それぞれ不満足な点がある。
■Those with titania hydrate or titanium oxide supported on a porous carrier have insufficient titania content, which is the adsorption active ingredient, and cannot be compressed, resulting in a large decrease in adsorption capacity and the titania component easily peeling off. . ■ Molded titania hydrates or titanium oxides have unsatisfactory points such as mechanical strength, hot water resistance, reduced adsorption ability due to low surface area, and adverse effects due to impurities mixed in during molding.

く問題点を解決するだめの手段〉 本発明は上記問題点に鑑みなされたもので高温高圧下で
のコバルト吸着能、機械的強度、耐熱水性に優れた実質
的にチタンの水和物および/または酸化物からなるチタ
ニア成型体を提供するものである。
Means for Solving the Problems> The present invention has been made in view of the above problems, and provides a substantially titanium hydrate and/or material having excellent cobalt adsorption ability under high temperature and pressure, mechanical strength, and hot water resistance. Alternatively, a titania molded body made of an oxide is provided.

即ち本発明は以下の如く特定される。That is, the present invention is specified as follows.

(1)  チタニア短繊維を含有するチタニア水和物お
よび/またはチタン酸化物成型体からなることを特徴と
するチタニア系コバルト吸着剤。
(1) A titania-based cobalt adsorbent comprising a titania hydrate and/or titanium oxide molded body containing titania staple fibers.

(2)  チタニア短繊維が直径0.1μm〜1)I!
l+の範囲、載の吸着剤。
(2) Titania short fibers have a diameter of 0.1 μm ~ 1) I!
Adsorbents in the l+ range.

(3)  チタニア短繊維の含有量が成型体中の全チタ
ニア水和物および/またはチタン酸化物に対しTiO2
として少なくとも2]Li%であることを特徴とする上
記(1)または(2)記載の吸着剤。
(3) The content of titania short fibers is TiO2 relative to the total titania hydrate and/or titanium oxide in the molded body.
The adsorbent according to (1) or (2) above, wherein the adsorbent is at least 2] Li%.

(4)  チタニア短繊維とチタニア粒子との混合物に
チタニアゾルを均一に分散、混練する工程と、見られる
混練物を成型する工程と、えられる成型物を少なくとも
部分的に脱水する工程とからなることを特徴とするチタ
ニア系コバルト吸着剤の製造方法。
(4) Consists of a step of uniformly dispersing and kneading titania sol in a mixture of titania staple fibers and titania particles, a step of molding the resulting kneaded product, and a step of at least partially dehydrating the resulting molded product. A method for producing a titania-based cobalt adsorbent characterized by:

(5)  チタニア短繊維の原料割合が、全チタニア原
料に対しTiO2として少なくとも2重量%であること
を特徴とする上記(4)記載の方法。
(5) The method according to (4) above, wherein the raw material proportion of the titania short fibers is at least 2% by weight as TiO2 based on the total titania raw material.

(6)  チタニアゾルの添加量が全チタニア原料に対
しTiO2として1〜50重量幅であることを特徴とす
る上記(4)または(5)記載の方法。
(6) The method described in (4) or (5) above, wherein the amount of titania sol added is in the range of 1 to 50% by weight of TiO2 based on the total titania raw material.

〈作  用〉 無機酸化物ゾルが無機成型体のバインダーとなることは
公知である。しかし本発明者らの検討によれは、チタニ
ア短繊維含有チタニア成型体を製造する場合、シリカゾ
ル、アルミナゾルでは少量の添加ではバインダー効果を
殆んど発揮しなかった。それらに比較し驚くべきことに
チタニアゾルを使用した場合少量の添加でも顕著なバイ
ンダー効果が発現し、それと共に機械的強度、耐熱水性
が向上し、しかもコバルト吸着能が非常に優れていると
いう予期しえない知見をえた。また一方チタニア粒子の
みを原料として同様にチタニアゾルで成型した場合には
バインダー力は弱く、ゾルを多量に必要とするか例えば
%開昭59−123532号公報明細書に示される如き
複雑な工程が必要であると推察され、本発明におけるチ
タニア短繊維の添加とチタニアゾルの使用が相乗的(働
き、初めて吸着剤として好適な成型体となしえたもので
ある。
<Function> It is known that an inorganic oxide sol serves as a binder for an inorganic molded body. However, according to studies conducted by the present inventors, when producing a titania molded article containing short titania fibers, silica sol or alumina sol hardly exhibits a binder effect when added in small amounts. Surprisingly, when titania sol is used, a remarkable binder effect is exhibited even with the addition of a small amount, and at the same time, mechanical strength and hot water resistance are improved, and the cobalt adsorption ability is extremely excellent. I learned something I couldn't have known. On the other hand, when titania particles are used as raw material and similarly molded with titania sol, the binder force is weak and a large amount of sol is required or a complicated process as shown in, for example, the specification of Japanese Patent Publication No. 59-123532 is required. It is presumed that the addition of titania short fibers and the use of titania sol in the present invention work synergistically, and for the first time, a molded body suitable as an adsorbent can be obtained.

