JPS611378A - Automatic colony transplantater - Google Patents
Automatic colony transplantaterInfo
- Publication number
- JPS611378A JPS611378A JP12076484A JP12076484A JPS611378A JP S611378 A JPS611378 A JP S611378A JP 12076484 A JP12076484 A JP 12076484A JP 12076484 A JP12076484 A JP 12076484A JP S611378 A JPS611378 A JP S611378A
- Authority
- JP
- Japan
- Prior art keywords
- colony
- color
- colonies
- desired color
- stage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、各種の菌のコロニーを混在したまま繁殖させ
たシャーレの培地から、人間が目視観察により一旦所望
の色のコロニーを選別、決定すれば、以後、人手を煩わ
すことなく自動的に、その色のコロニーのみを選別採取
して別に準備した試験シャーレ内の培地上に移植できる
ようにしたコロニー自動移植装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention is based on a method in which colonies of a desired color are once selected and determined by human visual observation from a petri dish culture medium in which colonies of various bacteria are grown in a mixed state. Then, the present invention relates to an automatic colony transplantation device that can automatically select and collect only colonies of that color and transplant them onto a culture medium in a separately prepared test dish without any manual effort.
従来、新しい菌種は次のような工程で移植、培養されて
いた。すなわち、(a)土壌を採取、(b)水で希釈、
(C)培養シャーレ内の寒天培地へ植付け、(d)保温
器内で一定時間培養、(e)寒天培地上で繁殖した各種
の菌のコロニーを目視判定、(f)所望の色をしたコロ
ニーのみを白金耳などで採取、(g)試験シャーレ又は
試験管の中の寒天培地へ移植、(h)培養してみて有望
菌であれば種々のテストを繰り返し、薬、醸造、その他
バイオテクノロジーの分野へ適用、のステ・7プよりな
る工程である。以上の工程で、有望そうな特定の菌のコ
ロニーの目視判別と採取、移植は人手によって行われ、
面倒で煩雑な手作業を余儀無くされていた。Traditionally, new bacterial species were transplanted and cultured using the following steps. That is, (a) collecting soil, (b) diluting it with water,
(C) Planting on an agar medium in a culture dish, (d) Cultivating in a heat insulator for a certain period of time, (e) Visually determining colonies of various bacteria that have grown on the agar medium, (f) Colonies with the desired color. (g) Transfer to an agar medium in a test dish or test tube; (h) Cultivate and repeat various tests if the bacteria is promising. The process consists of seven steps: application to the field. In the above process, the visual identification, collection, and transplantation of colonies of specific bacteria that appear promising are performed manually.
They were forced to do tedious and complicated manual work.
これに対し、従来も、培養シャーレを載せたX−Yステ
ージの移動を自動的に行わせシャーレ培地面を順次洩れ
なく観察できるように走査するとか、直接肉眼あるいは
顕微鏡を介して培養シャーレの培地上を観察する代わり
に、カラーテレビジョンカメラで培養シャーレの培地の
上を順次部分的に撮影し、大きく拡大した画像をモニタ
カラーテレビジョン受像機に再生させて、目視観察によ
る疲労を多少とも軽減するようにしたり、コロニーの選
別までは人が行うが、選別した段階で、人が制御系に指
令を与えると、それ以後、採取手段が自動的に選別され
たコロニーを採取し、別の場所に置いた試験シャーレ又
は試験管内の培地に自動的に移植するなど、部分的に人
間の手間、疲労を軽減させる装置の開発は試みられてい
た。しかし、従来の此の種の装置で最も進んだものでも
、所望の色のコロニーの選別に対しては、モニタカラー
テレビジョン受像機の画面」二で、観測、選別された色
と、メモリ内の色見本とを比較して同等と認定した色の
コロニーを自動的に採取するようにしている程度で、微
妙な色の選定に対して、中間に、カラーテレビジョンカ
メラやモニタカラーテレビジョン受像機などが介在し、
これらの機器の色表現機構を考えると、正確に所望の色
のコロニーを選定できたか否か不安な点もあった。On the other hand, in the past, the X-Y stage on which the culture dish was placed was automatically moved to scan the surface of the culture dish in a sequential manner so that the surface of the culture dish could be observed without omission, or the culture medium in the culture dish was directly scanned with the naked eye or through a microscope. Instead of observing the top of the culture dish, a color television camera is used to sequentially photograph parts of the top of the culture culture medium, and the greatly enlarged image is played back on a monitor color television receiver, reducing the fatigue caused by visual observation. Humans do everything up to the selection of colonies, but at the stage of selection, when a person gives a command to the control system, the collection means automatically collects the selected colonies and transports them to another location. Attempts have been made to develop devices that partially reduce human labor and fatigue, such as automatically transplanting cells into test petri dishes or test tube culture media. However, even the most advanced conventional devices of this kind cannot select colonies of a desired color by simply using a monitor color television receiver screen to display the observed and sorted color and the memory. Colonies of colors recognized as equivalent are automatically collected by comparing them with color samples, and for delicate color selection, color television cameras and monitor color television reception Machines etc. intervene,
Considering the color expression mechanisms of these devices, there was some concern as to whether colonies of the desired color could be selected accurately.
