JPS61138526A - Tubular furnace - Google Patents

Tubular furnace

Info

Publication number
JPS61138526A
JPS61138526A JP59260124A JP26012484A JPS61138526A JP S61138526 A JPS61138526 A JP S61138526A JP 59260124 A JP59260124 A JP 59260124A JP 26012484 A JP26012484 A JP 26012484A JP S61138526 A JPS61138526 A JP S61138526A
Authority
JP
Japan
Prior art keywords
heated
heating
tube
combustion gas
bottom plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59260124A
Other languages
Japanese (ja)
Inventor
Hirohisa Uozu
魚津 博久
Kazuo Shoji
一夫 庄司
Akio Naito
内藤 秋夫
Yukihiro Kobayashi
幸博 小林
Hiroshi Watanabe
渡辺 鴻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Engineering Corp
Original Assignee
Toyo Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Engineering Corp filed Critical Toyo Engineering Corp
Priority to JP59260124A priority Critical patent/JPS61138526A/en
Publication of JPS61138526A publication Critical patent/JPS61138526A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J6/00Heat treatments such as Calcining; Fusing ; Pyrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Abstract

PURPOSE:To make a furnace small size and light weight by providing a heating space wherein the combustion gas of down flame type burners provided to the ceiling surface of the heating furnace moves downward, and >=2 rows of tube groups comprising many tubes of vertically heated tubes in the heating space. CONSTITUTION:For example, combustion gas at high temp. such as 1,100-1,200 deg.C flows between many numbers of vertically heated tube groups 17 arranged to >=2 rows each aligned to a straight line, and transmits heat by mainly radiation to the heated tubes 17 from down flame burners 16 arranged to the surface of the ceiling 13 of a heating furnace 11. On one hand, feed gas for reforming which has been preheated and fed from a feed pipe 21 provided with fins connected to said heated tubes 17 is reformed to the gas having a composition suited to the final target product (e.g. NH3) while rising upward through the heated tube 17b, by the effect of heat transmitted during rising and the catalytic effect of a catalyst packed in the heated tube 17.

Description

【発明の詳細な説明】 [技術分野] この発明は、管内空間中を工程流が流通し、管の外方か
ら主として輻射により供給される熱により化学的に変化
させられる管式加熱炉に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a tube heating furnace in which a process flow flows through a tube interior space and is chemically changed by heat supplied mainly by radiation from outside the tube.

[技術的背景1 管式加熱炉が使用されて、アンモニア合成・メタノール
合成用の原料ガス、石油精製・石油化学工業の水素添加
用ガス、あるいは冶金用の還元性ガスその他の用途のた
めに、水素および一酸化炭素を主成分とするガス状混合
物が、原料炭化水素の水蒸気改質により大規模に製造さ
れている。
[Technical background 1 Tubular heating furnaces are used to produce raw material gas for ammonia synthesis and methanol synthesis, hydrogenation gas in oil refining and petrochemical industries, reducing gas for metallurgy, and other uses. Gaseous mixtures based on hydrogen and carbon monoxide are produced on a large scale by steam reforming of feedstock hydrocarbons.

水蒸気改質は高温反応であり、所要反応熱量も極めて大
であるため、水蒸気改質反応用の管式加熱炉は、そのエ
ネルギー経済上の性能が向上させられることが甚だ重要
である。
Since steam reforming is a high temperature reaction and the required amount of reaction heat is extremely large, it is extremely important that the energy economic performance of a tube heating furnace for steam reforming reactions be improved.

水蒸気改質反応用の管式加熱炉は、その形態が大型であ
り、使用されている構成材料も8耐火性の高価な材料が
多量であるため、エネルギー経済上の性能の向上によっ
て、可及的に小型化される必要がある。
Tubular heating furnaces for steam reforming reactions are large in size and use a large amount of expensive materials with 8 refractory resistance. It needs to be downsized.

