JPS61137659A - Method for changing ingot width - Google Patents

Method for changing ingot width

Info

Publication number
JPS61137659A
JPS61137659A JP26038184A JP26038184A JPS61137659A JP S61137659 A JPS61137659 A JP S61137659A JP 26038184 A JP26038184 A JP 26038184A JP 26038184 A JP26038184 A JP 26038184A JP S61137659 A JPS61137659 A JP S61137659A
Authority
JP
Japan
Prior art keywords
width
short side
period
speed
width change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26038184A
Other languages
Japanese (ja)
Other versions
JPH0219744B2 (en
Inventor
Masami Tenma
天満 雅美
Takeyoshi Ninomiya
二宮 健嘉
Wataru Ohashi
渡 大橋
Kazuhiko Tsutsumi
一彦 堤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP26038184A priority Critical patent/JPS61137659A/en
Priority to AU47023/85A priority patent/AU554019B2/en
Priority to CA000490523A priority patent/CA1233011A/en
Priority to EP85306509A priority patent/EP0182468B1/en
Priority to DE8585306509T priority patent/DE3578554D1/en
Priority to BR8504644A priority patent/BR8504644A/en
Priority to ES547211A priority patent/ES8702811A1/en
Priority to US06/783,589 priority patent/US4660617A/en
Priority to ES554807A priority patent/ES8704368A1/en
Publication of JPS61137659A publication Critical patent/JPS61137659A/en
Priority to US06/883,395 priority patent/US4727926A/en
Publication of JPH0219744B2 publication Critical patent/JPH0219744B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • B22D11/168Controlling or regulating processes or operations for adjusting the mould size or mould taper

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To absorb effectively the error for a target change quantity arising from the difference between the taper quantity in the stage of starting the width change on the short side of a casting mold under continuous casting and the target taper quantity at the end of the width change by providing a parallel moving period when the speed at the top and bottom ends of the short side are made the same during the time of the shift from the previous tilting period to the post tilting period. CONSTITUTION:The movement of the short side 1a of the casting mold is segmented to the previous tilting period when the short side is successively tilted toward the central side of the mold and the post tilting period when the short side is gradually tilted toward the counter central side of the mold in the stage of expanding or reducing the width of the ingot 4 by moving the side 1a during continuous casting. The speed increase rate alpha of the horizontal moving speed at the top and bottom ends of the short side in each period is prelimi narily determined with the permissible resistance force against the shell deformation as a parameter and the difference DELTAV in the moving speed of the top and bottom ends is deter mined by the equation. The error for the target width change quantity arising from the difference in each target taper quantity in the stage of starting the width change and at the end of the width change is absorbed by providing the parallel moving period during the time of the shift from the previous tilting period to the post tilting period in the case of changing the width while maintaining the specified speed increase rate alpha and speed differ ence DELTAV during said period, by which the exact width change of the ingot is executed in the min. time.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は鋼の連続鋳造法に関し、詳しくは連続鋳造中に
鋳型短辺勿移動せしめて鋳片幅を拡大もしくは縮小する
幅変更方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for continuous casting of steel, and more particularly to a method for changing the width of a slab by moving the short side of the mold during continuous casting.

〔従来の技術〕[Conventional technology]

近年、連続鋳造、特に鋼の連続鋳造においては。 In recent years, continuous casting, especially continuous casting of steel.

稼働率の向上および鋳片歩留の向上等の要請から、鋳型
への鋳込に停止することなく鋳片幅の変更を行なう連続
鋳造法が実施されるようになってきた。
Continuous casting methods, in which the width of a slab is changed without stopping pouring into a mold, have been implemented in response to demands for improved operating efficiency and slab yield.