本発明は一ト記従来の技術のような問題の無い、微妙な
中間色を含めて正確に所望の色のコロニーを選別して自
動的に移植作業を行えるコロニー自動移植装置を提供す
ることを目的とする。An object of the present invention is to provide an automatic colony transplanting device that can accurately select colonies of a desired color, including subtle intermediate colors, and automatically perform transplantation work, without the problems of the prior art. shall be.
上記従来の技術の問題点を解決するために、本発明にお
いては、各種の菌が混在したまま培養された試料を、所
定の明るさ、所定のスペクトル分布を与えるように正し
く制御した白色光源で照射し、まず、その反射光を人間
が目視観察すると同時に、回折格子で分光してスペクト
ル分布を検出し、これを−次元で画素数の多いCODを
用いて光電変換し、更にA−D変換しながら、人間によ
る目視観察を続け、人間が所望の色の菌のコロニーを発
見したときは、そのコロニーからの反射光を上記の如<
A−D変換した結果をメモリに記憶させて基準色相信号
とする。一旦、基準色相信号をメモリに記憶させたのち
は、装置の制御系が、前記試料を培養したシャーレを、
それを載せたステージごと微少距離ずつ移動させて、自
動的にシャーレ内培地面上の各位置く勿論そこに繁殖し
たコロニーを含む)の色の測定、走査を開始する。In order to solve the above problems of the conventional technology, in the present invention, a sample cultured with a mixture of various bacteria is treated with a white light source that is correctly controlled to give a predetermined brightness and a predetermined spectral distribution. First, the reflected light is visually observed by a human, and at the same time, it is separated by a diffraction grating to detect the spectral distribution, which is photoelectrically converted using a COD with a large number of pixels in the - dimension, and then A-D conversion. However, when a human continues to visually observe a bacterial colony of a desired color, the reflected light from that colony is reflected as described above.
The result of the A-D conversion is stored in a memory and used as a reference hue signal. Once the reference hue signal is stored in the memory, the control system of the device controls the Petri dish in which the sample was cultured.
The stage on which it is mounted is moved by a small distance, and the color measurement and scanning of each position on the culture medium surface in the Petri dish (including, of course, the colonies that have grown there) is started.
ある位置で、メモリ中の基準色相信号と比較して、所定
範囲内の差しか無い色相信号(反射光を回折格子で分光
し、光電変換、A−D変換を施したもの)が得られれば
、その位置のシャーレ培地面上に所望の色のコロニーが
存在するものとみなして、前記制御系は走査を中断して
採取手段を作動させ、その位置にあるコロニーを採取さ
せて予め別の位置に準備しておいた試験シャーレの培地
上に移植させる。走査中に、ある位置で得られた色相信
号と基準色相信号との差が所定範囲外であれば、制御系
は其の位置には所望の色のコロニーは存在しないものと
みなして走査を続行する。If a hue signal (reflected light is separated by a diffraction grating and subjected to photoelectric conversion and A-D conversion) is obtained at a certain position, when compared with the reference hue signal in memory, the difference is within a predetermined range. , it is assumed that a colony of the desired color exists on the surface of the Petri dish medium at that position, and the control system interrupts the scanning and activates the collection means to collect the colony at that position and move it to another position in advance. Transplant the cells onto the culture medium of the test petri dish prepared in advance. During scanning, if the difference between the hue signal obtained at a certain position and the reference hue signal is outside a predetermined range, the control system assumes that a colony of the desired color does not exist at that position and continues scanning. do.