C発明の目的] この発明は、これらの要求に応える改良された水蒸気改
質反応用の管式加熱炉を提供することを目的とする。
C.Object of the Invention] An object of the present invention is to provide an improved tube heating furnace for steam reforming reactions that meets these demands.

[先行技術] 加熱炉内に於ける被加熱物体と燃焼ガス排出口との間に
金網等の適度の通気を有する熱回収物体を設置し、該熱
回収物体に燃焼ガスの持つ熱量を吸収せしめ、高温にさ
れた熱回収物体からの放射熱をも被加熱物体の加熱に利
用する方法、即ち、特公昭55−25353の発明があ
る。
[Prior art] A heat recovery object such as a wire mesh with appropriate ventilation is installed between the object to be heated and the combustion gas outlet in the heating furnace, and the heat recovery object absorbs the amount of heat held by the combustion gas. There is a method of utilizing radiant heat from a heat recovery object heated to a high temperature for heating an object to be heated, that is, an invention disclosed in Japanese Patent Publication No. 55-25353.

[発明の構成コ この発明において上記の先行技術が利用される。[Components of the invention The above-mentioned prior art is utilized in this invention.

この発明では、加熱炉の天井面に陽炎型バーナーが配設
されて、その陽炎型バーナーの燃焼ガスが下降する加熱
空間が設けられる。 所望により、ha熱空間の側面を
囲繞する炉側壁の内面に旋回炎・壁型バーナーも配設さ
れる。
In this invention, a haze type burner is arranged on the ceiling surface of a heating furnace, and a heating space is provided in which the combustion gas of the haze type burner descends. Optionally, swirling flame/wall burners are also disposed on the inner surface of the furnace side walls surrounding the sides of the ha thermal space.

加熱空間中には多数本の垂直被加熱管がその軸に直角な
直線上に平行に整列して出来た加熱管群が二列以上配設
される。
In the heating space, two or more rows of heating tube groups are arranged, each of which is a group of vertical heated tubes arranged in parallel on a straight line perpendicular to its axis.

加熱空間用の所定の容積が確保されて、各垂直被加熱管
の下端に接近した高さに、各垂直被加熱管の下方部分が
貫通している状態を以て通気性固体製の加熱空間の底床
板が水平に展延されて設備される。 この底床板により
区画されて、その下方に、加熱炉底面との間に加熱炉内
の廃熱回収空間が形成される。 加熱炉内の廃熱回収空
間中に垂直被加熱管群の下端が各列毎に接続される複数
本のフィン付供給管が相互に平行して配設される。
A predetermined volume for the heating space is secured, and the bottom of the heating space is made of air permeable solid material, with the lower portion of each vertical heating tube passing through at a height close to the lower end of each vertical heating tube. The floorboards are installed horizontally. A waste heat recovery space within the heating furnace is defined by the bottom plate, and below the bottom plate, a waste heat recovery space is formed between the bottom plate and the bottom surface of the heating furnace. In the waste heat recovery space in the heating furnace, a plurality of finned supply pipes are arranged in parallel with each other, to which the lower ends of the vertical heated pipe groups are connected in each row.

しかし管のみでも所望の伝熱量が得られる場合はこれに
フィンを付けなくてもよい。 これらのフィン付供給管
は、それらの各中央部において直角に交差した状態を以
て供給主管に接続される。
However, if the desired amount of heat transfer can be obtained with just the tube, it is not necessary to add fins to the tube. These finned supply pipes are connected to the main supply pipe in a state where they intersect at right angles at their respective central portions.

所望により、通気性固体製の加熱空間の底床板は、フィ
ン付供給管のフィンの周縁の一部分によ、ってか、ある
いはフィン付供給管のフィンの一部分が支承部として延
長された部分によって支承される。 フィン付供給管の
フィンは、廃熱回収空間中の燃焼ガスの流通を均分化す
るために、燃焼ガスの流通方向に沿って供給管に付属さ
せられる。
If desired, the bottom plate of the heating space made of air-permeable solid material is provided by a portion of the periphery of the fins of the finned supply pipe or by a portion of the fin of the finned supply pipe extended as a bearing. supported. The fins of the finned supply pipe are attached to the supply pipe along the flow direction of the combustion gas in order to evenly distribute the flow of the combustion gas in the waste heat recovery space.