本発明で用いられるチタニア短繊維は従来公知の製法に
より見られるもので、その形状が直径0.1μm〜ll
l11)の範囲、長さが0.5μm 〜5 wmの範囲
のもので、好ましくはアスペクト比が3以上、特に好ま
しくはアスペクト比5以上のものならはいずれも好適に
用いることができる。これら4例えば一般式M z O
・1TiQ2 (Mはアルカリ金属、nは1〜6の範囲
の正数をそれぞれ表わす)で示されるチタン酸アルカリ
金属ウィスカーより水熱処理または散水#液処理による
チタニア繊維の製法(囁業協会誌、86 [c+] 1
97 s。
The titania short fibers used in the present invention are produced by a conventionally known manufacturing method, and their shapes range from 0.1 μm to 11 mm in diameter.
11), the length is in the range of 0.5 μm to 5 wm, and preferably the aspect ratio is 3 or more, and particularly preferably the aspect ratio is 5 or more. These 4, for example, general formula M z O
・Production method of titania fiber from alkali metal titanate whiskers represented by 1TiQ2 (M is an alkali metal, and n is a positive number in the range of 1 to 6) by hydrothermal treatment or water sprinkling #liquid treatment (Shigyo Kyokai Magazine, 86 [c+] 1
97 s.

P430〜P432、%開昭55−3371号、特開昭
59−150543号各公報明細書など)、三項 。
P430 to P432, % Japanese Patent Application Publication No. 55-3371, Japanese Patent Application Publication No. 59-150543, etc.), Section 3.

化チタン溶液を酸化ガスで徐々に酸化する方法(特開昭
56−78426号公報明細書)、チタンアルコキシド
類と水酸化カリウムの複合体を紡糸後酸処理する方法(
特開昭58−156347号公報明細書)、酸化物水性
チタニアゾルを加熱された熱媒体溶液中添加する方法(
特開昭58−174618号公報明細書)などによって
製造することができる。そして、形状が上記した範囲の
ものならばこの発明におけるチタニア短繊維として用い
ることができる。結晶形としてはチタニア水和物および
非晶質、アナターゼ。
A method of gradually oxidizing a titanium oxide solution with an oxidizing gas (Japanese Unexamined Patent Publication No. 56-78426), a method of acid treatment of a composite of titanium alkoxides and potassium hydroxide after spinning (
JP-A-58-156347), a method of adding an oxide aqueous titania sol into a heated heat medium solution (
JP-A-58-174618). If the shape is within the above-mentioned range, it can be used as the short titania fiber in the present invention. Crystalline forms include titania hydrate, amorphous, and anatase.

ルチルなどの酸化チタンのいずれか又は混合物であって
もよい。
It may be any or a mixture of titanium oxides such as rutile.