前記のようにカラーテレビジョンは其の目的、改良の過
程から見て、忠実な原色とくに微妙な中間色の再現など
には疑点が残る。これに対して本発明装置のように対象
コロニーからの反射光を回折格子で分光すれば、最も正
確な良く分解されたスペクトル分布が得られる。CCD
型光電変換アレーは、現在、−次元ならば画素数が20
00程度のものが市販されており、上記スペクトル分布
を正確忠実に光電変換するのに充分である。また此のC
ODアレーは処理速度も十分高速である。As mentioned above, considering the purpose of color television and the process of improvement, doubts remain regarding the reproduction of faithful primary colors, especially subtle intermediate colors. On the other hand, if the light reflected from the target colony is separated into spectra using a diffraction grating as in the apparatus of the present invention, the most accurate and well-resolved spectral distribution can be obtained. CCD
Currently, the number of pixels in the -type photoelectric conversion array is 20.
00 is commercially available, and is sufficient for accurately and faithfully photoelectrically converting the above spectral distribution. This C again
The processing speed of the OD array is also sufficiently high.
A−D変換するのは、爾後の処理とくに記憶などが容易
になるからである。現在、半導体を用いた大容量、高速
なメモリが容易に入手できることは周知の通りである。The reason for performing A-D conversion is that subsequent processing, especially storage, becomes easier. It is well known that large-capacity, high-speed memories using semiconductors are now readily available.
なお、このように回折格子により、精確で良く分解した
色相情報が得られる場合には、試料を照射させる光源に
も十分な注意をはられなければならない。しかし1.こ
の方面では、古くから、制御を良く行いさえすれば、一
定の明るさ、一定のスペクトル分布の光を与える白色ラ
ンプ光源などが完成されている。また、装置全体の制御
系には、現在は十分高性能なマイクロコンピュータを利
用できるから問題はない。Note that if accurate and well-resolved hue information is to be obtained using the diffraction grating, sufficient attention must be paid to the light source that illuminates the sample. But 1. In this field, white lamp light sources have been perfected for a long time, providing light with constant brightness and a constant spectral distribution as long as they are properly controlled. Furthermore, there is no problem because a sufficiently high-performance microcomputer can currently be used for the control system of the entire device.
なお、実際には所望のコロニーの選別に際しては、色相
だけでなく形状も条件となるが、形状については現在の
パターン認識技術で十分対処可能であり、本発明では対
象としない。Note that, in reality, when selecting desired colonies, not only the hue but also the shape is a condition, but the shape can be sufficiently handled with current pattern recognition technology and is not a target of the present invention.
第1図は本発明一実施例の概略基本構成を示す。図中、
1は試料培養シャーレ、2は培養シャーレを搭載するX
−Yステージ、3は白色光源ランプ、4は回折格子、5
はCCD型光電変換アレー、6はA−D変換器、7はメ
モリ、8は比較器、9は制御系、10は試験シャーレ、
11は採取手段の駆動系、12は試験シャーレ搬送機、
13はピックアップ、14は対物レンズ、15は目視観
察者の目、16は半透明鏡、17は接眼レンズ、18は
可変絞り、19はコンデンサレンズ、20は絞り、21
は半円柱レンズ、22はプリズム型半透明反射鏡である
。FIG. 1 shows a schematic basic configuration of an embodiment of the present invention. In the figure,
1 is a sample culture dish, 2 is an X equipped with a culture dish
-Y stage, 3 is a white light source lamp, 4 is a diffraction grating, 5
is a CCD type photoelectric conversion array, 6 is an A-D converter, 7 is a memory, 8 is a comparator, 9 is a control system, 10 is a test dish,
11 is a drive system of the collection means, 12 is a test petri dish conveyor,
13 is a pickup, 14 is an objective lens, 15 is a visual observer's eye, 16 is a translucent mirror, 17 is an eyepiece lens, 18 is a variable aperture, 19 is a condenser lens, 20 is an aperture, 21
2 is a semi-cylindrical lens, and 22 is a prism type semi-transparent reflecting mirror.