所望により、加熱炉内において加熱空間と廃熱回収空間
との間を区画する底床板は、底床板を通過流通する燃焼
ガスの流通抵抗が許容範囲内に止められる限界内におい
て厚くされ、底床板中に細管からなる熱交換器が埋設さ
れ、底床板の剛性を大とし、高温雰囲気中における底床
板の形状が確保される。 底床板の構成材料は、セラミ
ック製か耐火性金属製の多孔成形品か網状体の、多層品
が使用されるが、この発明の管式加熱炉は、大型炉であ
り、燃焼ガスダストによる底床板の小間孔の目詰りの危
険は、底床板が受ける燃焼ガス圧力が大であるため、底
床板の厚みを5〜100I100Iの範囲内、小間孔の
平均直径を0.5〜201の範囲内、底床板の空隙率を
60〜99%の範囲内とすることによって防止される。
If desired, the bottom plate that partitions the heating space and the waste heat recovery space in the heating furnace is thickened within a limit that keeps the flow resistance of combustion gas flowing through the bottom plate within an allowable range. A heat exchanger made of thin tubes is embedded inside, increasing the rigidity of the bottom plate and ensuring the shape of the bottom plate in a high-temperature atmosphere. The constituent material of the bottom plate is a multi-layered product such as a porous molded product or a mesh made of ceramic or refractory metal, but the tube heating furnace of this invention is a large furnace, and the bottom plate is made of combustion gas dust. The danger of clogging of the booth holes is that the pressure of combustion gas that the bottom plate receives is large, so the thickness of the bottom plate should be within the range of 5 to 100I, the average diameter of the booth holes should be within the range of 0.5 to 201. This can be prevented by setting the porosity of the bottom plate within the range of 60 to 99%.

 多孔成形品の場合は、同一か相似形状の開口が均等に
配列されているもの、ハニカムなど、の薄層が、各開口
が不一致の状態を以て複数層以上、重畳されたものとさ
れ、網状体の場合も、各網目の目開きが不一致の状態を
以て複数層以上、重畳されたものとされ、底床板は、ガ
スの流通の阻害が最小限であって、輻射線の透過困難な
ものとされる。 また底床板は、燃焼ガスの流通方向に
略々直角交差方向に延伸して、ガスの流通方向に関して
輻射線の透過が困難な状態に配列され、相互に平行する
熱交換用媒体を内蔵 −する細管群により構成され得る
。 この場合、細管群内の熱交換用媒体の流通を促進す
るため、細管群は勾装置0度以下の微小角度の傾斜を与
えられることが好ましい。
In the case of porous molded products, thin layers such as honeycombs, which have openings of the same or similar shape arranged evenly, are superimposed in multiple layers with each opening being mismatched, and are called net-like products. In this case, multiple layers or more are layered with mismatched mesh openings, and the bottom plate is designed to minimize the obstruction of gas flow and make it difficult for radiation to pass through. Ru. In addition, the bottom plate extends in a direction substantially perpendicular to the direction of flow of combustion gas, is arranged in a state in which it is difficult for radiation to pass through in the direction of flow of combustion gas, and contains heat exchange media that are parallel to each other. It can be composed of a group of tubules. In this case, in order to promote the flow of the heat exchange medium within the capillary tube group, it is preferable that the capillary tube group be given a slight inclination of 0 degrees or less.