チタニア短繊維の添加割合はチタニア原料に対して少量
含有するだけでチタニアゾルの添加と合いまって機械的
強度および耐水性の向上に効果を発揮するが、好ましく
はチタニア短繊維の含有量が成型体中の全チタニア水和
物および/またはチタン酸化物に対しT i Ozとし
て計算して少なくとも2重量繋とする。2%より少ない
場合はその添加効果は十分ではない。また上記範囲内の
一例として、チタニア短繊維のみの原料にチタニアゾル
を添加して成型体とする場合も当然含まれ、この場合実
施例で示すように本発明に開示する%徴をもつ以外に、
細孔径がある一定範囲に非常に制御されたものとなり吸
着効率の向上という観点から特に好ましい吸着剤である
。その細孔径は使用するチタニア短繊維の形状、特に直
径と相関関係があυ、小さな細孔径を多く必要とする場
合は直径の小さい短繊維の添加割合を増し、逆に大きな
細孔径を多く必要とする場合は直径の大きな短繊維を主
に使用することKより、細孔径および細孔径分布を自在
に制御しうる。チタニア短繊維の含有量が成型体中のチ
タニア化合物に対してTiOxとして60重量優以上で
あれば側孔物性を制御しうるので好ましい。上記した%
徴は吸着剤として実用化する際に成型体中の物質移動を
コントロールしうろことによp液の流量、温度などの吸
着操作条件に対応しうる吸着剤が製造できる点で有利と
なる。また涼 炉冷却水中に含有するクラッドの除去効
果も高くなり好ましい。しかし上述した利点はチタニア
短繊維をある特定範囲で含有させた場合の付加的な特徴
を示したのみであってチタニア短繊維の含有量を限定す
るものでないことは明らかである。
The addition ratio of titania short fibers to the titania raw material is effective in improving mechanical strength and water resistance when combined with the addition of titania sol, but it is preferable that the content of titania short fibers is low enough to improve the molded product. At least 2 weights of titania hydrate and/or titanium oxide, calculated as T i Oz, are used. If it is less than 2%, the effect of its addition is not sufficient. In addition, as an example within the above range, it is naturally included that a molded body is made by adding titania sol to the raw material of only titania short fibers, and in this case, in addition to having the percentage characteristics disclosed in the present invention as shown in the examples,
It is a particularly preferred adsorbent from the viewpoint of improving adsorption efficiency since the pore diameter is very controlled within a certain range. The pore size has a correlation with the shape of the titania short fibers used, especially the diameter.If a large number of small pores are required, the proportion of short fibers with small diameters should be increased, and conversely, many large pores are required. In this case, the pore size and pore size distribution can be freely controlled by mainly using short fibers with a large diameter. It is preferable that the content of the titania short fibers is more than 60% by weight of TiOx based on the titania compound in the molded body, since the physical properties of the side holes can be controlled. % mentioned above
This feature is advantageous in that when it is put to practical use as an adsorbent, it is possible to produce an adsorbent that can respond to the adsorption operation conditions such as the flow rate and temperature of the p-liquid by controlling the mass transfer in the molded body. Moreover, the effect of removing crud contained in cool oven cooling water is also increased, which is preferable. However, it is clear that the above-mentioned advantages only indicate additional characteristics when titania short fibers are contained within a certain range, and do not limit the content of titania short fibers.

チタニア短繊維およびチタニアゾル以外のチタニア水和
物および/またはチタン酸化物の粒子状(単にチタニア
粒子とよぷ)原料は、形状として球状、不定形状または
凝集状粒・子であり針状または矩形状のものであっても
アスペクト比3未満の粒子など、チタニア短繊維および
チタニアゾル以外でik終終着着剤した際チタニア水和
物および/またはチタン酸化物にな9うるすべてのチタ
ン原料をこの中に含めるものである。それらは従来公知
の方法で製造される。レリえば四塩化チタン、硫酸チタ
ニル、硝酸チタンなどのチタンの塩をアルカリ加水分解
、熱加水分解などにより、またはチタンテトライソプロ
ポキシドなどのチタンのアルコキシドを加水分解してえ
られるオルトチタン酸、メタチタン酸などのチタニア水
和物、およびチタニア水和物を焼成して見られる非晶質
、アナターゼ型またはルチル型酸化チタンなどである。
Particulate raw materials of titania hydrate and/or titanium oxide other than titania short fibers and titania sol (simply referred to as titania particles) are spherical, irregularly shaped, or agglomerated particles/particles, acicular or rectangular in shape. All titanium raw materials that can be converted into titania hydrate and/or titanium oxide when applied with an ik terminal agent other than titania short fibers and titania sol, such as particles with an aspect ratio of less than 3, even if they are Include. They are manufactured by conventionally known methods. Orthotitanic acid and metatitanium obtained by alkaline hydrolysis, thermal hydrolysis, etc. of titanium salts such as titanium tetrachloride, titanyl sulfate, and titanium nitrate, or by hydrolyzing titanium alkoxides such as titanium tetraisopropoxide. These include titania hydrates such as acids, and amorphous, anatase-type, or rutile-type titanium oxides that are obtained by calcining titania hydrates.

更に上述したチタニア短債維を機械的に粉砂してアスペ
ク・ト比を3未満にしたものも使用しうる。
Furthermore, it is also possible to use the above-mentioned short titania bond fibers which are mechanically powdered to have an aspect ratio of less than 3.

チタニアゾルも従来公知の方法でa造することができる
。例えば四塩化チタン、硫酸チタニルなどのチタンの塩
を加水分解してオルトチタン酸粒子とした後、塩化バリ
ウム、塩酸などで解膠するか、チタンテトライソプロポ
キシドのようなチタンアルコキシドを部分的に加水分解
する方法などで製造しうるが、上記製法t′c限定され
るものではない。チタニアゾルは溶媒が水系である水性
ゾルまたはエタノール、イソプロパツールなどのアルコ
ール類、トルエンなどの芳香族類などの有機溶媒系であ
るオルガノゾルのいずれも使用しうる。
Titania sol can also be produced by a conventionally known method. For example, after hydrolyzing titanium salts such as titanium tetrachloride and titanyl sulfate to form orthotitanic acid particles, peptizing them with barium chloride or hydrochloric acid, or partially converting titanium alkoxides such as titanium tetraisopropoxide into orthotitanic acid particles. Although it can be produced by a method such as hydrolysis, it is not limited to the above production method t'c. As the titania sol, either an aqueous sol in which the solvent is water-based or an organosol in which the solvent is an organic solvent such as alcohols such as ethanol and isopropanol, or aromatics such as toluene can be used.