特に最近、連続鋳造工程と圧延工程を直結化する方法が
実用化され、製品板幅に応じて連続鋳造中の鋳片幅?変
更する技術はますます重要さを増している。連続鋳造機
の運転を止めずに鋳片幅を変更する場合においては1幅
が変化する部分の長さを出来るかぎり短かくし、要求さ
れる幅に直ちに変更することが重要である。このために
幅変更速vyr上昇させることが必要となってき几。
Particularly recently, a method of directly linking the continuous casting process and rolling process has been put into practical use, and the width of the slab during continuous casting can be changed according to the product sheet width. Changing technology is becoming increasingly important. When changing the slab width without stopping the operation of the continuous casting machine, it is important to make the length of the part where one width changes as short as possible and to immediately change the width to the required width. For this reason, it is necessary to increase the width change speed vyr.

連続鋳造における鋳片幅の変更においては、鋳型短辺を
何らかの方法で鋳型の中心側または反中心側へ移動させ
る操作がおこなわれる。第2図は鋳型長辺を固定し短辺
を移動させる幅変更装置の一例を概念的に示したもので
ある。すなわち一対の短辺1a、1bが鋳型振動テーブ
ル(図示せず)に固定された長辺2a 、2bに挾持さ
れており。
To change the width of a slab in continuous casting, the short side of the mold is moved toward the center or away from the center of the mold by some method. FIG. 2 conceptually shows an example of a width changing device that fixes the long sides of the mold and moves the short sides. That is, a pair of short sides 1a and 1b are held between long sides 2a and 2b fixed to a mold vibration table (not shown).

短辺に取りつけられた電動または油田式の駆動装置3a
 e a b Vcxり駆動され、鋳片4の幅を鋳造を
止めることなく変更する装置である。かかる装置におい
て幅変更速度を高速化する場合、短辺を駆動する力の増
大並びに鋳片欠陥の危険比の増大があり、このことが幅
変更の高速化上限んでいた。
Electric or oil field drive device 3a mounted on the short side
This device is driven by e a b Vcx and changes the width of the slab 4 without stopping casting. When increasing the speed of width change in such a device, there is an increase in the force driving the short side and an increase in the risk ratio of slab defects, which has put an upper limit on how high the speed of width change can be increased.

而して従来の幅変更方法としては1例えば特開昭53−
60326号公報および特公昭54−33772号公報
で開示され、第3図お工び第4図に示すLうな方法が一
般的に実施されてい念。
As for the conventional width changing method, for example, 1
Please note that the method disclosed in Japanese Patent Publication No. 60326 and Japanese Patent Publication No. 54-33772 and shown in Fig. 3 and Fig. 4 is not generally practiced.

即ち第3図は幅縮小の場合を説明するものであって、[
alで示す第1ステツプでは短辺1を点線3の如く傾斜
させ、第2ステツプでfblの如く平行移動し7ti、
ついで第3ステツプで(C)の如く傾斜をもとに戻す方
法を示し、又第4図は幅拡大の場合を説明するものであ
って、(atで示す第1ステツプで短片1を点線1の如
く傾斜させ、第2ステツプで(b)の如く平行移動した
のち、第3ステツプで(C)の如く傾斜を少なくする方
法を示している。
That is, FIG. 3 explains the case of width reduction, and [
In the first step, indicated by al, the short side 1 is inclined as shown by the dotted line 3, and in the second step, it is translated in parallel as indicated by fbl, 7ti,
Next, in the third step, the method of returning the slope to its original state as shown in (C) is shown, and FIG. 4 explains the case of widening the width. This figure shows a method in which the object is tilted as shown in FIG. 1, and then translated in the second step as shown in (b), and then the inclination is reduced in the third step as shown in (c).

つまり、従来は第3図及び第4図の(a) 、 (c)
におけるテーノR−変更動作と1両図(blにおける平
行移動動作とは完全に分離して行なわれていた。
In other words, in the past, (a) and (c) in Figures 3 and 4
The Teno R-change operation in Figure 1 and the parallel movement operation in Figure 1 were performed completely separately.

しかし、前記従来方法ではテーノぐ一変更時期に時間が
かかりすぎ、平行移動速1)i−Vm’i高速化しても
幅変更移行部長さを減少させる効果は非常に少なく、歩
留り向上の妨げとなってい友。
However, in the conventional method described above, it takes too much time to change the width, and even if the parallel movement speed 1)i-Vm'i is increased, the effect of reducing the length of the width change transition part is very small, which hinders yield improvement. Become a friend.