この発明の管式加熱炉は、上下逆転させられて、床面に
胃炎型バーナーが配設されて、その胃炎型バーナーの燃
焼ガスが上昇する加熱空間、この加熱空間中に二列以上
直線的に整列して配設される多数本の垂直被加熱管群、
各垂直被加熱管の上端に接近した高さに水平に展延され
、各垂直被加熱管の上方部分によって貫通される通気性
固体製の加熱空間の天井板、 この天井板の1方にこの
天井板と加熱炉頂面との間に形成される廃熱回収空間、
 廃熱回収空間中に平行配設され垂直被加熱管群の上端
が各列毎に接続されるフィン付供給管群、およびこれら
のフィン付供給管の釜中央部において直角に交差して接
続される供給主管、を有する型式に変形させられ11る
ことは勿論である。
The tube-type heating furnace of the present invention has a heating space in which gastritis-type burners are arranged on the floor by being turned upside down, and combustion gas from the gastritis-type burners rises, and two or more linear rows are arranged in this heating space. A large number of vertical heated tubes arranged in a row,
A heating space ceiling plate made of air permeable solid material extending horizontally to a height close to the upper end of each vertical heated tube and penetrated by the upper part of each vertical heated tube; Waste heat recovery space formed between the ceiling plate and the top surface of the heating furnace,
A group of finned supply pipes are arranged in parallel in the waste heat recovery space and the upper ends of the vertical heated pipes are connected in each row, and these finned supply pipes are connected at right angles to each other at the center of the pot. Of course, it can be modified to a type having a main supply pipe.

さらに理解を容易にするために図によってこの発明の装
置とその機能を説明する。第1図は加熱炉全体の垂直断
面図であり、加熱炉11の天井面13に配設された陽炎
型バーナー16より、例えば1100〜1200℃の高
温燃焼ガスが、−直線上に整列した、二列以上の多数本
の垂直被加熱管(群)17の間を下方向に流れながら、
主として輻射によりこれら被加熱管17に熱を与える。
In order to further facilitate understanding, the apparatus of the present invention and its functions will be explained using figures. FIG. 1 is a vertical cross-sectional view of the entire heating furnace, in which high-temperature combustion gas of, for example, 1100 to 1200° C. is aligned in a straight line from a haze type burner 16 disposed on the ceiling surface 13 of the heating furnace 11. While flowing downward between two or more rows of multiple vertical heated tubes (groups) 17,
Heat is applied to these heated tubes 17 mainly by radiation.

一方、被加熱管17の中ではこれらに接続している、後
述のフィン付き(改質用原料)供給管21よりの予熱さ
れた改質用原料ガスが上昇しつつ、与えられた熱と、こ
れら被加熱管中に充填された(図示されない)触媒の接
触作用により、最終目的製品(たとえばアンモア)に応
じた組成のガスに改質される。生成改質ガスは各被加熱
管を出、マニホールド20を経て出口管19に集合し、
次の工程の装置(例えば第二改質炉)に導びかれる。垂
直被加熱管(群)17の間を下降した燃焼ガスは、これ
ら管(群)の下方先端近くに配設されたこの発明の通気
性固体製の底床板18に達し、ここを通過する間にその
保有する、例えば1000〜1100℃の高温の熱をこ
の底床板に与えて燃焼ガスの温度は大きく降Fする。降
下の程度は底床板18のない場合に例えば100℃位で
あるのにに対して、さらに大きく下がって400℃にも
達する。この程度は底床板18の性状に大いに依存し、
その諸条件は先述の範囲内が適当であるが、その中でも
技術的、経済的などの総合的見地から、底床板の厚さは
10〜30關、その小開孔の平均直径は1〜31Il1
1、その空隙率は85〜90%および材料はセラミック
系のものとするのが殊に望ましい。
On the other hand, in the heated pipe 17, preheated reforming raw material gas from a finned (reforming raw material) supply pipe 21, which will be described later, connected to these pipes rises, and the given heat and Through the catalytic action of a catalyst (not shown) filled in these heated tubes, the gas is reformed into a gas having a composition corresponding to the final target product (for example, ammour). The generated reformed gas exits each heated pipe, passes through the manifold 20, and collects in the outlet pipe 19.
It is guided to the next process equipment (for example, a second reforming furnace). The combustion gases descending between the vertical heated tubes 17 reach the breathable solid base plate 18 of the present invention disposed near the lower ends of the tubes, and while passing therethrough, The high temperature heat of, for example, 1000 to 1100°C is applied to the bottom plate, and the temperature of the combustion gas is significantly lowered. The degree of the drop is, for example, about 100° C. in the case without the bottom plate 18, but it drops even further to reach 400° C. This degree greatly depends on the properties of the bottom plate 18,
It is appropriate for the various conditions to be within the ranges mentioned above, but from a comprehensive viewpoint such as technical and economical aspects, the thickness of the bottom plate should be 10 to 30 mm, and the average diameter of the small holes should be 1 to 31 mm.
1. It is particularly desirable that the porosity be 85 to 90% and that the material be ceramic.