本発明でいうチタニアゾルはゾルを構成するチタニア単
一粒子の大きさく分布があってもさしつかえないが、チ
タニアゾルの添加量を示す場合、単一粒子の大きさが1
0−1,000大の範囲内にある粒子量をTi0z換算
で表わすものとする。
The titania sol referred to in the present invention may have a size distribution of the titania single particles constituting the sol, but when indicating the amount of titania sol added, the size of the single particle is 1.
The amount of particles within the range of 0 to 1,000 is expressed in terms of Ti0z.

なぜなら本発明者らの知見によれば、チタニア単一粒子
の大きさが10〜t、oooλ、より好ましくは30〜
5ooXの範囲内のチタニア粒子がバインダーとしての
効果が大きいからである。従って上記範囲外の単一粒子
径のものKついてはチタ二′γ水和物粒子原料として扱
うものとする。
This is because, according to the findings of the present inventors, the size of a single titania particle is 10~t, oooλ, more preferably 30~
This is because titania particles within the range of 5ooX are highly effective as a binder. Therefore, particles with a single particle diameter outside the above range are treated as titanium di'γ hydrate particle raw materials.

チタニアゾルの添加量は全チタニアi料に対しTiO2
として好ましくは1〜5039J1%の範囲添加する。
The amount of titania sol added is TiO2 for the total titania i material.
It is preferably added in a range of 1 to 5039J1%.

1qhより少ないと本発明に開ボする機械的強度および
耐熱水性のある成型体となりえず、50%より多い場合
バインダー力は大きくなるが経済的ではない。
If it is less than 1 qh, it will not be possible to obtain a molded product that has the mechanical strength and hot water resistance required for opening according to the present invention, and if it is more than 50%, the binder force will increase, but this is not economical.

以上の各チタニア原料中には高温水中に浴出する可能性
のあるアルカリ金属、アルカリ土類金属などの金属化合
物、およびイオウ、ノーロゲンなどの化合物は極力含有
せしめてはならない。
Metal compounds such as alkali metals and alkaline earth metals, and compounds such as sulfur and norogen, which may be leached out in high-temperature water, and compounds such as sulfur and norogen should not be contained in each of the above titania raw materials as much as possible.

倒故ならそれらが原子炉水中に溶出し配管などの腐蝕の
問題があるから′Cある。
If there is a collapse, there will be a problem of corrosion of pipes and other parts due to these substances leaching into the reactor water.

まずチタニア短繊維とチタニア粒子の混合物、もしくは
チタニア短繊維のみの原料にチタニアゾルと場合により
適当量の水、アルコール等を添加してチタニアゾルを均
一に分散、混練する。
First, titania sol and optionally an appropriate amount of water, alcohol, etc. are added to a mixture of titania short fibers and titania particles, or a raw material of only titania short fibers, and the titania sol is uniformly dispersed and kneaded.

その際後の成型する工程における成型性を考慮して該混
線物中にデンプン、ポリビニルアルコールなど通常用い
られる成型性改良剤を添加することもできる。また機械
的強度を更に高める目的でシリコンカーバイド、窒化硅
素、アルミナなどのウィスカーを1〜30iJi%の範
囲含有せしめることができる。
In this case, a commonly used moldability improver such as starch or polyvinyl alcohol may be added to the mixed material in consideration of moldability in the subsequent molding step. Further, in order to further increase the mechanical strength, whiskers such as silicon carbide, silicon nitride, and alumina may be contained in a range of 1 to 30 iJi%.

次いで上記混練物を押出成型法、転勤造粒法、打錠成型
法、マルメライザー成型法など従来公知の方法によシ成
型体とする。
Next, the kneaded product is made into a molded product by a conventionally known method such as extrusion molding, transfer granulation, tablet molding, or marmerizer molding.

成型体の形としてはペレット状、球状、棒状、三角錘状
、リング状、ハニカム状などいかなる形状にも成型しう
る。
The molded product can be molded into any shape such as a pellet, sphere, rod, triangular pyramid, ring, or honeycomb shape.