前記問題を解決するために平行移動速度Vmをより高め
るための試みも種々行われている。ところ余鋳型内で凝
固したシェル(#固殻)を破断することなく、かつこの
シェルの変形抵抗力に打ち勝って平行移動速度Vmf高
める几めには、第3図お工び第4図のfalにおける傾
斜変更角Δφを大きくしなければならない。
In order to solve the above problem, various attempts have been made to further increase the translation speed Vm. However, in order to increase the parallel movement speed Vmf without breaking the solidified shell (#solid shell) in the remaining mold and by overcoming the deformation resistance force of this shell, it is necessary to The inclination change angle Δφ must be increased.

一方、前記傾斜変更角Δφを大きくすると短辺1と鋳片
4との間に隙間、即ちエサ−ギャップが生じ、このエア
ーギャップが大きくなると鋳片4!/c割れが生じtす
、ブレークアウトが発生する等の問題がある。このため
前記従来方法では平行移動速FiiVmf高めることに
限界があり、而して幅変更時間を短縮することには制限
があった。係る問題を解決するために本出願人は前記第
1ステツプ及び第3ステツプにおいて短辺の上下端を同
時に移動させて該ステップの所妥時間を短縮させる方法
を開発し、先に特願昭57−184103号及び特願昭
58−143157号として出願した。
On the other hand, when the inclination change angle Δφ is increased, a gap, ie, a feed gap, is created between the short side 1 and the slab 4, and when this air gap becomes large, the slab 4! There are problems such as /c cracking and breakout. Therefore, in the conventional method, there is a limit to increasing the parallel movement speed FiiVmf, and there is a limit to shortening the width change time. In order to solve this problem, the present applicant developed a method of simultaneously moving the upper and lower ends of the short sides in the first step and the third step to shorten the required time for these steps, which was first proposed in Japanese Patent Application No. 57 -184103 and Japanese Patent Application No. 58-143157.

しかしながらこの方法においても平行移動の実施を基本
的思想4としたものであり、平行移動に達するまでの時
間を出来るだけ速くすることは可能となったが、それで
もなお幅変更の全所要時間を短縮するには限界があった
However, this method also uses parallel movement as the basic idea 4, and although it is possible to make the time to reach parallel movement as fast as possible, it still shortens the total time required to change the width. There was a limit to what I could do.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は前述し九従来方法における問題点を抜本的罠解
決すると共に前記特願昭57−184103号及び特願
昭58−143157号の更に改良を図るもので、連続
鋳造中に鋳片幅を拡大もしくは縮小する幅変更を最小時
間で行わせることにLす、幅変更部分を少なくして歩留
りを向上させると共に、ブレークアウト(以下BOと言
う)や鋳片割れ等の鋳造欠陥の発生がない安定し念操業
ケ可能ならしめ、加えて幅変更開始前と終了時における
テーノゼー量の差から生じる目標幅変更量に対する誤差
を幅変更′実捲過穆で効率的に吸収し、精確な鋳片幅を
得る方法を提供するものである。
The present invention is intended to fundamentally solve the problems of the nine conventional methods mentioned above, and to further improve the aforementioned Japanese Patent Application No. 57-184103 and Japanese Patent Application No. 58-143157. By making the width change to expand or contract in the minimum time, it reduces the width change part to improve the yield, and it is stable without the occurrence of casting defects such as breakouts (hereinafter referred to as BO) and slab cracks. In addition, the error in the target width change caused by the difference in the amount of tape before and after the width change is started and finished is efficiently absorbed by the actual width change, and the accurate slab width is ensured. This provides a method for obtaining

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、連続鋳造中に鋳型短辺上移動せしめて鋳片幅
を拡大もしくは縮小するに際し、前記短辺の移動を該短
辺tl−鋳型中心側へ順次傾ける前傾期と、鋳型反中心
側へ順次傾ける後傾期とに区分し、前記各期間における
短辺上下端部の水平方向移動速度の増速率αを予め許容
シェル変形抵抗力をパラメータとして求めると共に前記
上下端部の移動速度の差へvを下記(1)式で定め、当
該期間中。
The present invention provides a forward tilting period in which the movement of the short side is sequentially tilted toward the short side tl - the center of the mold, and The acceleration rate α of the horizontal movement speed of the upper and lower ends of the short side in each period is determined in advance using the allowable shell deformation resistance force as a parameter, and the movement speed of the upper and lower ends is determined in advance. The difference v is determined by the following formula (1), and during the relevant period.