このような条件下では約200℃の温度降下が得られる
。この温度降下に相当する熱響はこの底床板18より輻
射により再び被加熱管(群)17に傳達される。底床板
18を通過した燃焼ガスは炉底部15を通って燃焼ガス
出口24に達する間に、改質用原料供給土管22より入
りフィン付き供給管21をを通って各被加熱管(群)1
7に供給される改質用原料を予熱する。
Under these conditions a temperature drop of approximately 200°C is obtained. Thermal sound corresponding to this temperature drop is transmitted from the bottom plate 18 to the heated tubes (group) 17 again by radiation. The combustion gas that has passed through the bottom plate 18 passes through the furnace bottom 15 and reaches the combustion gas outlet 24 while entering from the reforming raw material supply clay pipe 22 and passing through the finned supply pipe 21 to each heated pipe (group) 1.
Preheat the reforming raw material supplied to Step 7.

第2図は第1図の炉底部15の水平断面図で、改質用原
料供給主管22とフィン付き供給管21の配置関係を示
す。供給主管22は炉底部15の中央に配置され、被加
熱管17の各列へ接続するフィン付き供給管21は主管
22から左右に水平に直線上に分岐している。各フィン
は底床板18からの輻射による受熱および燃焼ガスから
の各供給管への伝熱をよくするために設けられている。
FIG. 2 is a horizontal sectional view of the furnace bottom 15 of FIG. 1, showing the arrangement relationship between the main reforming material supply pipe 22 and the finned supply pipe 21. The main supply pipe 22 is arranged at the center of the furnace bottom 15, and the finned supply pipes 21 connected to each row of the heated tubes 17 are branched from the main pipe 22 horizontally in a straight line to the left and right. Each fin is provided to improve heat reception by radiation from the bottom plate 18 and heat transfer from combustion gas to each supply pipe.

第3図はフィン付き供給管が蛇行している場合の炉底部
の水平断面を示す。この場合分岐したフィン付き供給管
はこれに接続される各垂直被加熱管11まで長いため、
燃焼ガスによる伝熱量すなわち熱回収量が増加する。
FIG. 3 shows a horizontal section of the bottom of the furnace when the finned supply pipe is meandering. In this case, since the branched finned supply pipe is long to each vertical heated pipe 11 connected to it,
The amount of heat transferred by the combustion gas, that is, the amount of heat recovered, increases.

第4図は第2図および第3図における炉底部の、フィン
付き供給管の軸方向に対して垂直な断面図で、フィンの
付は方および底床板18の支持方法の例を示す。これに
よって各フィンは炉底部15内での燃焼ガスの流れを均
分化する効果をもたらす。
FIG. 4 is a sectional view of the furnace bottom in FIGS. 2 and 3, perpendicular to the axial direction of the finned supply pipe, and shows an example of how the fins are attached and how the bottom plate 18 is supported. As a result, each fin has the effect of evenly dividing the flow of combustion gas within the furnace bottom 15.