次いで上記成型物を少なくとも部分的に脱水し吸着剤と
する。具体的には室温乾燥、減圧脱水、加熱脱水などの
方法の中から適宜選択することができる。その際どの脱
水方法を選ぶかは吸着剤としてのチタンの化学的性質、
%に結晶構造と関係する。例えばチタニア水和物のみか
らなる吸着剤を製造する場合は、室温乾燥および/また
は0〜200℃での減圧脱水によりえることができ、ア
ナターゼ型および/またはルチル型酸化チタンのみから
なる吸着剤を製造する場合は1100℃までの加熱脱水
をその工程単独または室温乾燥および/または減圧脱水
に次いで行なうことができる。他の結晶形および混合物
の場合も上記した3つの脱水方法のいずれか単独、もし
くは組合せにより行うことができる。
The molded product is then at least partially dehydrated to form an adsorbent. Specifically, it can be appropriately selected from methods such as room temperature drying, vacuum dehydration, and heating dehydration. The choice of dehydration method depends on the chemical properties of titanium as an adsorbent.
% is related to crystal structure. For example, when producing an adsorbent consisting only of titania hydrate, it can be obtained by drying at room temperature and/or dehydration under reduced pressure at 0 to 200°C. In the case of production, heating dehydration up to 1100° C. can be carried out alone or subsequent to room temperature drying and/or vacuum dehydration. In the case of other crystal forms and mixtures, dehydration can be carried out by any one of the above three methods or in combination.

上述した脱水工程により初めてチタニアゾルがバインダ
ーとして有効に慟らくものである。
The titania sol can be effectively used as a binder only through the dehydration process described above.

その機構はチタニアゾル中のゾル粒子の表面にある水酸
基がゾル粒子どおしおよびチタニア短繊維、チタニア粒
子表面の水酸基との脱水縮合によって成型体を強固にな
らしめると考えられる。その中で本発明者らにも予期し
えなかったことであるが、室温乾燥および/または0〜
200℃での常圧または減圧脱水の如き低温でなどの耐
熱水性が優れており、従ってチタンがいかなる構造のも
のであっても実用に耐え4うる吸着剤が製造しうろこと
である。
The mechanism is thought to be that the hydroxyl groups on the surface of the sol particles in the titania sol strengthen the molded product through dehydration condensation with the hydroxyl groups on the surface of the sol particles, short titania fibers, and titania particles. Among these, something that the present inventors could not have expected was that room temperature drying and/or
It has excellent hot water resistance at low temperatures such as normal pressure or vacuum dehydration at 200°C, and therefore, it is possible to produce an adsorbent that can withstand practical use regardless of the structure of titanium.

上記した原料および製法により製造された成型体吸着剤
は軽水型原子炉における給水系、舟循環系などの一次炉
水系中に炉水浄化系を設けその中に吸着剤を充填して用
いられる。その場合炉水温度(280〜3zoc)を浄
化系の前で低下させる必要はない。
The molded adsorbent produced using the raw materials and manufacturing method described above is used by providing a reactor water purification system in a primary reactor water system such as a water supply system or a boat circulation system in a light water reactor and filling the system with the adsorbent. In that case, there is no need to lower the reactor water temperature (280-3zoc) before the purification system.

以下に実施例でもって本発明を更に具体的に説明する。The present invention will be explained in more detail with reference to Examples below.

なお各物性測定は下記の方法により行なった。In addition, each physical property measurement was performed by the following method.

機械的強度 0圧壊強度−木屋式硬度計による 0粉化度−100−ガラス裂丸底フラスコの中に成型体
吸着剤lr(4mφ×4ffi1)IHのベレットで約
20個)および純水50m/を仕込み、フラスコを10
 Or、p、mで1時間回転させた後成型体を取り出し 乾燥後重量を測定し次式に従って求め た。
Mechanical strength: 0 crushing strength - 0 by Kiya type hardness tester - Powdering degree: 100 - Molded adsorbent lr (4 mφ x 4ffi1) (approximately 20 IH pellets) and pure water 50 m / Prepare 10 flasks.
After rotating at Or, p, m for 1 hour, the molded body was taken out, dried, and weighed according to the following formula.

耐熱水性 0高温水中での型くずれ一高温水中でのコバルト吸着テ
スト後の成型体の目視観察および水 の濁りの有無の確認による 0水へのチタンの溶出−高温水中でのコバルト吸着テス
ト後水中のチタンを原子吸光分 析によシ測定。
Hot water resistance 0 Deformation in high-temperature water - Visual observation of the molded body after cobalt adsorption test in high-temperature water and confirmation of water turbidity 0 Elution of titanium into water - Deformation in water after cobalt adsorption test in high-temperature water Titanium was measured by atomic absorption spectrometry.