前記増速率α及び速度差Δvを一定に維持して幅変更を
行う方法において1幅変更開始時のテーノR−量と幅変
更終了時の目欅テーノぜ一量の差から生じる目標幅変更
量に対する誤差を、前傾期から後頌期へ移行する間に平
行移動期間を設けることにより吸収することを特徴とす
る連続鋳造中における鋳片幅変更方法である。
In the method of changing the width while maintaining the speed increase rate α and the speed difference Δv constant, the target width change amount resulting from the difference between the tenor R amount at the start of one width change and the Mekeyaki tenor amount at the end of the width change. This is a method for changing the width of a slab during continuous casting, which is characterized by absorbing errors in the width of the cast slab during continuous casting by providing a parallel movement period during the transition from the forward tilting stage to the backward tilting stage.

ΔV=α拳L / Uc −(1) 但し △V;短辺上端と下端の速度差 (mm/min) α ;短辺上下端の増速率(m/m i n” )L 
;鋳型短辺長さく m l Uc;鋳造速91L(s+/min )〔作用〕 第1図は本発明に基づく幅変更時における短辺の上端部
及び下端部の水平方向移動速K(以下。
ΔV = α fist L / Uc - (1) However, △V: Speed difference between the upper and lower ends of the short side (mm/min) α: Acceleration rate at the upper and lower ends of the short side (m/min”) L
; Mold short side length m l Uc; Casting speed 91L (s+/min) [Function] FIG. 1 shows the horizontal movement speed K (hereinafter referred to as "the horizontal movement speed K" of the upper and lower ends of the short side when changing the width according to the present invention).

移動速度と言う)を説明するための線図であって。This is a diagram for explaining the movement speed.

第1図(、)が幅縮小を、第1図(b)が幅拡大を示す
ものである。又、速度は鋳型中心側への移動速Kt−+
(正)、tSS型中心側への移動速度ヲ−(負)として
表した。
FIG. 1(,) shows width reduction, and FIG. 1(b) shows width expansion. In addition, the speed is the moving speed toward the center of the mold Kt-+
(positive), and the moving speed toward the center of the tSS type was expressed as wo- (negative).

而してまず第1図(a)に基づき幅縮小の場合について
説明する。図において破線Xは短辺上端部(鋳型内のメ
ニスカスに相当する位置をいい、以下短片上端部とは係
る意味で用いる。)の移動速度(以下、上端部速度とい
い、 Vuで表す)ヲ、実#!yは短辺下端部の移動速
V(短辺下端部とは短辺の下端をいい、短辺下端部の移
動速度は以下Vttで表す)を表わす。幅縮小にあ几っ
ては短辺を鋳型中心方向に移動させるが、その前半では
短辺を鋳型中心側へ傾ける前傾操作を行い、目標とする
幅変更量のほぼ半量に違したら短辺を鋳型中心方向報け
る。後傾操作全行わしめる。ところで通常操業時におけ
る短辺の傾斜角(本発明において傾斜角とは後述する第
5図に1点鎖線で示す水平線2と短辺1との角度を言い
、以下βで表す。]は鋳片幅や鋳造速度等によって設定
されており、鋳片幅が広い程テーノぞ一量(本発明にお
いてチーノー量とは後述する第5図に2点鎖線で示す鋳
型下端部を通る鉛直線Yzと上端部との水平距離をいい
、前記傾斜角βが90度のときは該テーパー量は±0と
なる。以下、該テーパー量’ikで表す。)は大きくな
シ%鋳片幅が狭くなると前記テーパー量も小さくなる。
First, the case of width reduction will be explained based on FIG. 1(a). In the figure, the broken line X indicates the moving speed (hereinafter referred to as top end speed, expressed as Vu) of the top end of the short side (referring to the position corresponding to the meniscus in the mold, hereinafter referred to as the top end of the short piece). ,fruit#! y represents the moving speed V of the lower end of the short side (the lower end of the short side refers to the lower end of the short side, and the moving speed of the lower end of the short side is hereinafter expressed as Vtt). In the process of width reduction, the short side is moved toward the center of the mold, but in the first half, the short side is tilted forward toward the center of the mold. Direct the center of the mold. Complete the backward tilt operation. Incidentally, the inclination angle of the short side during normal operation (in the present invention, the inclination angle refers to the angle between the horizontal line 2 shown by a dashed line in Fig. 5, which will be described later, and the short side 1, and hereinafter expressed as β) It is set depending on the width, casting speed, etc., and the wider the slab width, the greater the amount of teno (in the present invention, the amount of teno is the difference between the vertical line Yz passing through the lower end of the mold and the upper end shown by the two-dot chain line in Fig. 5, which will be described later). When the inclination angle β is 90 degrees, the taper amount is ±0.Hereinafter, it will be expressed as the taper amount 'ik). The amount of taper also becomes smaller.