「発明の効果」 この発明による加熱炉の製作および、製作された加熱炉
の使用によってもたらされる効果は次のようである。
"Effects of the Invention" The effects brought about by manufacturing the heating furnace according to the present invention and using the manufactured heating furnace are as follows.

まず製作に対しては、 1)均一熱流束が得られるため高熱流束での設計が可能
になり、 2)燃焼ガスの出口温度が従来より下がるのでガス通路
の設計条件が緩和される、 などから小型、軽量で経済的な加熱炉の設計が可能にな
る。
First of all, regarding manufacturing, 1) uniform heat flux is obtained, making it possible to design with high heat flux, and 2) the exit temperature of combustion gas is lower than before, so the design conditions for gas passages are relaxed, etc. This makes it possible to design a compact, lightweight, and economical heating furnace.

使用による効果は、 1)同一燃焼条件下、炉内で従来より多くの熱が底床板
より輻射によって垂直被加熱管に与えられるので、この
分に相当する加熱用燃料が節約される。(原単位の向上
) 2)通気性固体製底床板の配設により炉内の燃焼ガスの
流れが、伝熱、温度分布の点で従来よりよくなる。
The effects of use are as follows: 1) Under the same combustion conditions, more heat is given to the vertically heated tubes by radiation from the bottom plate than in the past in the furnace, so heating fuel corresponding to this amount is saved. (Improvement in basic unit) 2) By providing a breathable solid bottom plate, the flow of combustion gas in the furnace is improved in terms of heat transfer and temperature distribution than before.

3)燃焼ガスの炉底部通路に改質用原料の予熱器を設置
することにより従来より多くの熱回収が可能になる。
3) By installing a preheater for the reforming raw material in the combustion gas furnace bottom passage, more heat can be recovered than before.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炉全体の垂直断面である。 11:加熱炉(全体)、12:天井裏、13:天井面、
14:炉内部、15:炉底部、16:バーナー、1γ:
垂直被加熱管(群)、18:通気性固体製底床板、19
:改質ガス出口管、20:改質ガス出口マニホールド、
21:フィン付き供給管、22:改質用原料供給主管、
23:燃焼空気供給管、24:燃焼ガス出口、第2図、
第3図は炉底部の水平断面図である。 11:  垂直被加熱管(群)、21:フィン付き供給
管、22:改質用原料供給主管、25:保温材(キャス
タブルまたはセラミック)、 第4図は炉底部の垂直断面図である。 17:  垂直被加熱管(群)、18:通気性固体製底
床板、21:フィン付き供給管、26:フィン、27:
支柱、
FIG. 1 is a vertical section of the entire furnace. 11: Heating furnace (whole), 12: Behind the ceiling, 13: Ceiling surface,
14: Furnace inside, 15: Furnace bottom, 16: Burner, 1γ:
Vertical heated pipes (group), 18: Breathable solid bottom plate, 19
: Reformed gas outlet pipe, 20: Reformed gas outlet manifold,
21: Fined supply pipe, 22: Reforming raw material supply main pipe,
23: Combustion air supply pipe, 24: Combustion gas outlet, Fig. 2,
FIG. 3 is a horizontal sectional view of the bottom of the furnace. 11: Vertical heated tube (group), 21: Fined supply pipe, 22: Main reforming material supply pipe, 25: Heat insulating material (castable or ceramic). FIG. 4 is a vertical sectional view of the bottom of the furnace. 17: Vertical heated pipe(s), 18: Breathable solid bottom plate, 21: Fined supply pipe, 26: Fin, 27:
pillar,

Claims (1)