その他の物性 0表面積−BET法による 0細孔容蓋、細孔径分布−水銀圧入法による実施例 1
〜7 (1)チタニア短繊維の製造 四チタン酸カリウム短繊維(直径0.2〜0.7t1m
+長さ3〜500μm)を0.5N硝酸水溶液中に懸濁
し、室温で12時間撹拌した後濾過により液と分離した
。上記操作を3回繰り返し最後はケーキを純水で洗浄す
ることKより四チタン酸カリウム短繊維中のカリウムイ
オンを溶出除去しチタニア水和物ウィスカーをえ、次い
で300℃で焼成してチタニア短ffl#(チタニア短
繊維−八とする)を製造した。上記チタニア短繊維の形
状(電子顕微鏡による観察結果)、T i Oz含有i
l(残分は水和水)を下記の表−1に示す。同様にして
形状の異なる四チタン酸カリウム短li1.維を原料に
用いたシ、焼戊堪度を変化させて種々のチタニア短繊維
を製造した。下記の表−1に製造したチタニア短NR維
番号と物性を示す。
Other physical properties: 0 surface area - 0 pore volume by BET method, pore size distribution - Example 1 by mercury intrusion method
~7 (1) Production of titania short fiber Potassium tetratitanate short fiber (diameter 0.2-0.7t1m
+ length 3 to 500 μm) was suspended in a 0.5N nitric acid aqueous solution, stirred at room temperature for 12 hours, and then separated from the liquid by filtration. Repeat the above operation three times and finally wash the cake with pure water. Elute and remove the potassium ions in the potassium tetratitanate short fibers to obtain titania hydrate whiskers, and then bake at 300°C to create titania short ffl. # (titania short fibers - number 8) was produced. Shape of the titania short fibers (observation results using an electron microscope), T i Oz content i
1 (the remainder is hydration water) is shown in Table 1 below. Potassium tetratitanate short li1. Various short titania fibers were produced using titania fibers as raw materials and varying the degree of burning resistance. Table 1 below shows the manufactured titania short NR fiber numbers and physical properties.

表   −1 なおチタニア短繊維中の不純物金属は微Ik(0,を重
ilL%以下)のカリウムのみであり、形状のうちアス
ペクト比はすべて5以上であった。
Table 1 Note that the impurity metal in the titania short fibers was only potassium with a slight Ik (less than 0% by weight), and all the aspect ratios of the shapes were 5 or more.

(n)チタニアゾルの製造 O製法 1 硫酸チタニル水溶液−アンモニア水を加えオルトチタン
酸の沈殿を生成させ、該沈殿物を分離し、多量の水で水
洗してオルトチタン酸のケーキをえた。次に濃硝酸水溶
敢(ケーキ中のTi1tに対する硝酸のモル比2.5)
中にケーキを攪拌Fに添加し透明な粗チタニアゾルとし
た。次いで粗チタニアゾル中に含有する硫酸イオン、硝
酸イオンを透析によシ除去し純粋なチタニアゾル(撰度
、Ti12として15重量る)を製造した。チタニアゾ
ル中のチタニア粒子の大きさは透過型電子顕微鏡で観察
した結果60〜150λの範囲でめった。(チタニアゾ
ル中イとする) 0製法 2 INの硝酸水溶液を攪拌しながら、その中にチタンテト
ライソグロボキシドのインプロパツール溶液を徐々に滴
下し、Ti0t換算濃度2.0 、を量子のチタニアゾ
ルをえ、次いで室温、減圧下に溶媒(イングロパノール
)の一部を蒸発させTi0z換X*度8.5重量%のチ
タニアゾルを製造した。ゾル中のチタニア粒子の大きさ
は500〜800λであった。(チタニアゾルーロトス
ル)(1)吸着剤の製造 (りで製造したチタニア短繊維および粒子状酸化チタン
(デグプ社製アエロジル酸化チタンP−25アナターゼ
/ルチル= 75/25、・・・・・・粒子状酸化チタン−(X)と
する、またはチタニア短繊維−人′fr:機械的に粉砕
しO01〜i、oμm犬の矩形状チタニア粒子(アスペ
クト比社3未満)・・・・・・粒子状酸化チタン−(Y
)とする)をプレンダーに仕込み、十分混合した後(1
)で製造したチタニアゾルを添加し均一に分散、混練し
た。
(n) Production of titania sol Production method 1 A titanyl sulfate aqueous solution and aqueous ammonia were added to form a precipitate of orthotitanic acid, and the precipitate was separated and washed with a large amount of water to obtain a cake of orthotitanic acid. Next, dissolve concentrated nitric acid in water (molar ratio of nitric acid to Ti1t in the cake: 2.5)
The cake was added to stirring F to obtain a transparent crude titania sol. Next, the sulfate ions and nitrate ions contained in the crude titania sol were removed by dialysis to produce a pure titania sol (15 weight as Ti12). The size of the titania particles in the titania sol was determined to be within the range of 60 to 150λ as a result of observation using a transmission electron microscope. (Assumed to be in titania sol) 0 Manufacturing method 2 While stirring an IN nitric acid aqueous solution, an inpropatol solution of titanium tetraisogloboxoxide was gradually dropped into it to form a quantum titania sol with a Ti0t equivalent concentration of 2.0. Then, a part of the solvent (Ingropanol) was evaporated at room temperature under reduced pressure to produce a titania sol containing 8.5% by weight of TiOz-exchanged X* degree. The size of titania particles in the sol was 500-800λ. (Titania Solurotosul) (1) Production of adsorbent (titania short fibers and particulate titanium oxide (manufactured by Degup Aerosil Titanium Oxide P-25 Anatase/Rutile = 75/25,... Particulate titanium oxide (X) or titania short fibers: mechanically crushed O01-i, oμm dog rectangular titania particles (aspect ratio less than 3)...particles titanium oxide (Y
) in a blender, mix thoroughly, then add (1
) was added, uniformly dispersed, and kneaded.