培養シャーレ1の中の寒天培地には各種の菌が培養され
ており、培地の上に繁殖してコロニーを形成している。Various types of bacteria are cultured on the agar medium in the culture dish 1, and they multiply on the medium to form colonies.
この培養シャーレ1はX−Yステージ2に載置されてお
り、この図の紙面に直角に前後、紙面に平行に左右に微
少距離ずつ正確に位置決めしながら移動できる。ランプ
3は図示してない制御手段で一定の明るさ、一定のスペ
クトル分布の光を放射するように制御されている。この
ランプ3からの白色光は半透明鏡16により反射され対
物レンズ14を通って培養シャーレ1の培地面の例えば
直径1〜3鶴の円形内を照射する。This culture dish 1 is placed on an X-Y stage 2, and can be moved back and forth perpendicularly to the plane of this figure, and left and right parallel to the plane of the figure while accurately positioning it by minute distances. The lamp 3 is controlled by a control means (not shown) so that it emits light of a constant brightness and a constant spectral distribution. The white light from this lamp 3 is reflected by a semi-transparent mirror 16, passes through an objective lens 14, and illuminates a circular area of, for example, 1 to 3 squares in diameter on the culture medium surface of the culture dish 1.
照射された位置からの反射光は、半透明鏡16を通過し
てプリズム型半透明反射鏡22に達し、ここで二分され
る。その一方の光で、人間が接眼レンズ17を介して目
15により観察を行い、所望の色相、形状の菌を選別す
るが、当該菌の形状がほぼ有効視野を占有するように2
個の可変絞り18を調整する。二分された他方の光は、
コンデンサレンズ19により平行光に変えられ回折格子
4に達する。ここで分光され広がった光は、半円柱レン
ズ21で線状に結像してCCD型光電変換アレー5へ入
射し、スペクトル強度に比例した電圧に変換される。こ
のCCD型光電変換アレー5は約1400画素に対応し
、かつ高速で作動する。メモリ7は操作者が目視観察に
より発見した有望そうな色のコロニーからの反射光を回
折格子4で分光し、それを光電変換アレー5で電圧出力
に変換し更にA−D変換器6で変換した出力電圧のディ
ジタル値を基準色相信号として記憶する。一旦基準色相
信号をメモリ7に記憶させれば、操作者は以後、制御系
9に自動的に培養シャーレ1の培地面の色の測定、走査
を開始させる。比較器(コンパレータ)8は、前記メモ
リ7に記憶させた基準色相信号(この信号値は選別した
色相のコロニーの移植を終わるまで一定である)と、培
養シャーレの培地の走査中の位置からの色相信号(ステ
ージが移動して走査が続行される間は位置が変わる度に
変化するのが普通である)との差を増幅する。ここで、
メモリ7から比較器8に入力される基準色相信号と、所
望の色のコロニーのない位置からの色相信号は、通常、
第2図に示すようになっている。従って、所望の色のコ
ロニーからの反射光に対しては、比較器8の出力は殆ど
無いか、または僅かであるが、所望の色のコロニーが存
在しない位置からの色相信号は、たまたま成る波長に対
しては差が少ない場合があるかも知れないが、全波長域
でみれば、信号の差は大きく、所定範囲外となる。この
装置全体の制御系9は、比較器8の出力が全波長域にわ
たって殆ど無いか所定範囲内の僅かな値であれば、その
ような出力を与える位置には所望の色のコロニーが存在
するものとみなして、走査を一時中断して、採取手段の
駆動系11を作動させ、ピンクアップ13(例えば白金
耳などを備える)を下降させて培養シャーレ1の培地面
からコロニーを採取させ、次にピックアップを上昇、回
転させ、試験シャーレ10内の培地の中央部に下降させ
、ここに此のコロニーを移植させる。その後、制御系9
は走査を再開して、X−Yステージ2を次の位置まで微
少移動させる。The reflected light from the irradiated position passes through the semi-transparent mirror 16 and reaches the prism-type semi-transparent reflecting mirror 22, where it is divided into two. Using one of the lights, a human observes with the eye 15 through the eyepiece 17 and selects bacteria with a desired hue and shape.