【特許請求の範囲】 天井面に降炎型バーナーが配設されて、その降炎型バー
ナーの燃焼ガスが下降する加熱空間、この加熱空間中に
二列以上直線的に整列して配設される多数本の垂直被加
熱管群、 各垂直被加熱管の下端に接近した高さに水平に展延され
、各垂直被加熱管の下方部分によって貫通される通気性
固体製の加熱空間の底床板、この底床板の下方にこの底
床板と加熱炉底面との間に形成される廃熱回収空間、 廃熱回収空間中に平行配設され、垂直被加熱管群の下端
が各列毎に接続されるフィン付供給管群、および、これ
らのフィン付供給管の各中央部において直角に交差して
接続される供給主管、を有することを特徴とする管式加
熱炉。
[Scope of Claims] A heating space in which descending flame type burners are arranged on the ceiling surface and the combustion gas of the flame descending type burners descends, and two or more rows or more are arranged linearly in this heating space. a group of multiple vertical heated tubes; the bottom of a heating space made of a permeable solid material extending horizontally to a height close to the lower end of each vertical heated tube and penetrated by the lower portion of each vertical heated tube; A floor plate, a waste heat recovery space formed below this bottom plate between this bottom plate and the bottom surface of the heating furnace, and a waste heat recovery space that is arranged parallel to the waste heat recovery space, with the lower ends of the vertical heated pipe groups arranged in each row. A tube heating furnace characterized by having a group of connected finned supply pipes, and a main supply pipe connected to the finned supply pipes so as to intersect at right angles at the center of each of the finned supply pipes.
JP59260124A 1984-12-10 1984-12-10 Tubular furnace Pending JPS61138526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59260124A JPS61138526A (en) 1984-12-10 1984-12-10 Tubular furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59260124A JPS61138526A (en) 1984-12-10 1984-12-10 Tubular furnace

Publications (1)

Publication Number Publication Date
JPS61138526A true JPS61138526A (en) 1986-06-26

Family

ID=17343620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59260124A Pending JPS61138526A (en) 1984-12-10 1984-12-10 Tubular furnace

Country Status (1)

Country Link
JP (1) JPS61138526A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168651A (en) * 2002-11-15 2004-06-17 Kellogg Brawn & Root Inc Split-flow, vertical ammonia converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004168651A (en) * 2002-11-15 2004-06-17 Kellogg Brawn & Root Inc Split-flow, vertical ammonia converter
JP4572068B2 (en) * 2002-11-15 2010-10-27 ケロッグ ブラウン アンド ルート,インコーポレイテッド Split flow vertical ammonia converter

Similar Documents

Publication Publication Date Title
KR102447384B1 (en) catalyst tube for reforming
CN1091643C (en) Endothermic reaction apparatus and method
EP0450872B1 (en) Endothermic reaction apparatus
CN100563810C (en) Steam reformation
JP5298118B2 (en) Compact exchanger-reactor with multiple porous burners
US4909809A (en) Apparatus for the production of gas
AU655395B2 (en) Lined reformer tubes for high pressure reformer reactors
JPS62210047A (en) Apparatus for reaction
US6096106A (en) Endothermic reaction apparatus
US5199961A (en) Apparatus for catalytic reaction
US20140346402A1 (en) Apparatus and Method for Natural Gas Reformation
US20230089656A1 (en) Process for producing synthesis gas with reduced steam export
US6153152A (en) Endothermic reaction apparatus and method
KR20120004966A (en) Steam reformer with passive heat flux control elements
US8728417B2 (en) Steam reforming furnace using porous burners
JPS61138526A (en) Tubular furnace
EP3414000B1 (en) Enhanced efficiency endothermic reactor for syngas production with flexible heat recovery to meet low export steam generation.
US20040037760A1 (en) Steam reforming catalytic reaction apparatus
JPH0271834A (en) Steam reforming device
WO2003010479A1 (en) Heat exchange unit, in particular for isothermal reactors
JPH0324401B2 (en)
JPS61175478A (en) Tubular type heating furnace
JPH0124533B2 (en)
JPH0124534B2 (en)
WO1985003281A1 (en) Combustion heating apparatus for steam reforming