次いで上記混線物を押し出し収型磯によシ4簡φX 4
 w Hのペレット状に押し出し、成型した。次に成型
体を下記のff−2に示す条件で脱水し種々のチタニア
成型吸着剤を製造した。吸着剤番号とTi1tの原料割
合および吸着剤の物性との関係を表−2に示すO (rV)コバルト吸着テスト 硝酸コバルトを浴所させた純水(コバルト濃度txio
−’モ#/1)100t/および(菖)で製造した吸着
剤約0.22を精秤して、500−のステンレス製(S
US−31s)オートクレーブに仕込み、外部よりm気
加熱を行ない内部の液温を320℃とした。外部し試料
水および吸着剤を取り出し、試料水については吸着剤の
形くずれによる濁りのM無および原子吸光分析によりT
tの溶=iを測定し、吸着剤については十分水洗した汝
(+11C酸アンモニウムを添加溶解濾ぞた砲硫酸に吸
看却1を溶牌させその俗解液中のコバルト量を原子吸光
分析することによりコバルト吸着ikt求めた。結果を
下記の表−3に示す。
Next, push out the above-mentioned contaminants and place them on a molded rock.
w H was extruded and molded into pellets. Next, the molded bodies were dehydrated under the conditions shown in ff-2 below to produce various titania molded adsorbents. Table 2 shows the relationship between the adsorbent number, the raw material ratio of Ti1t, and the physical properties of the adsorbent.
-'Mo#/1) 100t/and approximately 0.22 of the adsorbent manufactured by (Ayame) were weighed, and 500-mm stainless steel (S
US-31s) was placed in an autoclave and heated from the outside to bring the internal liquid temperature to 320°C. The sample water and adsorbent were taken out, and the sample water was checked for turbidity due to deformation of the adsorbent and T by atomic absorption analysis.
Measure the solution of t=i, and for the adsorbent, add ammonium +11C acid, which has been thoroughly washed with water, dissolve Absorbent 1 in filtered sulfuric acid, and analyze the amount of cobalt in the solution by atomic absorption spectroscopy. The cobalt adsorption ikt was determined by this method.The results are shown in Table 3 below.

Claims (6)

【特許請求の範囲】[Claims] (1)チタニア短繊維を含有するチタニア水和物および
/またはチタン酸化物成型体からなることを特徴とする
チタニア系コバルト吸着剤。
(1) A titania-based cobalt adsorbent comprising a titania hydrate and/or titanium oxide molded body containing titania staple fibers.
(2)チタニア短繊維が直径0.1μm〜1mmの範囲
、長さが0.5μm〜5mmの範囲でかつアスペクト比
が3以上であることを特徴とする特許請求の範囲(1)
記載の吸着剤。
(2) Claim (1) characterized in that the titania short fibers have a diameter in the range of 0.1 μm to 1 mm, a length in the range of 0.5 μm to 5 mm, and an aspect ratio of 3 or more.
Adsorbent as described.
(3)チタニア短繊維の含有量が成型体中の全チタニア
水和物および/またはチタン酸化物に対しTiO_2と
して少なくとも2重量%であることを特徴とする特許請
求の範囲(1)または(2)記載の吸着剤。
(3) Claim (1) or (2) characterized in that the content of titania short fibers is at least 2% by weight as TiO_2 based on the total titania hydrate and/or titanium oxide in the molded body. ) adsorbent described.
(4)チタニア短繊維とチタニア粒子との混合物にチタ
ニアゾルを均一に分散、混練する工程と、えられる混練
物を成型する工程と、えられる成型物を少なくとも部分
的に脱水する工程とからなることを特徴とするチタニア
系コバルト吸着剤の製造方法。
(4) Consisting of a step of uniformly dispersing and kneading titania sol in a mixture of titania staple fibers and titania particles, a step of molding the resulting kneaded product, and a step of at least partially dehydrating the resulting molded product. A method for producing a titania-based cobalt adsorbent characterized by:
(5)チタニア短繊維の原料割合が、全チタニア原料に
対しTiO_2として少なくとも2重量%であることを
特徴とする特許請求の範囲(4)記載の方法。
(5) The method according to claim (4), wherein the raw material proportion of the titania short fibers is at least 2% by weight as TiO_2 based on the total titania raw material.
(6)チタニアゾルの添加量が全チタニア原料に対しT
iO_2として1〜50重量%であることを特徴とする
特許請求の範囲(4)または(5)記載の方法。
(6) The amount of titania sol added is T to the total titania raw material.
The method according to claim (4) or (5), characterized in that iO_2 is 1 to 50% by weight.
JP25910684A 1984-12-10 1984-12-10 Inorganic cobalt adsorbent and its production Pending JPS61138530A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25910684A JPS61138530A (en) 1984-12-10 1984-12-10 Inorganic cobalt adsorbent and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25910684A JPS61138530A (en) 1984-12-10 1984-12-10 Inorganic cobalt adsorbent and its production