Adjust the variable apertures 18. The other half of the light is
The light is converted into parallel light by a condenser lens 19 and reaches the diffraction grating 4. The light that has been separated and spread out is formed into a linear image by a semi-cylindrical lens 21 and enters a CCD type photoelectric conversion array 5, where it is converted into a voltage proportional to the spectral intensity. This CCD type photoelectric conversion array 5 corresponds to approximately 1400 pixels and operates at high speed. The memory 7 uses a diffraction grating 4 to separate the reflected light from a colony of a promising color discovered through visual observation by the operator, converts it into a voltage output using a photoelectric conversion array 5, and further converts it into a voltage output using an A-D converter 6. The digital value of the output voltage obtained is stored as a reference hue signal. Once the reference hue signal is stored in the memory 7, the operator thereafter causes the control system 9 to automatically start measuring and scanning the color of the medium surface of the culture dish 1. A comparator 8 uses the reference hue signal stored in the memory 7 (this signal value remains constant until the transplantation of colonies of the selected hue is completed) and the signal from the position during scanning of the culture medium in the culture dish. The difference with the hue signal (which typically changes each time the stage moves and scanning continues) is amplified. here,
The reference hue signal input from the memory 7 to the comparator 8 and the hue signal from a position where no colonies of the desired color are present are usually
It is as shown in Figure 2. Therefore, for reflected light from a colony of a desired color, the output of the comparator 8 is almost non-existent or small, but the hue signal from a position where a colony of a desired color does not exist has a wavelength that happens to be There may be cases where the difference is small, but when viewed over the entire wavelength range, the difference in signals is large and falls outside the predetermined range. The control system 9 of this entire device determines that if the output of the comparator 8 is almost non-existent over the entire wavelength range or has a small value within a predetermined range, a colony of the desired color exists at a position that provides such an output. The scanning is temporarily interrupted, the drive system 11 of the collecting means is activated, the pink up 13 (equipped with a platinum loop, etc.) is lowered to collect colonies from the medium surface of the culture dish 1, and the next step is to Then, the pickup is raised, rotated, and lowered to the center of the medium in the test Petri dish 10, where this colony is transplanted. After that, the control system 9
restarts scanning and moves the XY stage 2 slightly to the next position.
また、制御系9は比較器8の出力が全波長域でみれば大
きく、所定範囲外であれば、その位置には所望の色のコ
ロニーは存在していないものとみなして走査を続行し、
X−Yステージ2に指令して次の位置へ微少移動させる
。なお、ビ・ノクア・ノブ13により所望の色のコロニ
ーを移植された試験シャーレ10は搬送機12により運
び去られ、次の別の試験シャーレが同じ位置に準備され
る。また、ピックアップ13の直接コロニーの採取や移
植を行う部分(例えば白金耳端部など)は、一度移植操
作を終了してから再度採取位置につくまでの間に、図示
してない手段により滅菌消毒操作を受けるようになって
いる。以上のような動作が、培養シャーレ全面の走査が
完了するまで繰り返される。Further, if the output of the comparator 8 is large in the entire wavelength range and is outside the predetermined range, the control system 9 assumes that a colony of the desired color does not exist at that position and continues scanning.
Command the X-Y stage 2 to move slightly to the next position. The test dish 10 to which colonies of a desired color have been transplanted by the Binoqua knob 13 is carried away by the carrier 12, and another test dish is prepared at the same position. In addition, the part of the pickup 13 where the colony is directly collected or transplanted (for example, the end of the platinum loop) is sterilized and disinfected by means not shown after the transplant operation is finished and before it returns to the collection position again. It is intended to be manipulated. The above operations are repeated until the entire surface of the culture dish is scanned.
以上説明したように本発明によれば、種々の菌が繁殖し
て夫々コロニーを形成している培養シャーレから、人間
が当初特定の所望の色を選別指定するだけで、以後、装
置が自動的に極めて正確に其の色のコロニーだけを選別
して移植する。As explained above, according to the present invention, a person can initially select and designate a specific desired color from a culture dish in which various bacteria have proliferated to form colonies, and the device can then automatically select the desired color. Colonies of that color are selected and transplanted with great precision.
第1図は本発明一実施例の概略基本構成図、第2図は各
種コロニーからの反射光のスペクトル分布(電圧に変換
した色相信号)を示す図である。
■−培養シャーレ、2−・−X−Yステージ、3−白色
光源ランプ、4− 回折格子、5−− CCD型光電
変換アレー、6−A−D変換器、7−、メモリ、8−比
較器、9−制御系、10・・試験シャーレ、11・−駆
動系、13−ピックアップ、15−操作者の目、16・
−半透明鏡、21−半円柱レンズ。FIG. 1 is a schematic basic configuration diagram of an embodiment of the present invention, and FIG. 2 is a diagram showing the spectral distribution (hue signal converted into voltage) of reflected light from various colonies. - Culture dish, 2-.-XY stage, 3- White light source lamp, 4- Diffraction grating, 5-- CCD type photoelectric conversion array, 6- A-D converter, 7-, Memory, 8- Comparison 9-control system, 10...test petri dish, 11-drive system, 13-pickup, 15-operator's eyes, 16-
- Semi-transparent mirror, 21- Semi-cylindrical lens.
Claims (1)
、Y方向に移動し精密位置決め可能なステージ上に載置
し、まず培地表面を目視観察しながらステージごとシャ
ーレを移動させて所望の色のコロニーを選別し、そのコ
ロニーの反射光を回折格子により分光した後、光電変換
とA−D変換を行ったものを基準色相信号値としてメモ
リに記憶させ、以後、この装置の制御系が、ステージを
微小距離ずつ順次自動的に移動させてシャーレ内の培地
各部表面の色の測定、走査を行い、各位置でその都度、
測定した色相信号値と上記基準色相信号値を比較して、
その差が所定範囲内ならば所望色のコロニーがその位置
に存在するものとみなして走査を中断して採取手段を作
動させ、その位置からコロニーを採取して別位置に準備
した試験シャーレ内の培地上に自動的に移植させ、上記
の差が所定範囲外であれば其の位置には所望の色のコロ
ニーは存在しないものとみなしてそのまま走査を続行す
るようにしたことを特徴とするコロニー自動移植装置。The petri dish in which various samples were grown on the medium was
, placed on a stage that can be moved in the Y direction and precisely positioned.First, while visually observing the culture medium surface, move the petri dish along with the stage to select colonies of the desired color, and then collect the reflected light of the colonies using a diffraction grating. After spectroscopy, the photoelectric conversion and A-D conversion are performed and stored in the memory as reference hue signal values.Then, the control system of this device automatically moves the stage by small distances in order to The color of the surface of each part of the culture medium is measured and scanned, and the color is measured at each position.