Publications (1)

Publication Number Publication Date
JPS61138530A true JPS61138530A (en) 1986-06-26

Family

ID=17329403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25910684A Pending JPS61138530A (en) 1984-12-10 1984-12-10 Inorganic cobalt adsorbent and its production

Country Status (1)

Country Link
JP (1) JPS61138530A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023527A (en) * 1995-06-21 2008-02-07 Speciality Media Corp Composite particulate material
JP2009090244A (en) * 2007-10-10 2009-04-30 National Institute Of Advanced Industrial & Technology Cobalt adsorbent and method for preparing the same
EP3967393A4 (en) * 2019-05-10 2023-01-25 Titan Kogyo Kabushiki Kaisha Cobalt ion adsorption material and method for producing same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008023527A (en) * 1995-06-21 2008-02-07 Speciality Media Corp Composite particulate material
JP2009090244A (en) * 2007-10-10 2009-04-30 National Institute Of Advanced Industrial & Technology Cobalt adsorbent and method for preparing the same
EP3967393A4 (en) * 2019-05-10 2023-01-25 Titan Kogyo Kabushiki Kaisha Cobalt ion adsorption material and method for producing same

Similar Documents

Publication Publication Date Title
Basahel et al. Influence of crystal structure of nanosized ZrO 2 on photocatalytic degradation of methyl orange
TWI280946B (en) Metal oxide solid solution, preparation and use thereof
Djuričić et al. Nanostructured cerium oxide: preparation and properties of weakly-agglomerated powders
JP5066090B2 (en) Method of coating metal (M2) oxide ultrafine particles on the surface of metal (M1) oxide particles
JP3513738B2 (en) Method for producing titania from nanotubes
Hu et al. Ceria hollow spheres as an adsorbent for efficient removal of acid dye
JPH1095617A (en) Plate-shaped titanium oxide, production thereof, and anti-sunburn cosmetic material, resin composition, coating material, adsorbent, ion exchanging resin, complex oxide precursor containing the same
Yuan et al. Preparation and photocatalytic properties of ilmenite NiTiO3 powders for degradation of humic acid in water
CN100485086C (en) Preparation method for depositing cerium dioxide on carbon nano-tube in overcritical water
Akpan et al. Solar degradation of an azo dye, acid red 1, by Ca–Ce–W–TiO2 composite catalyst
JP4428541B2 (en) Granular titanate ion exchanger and method for producing the same
CN105197981A (en) Preparation of high-activity nano zinc oxide
JPS61138530A (en) Inorganic cobalt adsorbent and its production
CN1321942C (en) Method for preparing Nano crystal of metal oxide of anti agglomeration
JPH08266897A (en) Fixed photocatalyst and its production
JPS6051381B2 (en) Inorganic adsorbent for high temperature water and its manufacturing method
CN1470458A (en) Zeolite-based nano metal oxide composite material and its preparing method
JP2007098371A (en) Cobalt ion-exchanger and purification apparatus
JP7010670B2 (en) Strontium ion adsorbent and its manufacturing method
JPS63171644A (en) Inorganic ion exchanging substance
JPH05163022A (en) Spherical anatase titanium oxide and its production
JPS6331541A (en) Preparation of fluidized catalyst for synthesis of methanol
KR20000049200A (en) Porous inorganic composition and method for separating metal element using the same
CN109107562B (en) Preparation method of zinc oxide/titanium dioxide composite microspheres
CN111167464B (en) Preparation of double Z-type V based on in-situ synthesis method2O5/FeVO4/Fe2O3Method for preparing photocatalyst and its application