Compare the measured hue signal value and the reference hue signal value above,
If the difference is within a predetermined range, it is assumed that a colony of the desired color exists at that position, the scanning is interrupted, the collection means is activated, the colony is collected from that position, and the colony is placed in a test dish prepared at another position. A colony is automatically transplanted onto a culture medium, and if the above-mentioned difference is outside a predetermined range, it is assumed that no colony of the desired color exists at that position, and scanning continues as it is. Automatic transplant device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12076484A JPS611378A (en) | 1984-06-14 | 1984-06-14 | Automatic colony transplantater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12076484A JPS611378A (en) | 1984-06-14 | 1984-06-14 | Automatic colony transplantater |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS611378A true JPS611378A (en) | 1986-01-07 |
JPS621716B2 JPS621716B2 (en) | 1987-01-14 |
Family
ID=14794415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12076484A Granted JPS611378A (en) | 1984-06-14 | 1984-06-14 | Automatic colony transplantater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS611378A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0397902B1 (en) * | 1988-05-17 | 1992-12-30 | Sumitomo Electric Industries, Ltd. | Method and apparatus for supplying glass forming raw material |
US5348883A (en) * | 1991-10-30 | 1994-09-20 | Shimadzu Corporation | Selecting device for cells and the like |
EP0819930A2 (en) * | 1996-07-19 | 1998-01-21 | Bayer Ag | Method and apparatus for screening molecules according to their individual binding affinity for at least one specified ligand |
JP2011101617A (en) * | 2009-11-11 | 2011-05-26 | Hitachi High-Technologies Corp | Apparatus for picking up bacteria colony and pretreatment method for the same |
-
1984
- 1984-06-14 JP JP12076484A patent/JPS611378A/en active Granted
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0397902B1 (en) * | 1988-05-17 | 1992-12-30 | Sumitomo Electric Industries, Ltd. | Method and apparatus for supplying glass forming raw material |
US5348883A (en) * | 1991-10-30 | 1994-09-20 | Shimadzu Corporation | Selecting device for cells and the like |
EP0819930A2 (en) * | 1996-07-19 | 1998-01-21 | Bayer Ag | Method and apparatus for screening molecules according to their individual binding affinity for at least one specified ligand |
EP0819930A3 (en) * | 1996-07-19 | 1999-12-22 | Bayer Ag | Method and apparatus for screening molecules according to their individual binding affinity for at least one specified ligand |
US6713264B2 (en) | 1996-07-19 | 2004-03-30 | Bayer Aktiengesellschaft | Process and device for the screening of molecules with regard to their individual binding behaviour towards at least one given ligand |
JP2011101617A (en) * | 2009-11-11 | 2011-05-26 | Hitachi High-Technologies Corp | Apparatus for picking up bacteria colony and pretreatment method for the same |
Also Published As
Publication number | Publication date |
---|---|
JPS621716B2 (en) | 1987-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2527540B2 (en) | Device for fluorescence signal analysis and image display | |
US5663057A (en) | Process for rapid and ultrasensitive detection and counting of microorganisms by fluorescence | |
JP4869694B2 (en) | Phase object detection apparatus and phase object detection method | |
DE69030703T2 (en) | Method and device for measuring the optical properties of biological samples | |
CN103748452B (en) | Bio-imaging method and system | |
DE69411268T2 (en) | METHOD FOR QUICK QUANTIFYING MICROORGANISM GROWTH | |
US9470624B2 (en) | Image capture and lighting apparatus | |
US7864379B2 (en) | Multi-spectral whole-slide scanner | |
TWI783420B (en) | Method of capturing and analyzing spectrometer data on multiple sample gemstones and system for recording spectrometer readings of multiple gemstone samples | |
US20060291042A1 (en) | Optical scanning zoom microscope with high magnification and a large field of view | |
TWI720102B (en) | Device for judging the life and death state of bacteria, and method for judging the life and death state of bacteria using the device | |
US20200386684A1 (en) | Data creation method and data use method | |
CN105960586A (en) | A system and method for image acquisition using supervised high quality imaging | |
US9739716B2 (en) | Method for regulating the relative position of an analyte in relation to a light beam | |
CN108780218A (en) | Use the imaging system of the assistant images detector for sample position | |
CN106706643B (en) | A kind of liver cancer comparison slice detection method | |
JPS611378A (en) | Automatic colony transplantater | |
CN100406847C (en) | Method and system for three-dimensionally imaging an apical dome of a plant | |
CN110958836B (en) | Phenotypic analysis apparatus | |
US7760925B2 (en) | Method for automatically detecting degenerated regions in stained thin section slides | |
JP2000270840A (en) | Colony counting system and usage thereof | |
CN105039491A (en) | Method for identifying teliospores of Tilletia controversa Kuhn and Tilletia foetida | |
CN108507985A (en) | The visual Microtomographic Analysis System of four-dimensional transferring efficiency of fluorescence resonance energy and method | |
DE102018006178A1 (en) | Device and method for measuring organisms | |
JP2022540978A (en) | System for Determining the Effect of Active Ingredients on Polychaetes, Insects and Other Organisms in Assay Plates Containing Wells |