従って連続鋳造中に鋳片の幅変更を実施した場合、その
実施前と実m後では鋳片幅が変わることから短辺の傾斜
角βも変わることになり、前記チー/ソー量にも変化さ
せる必要がある。このテーパーiの変化を例えば幅変更
終了後に実施すると。
Therefore, if the width of the slab is changed during continuous casting, the width of the slab will change before and after the change, and the inclination angle β of the short side will also change, and the amount of chi/saw will also change. It is necessary to do so. For example, if this change in taper i is performed after the width change is completed.

幅変更操作とけ別にテーパー量のみの変更を行う操作(
以下、テーパー量修正操作と言う)を行わなければなら
ず、以下の1うな問題が発生する。
An operation that changes only the taper amount apart from the width change operation (
(hereinafter referred to as a taper amount correction operation), the following problem occurs.

即ち1幅変更の制御が非常に複雑、かつ面倒になるうえ
に1幅変更終了からテーパー蓋修正操作が終了するまで
は不適正なチー・ぞ−量で鋳造が行われることから、鋳
片欠陥の発生や80の危険が高まる。又、テーパー蓋修
正操作において鋳型下端部或いは上下端部を同時に移動
させてテーパー量を修正させると目標とする鋳片の幅変
更量と実際の幅変更量とが一致せず、鋳片幅に誤差を生
じる可能性が極めて高い。
In other words, control of one width change is very complicated and troublesome, and casting is performed with inappropriate chi/thread amounts from the end of one width change until the end of the taper lid correction operation, which can lead to slab defects. The risk of occurrence of 80% is increased. In addition, in the taper lid correction operation, if the taper amount is corrected by moving the lower end or the upper and lower ends of the mold at the same time, the target width change amount of the slab will not match the actual width change amount, and the width of the slab will change. There is a very high possibility that an error will occur.

一方1本発明に基づく幅変更の後半忙相当する後傾期に
おいて目標テーパー量に達し九時点で幅゛変更を終了す
る方法も考えられるが、この方法では目標幅変更量に達
する前に幅変更操作が終了することになり、目標鋳片幅
に対し実際の鋳片幅に誤差が生じる結果となる、この誤
差を幅変更操作終了後に修正するとすれば短辺を平行移
動させなければならず、該平行移動を行った場合、シェ
ル変形抵抗力が大きくなったり(幅縮小のとき)、エア
ーギャップを生じ次すして(幅拡大のとき)安定した連
続鋳造ができなくなる。
On the other hand, it is also possible to consider a method in which the target taper amount is reached in the retrograde phase, which corresponds to the latter half of the width change based on the present invention, and the width change is finished at the 9th point, but in this method, the width is changed before the target width change amount is reached. The operation will end, resulting in an error in the actual slab width relative to the target slab width.If this error is to be corrected after the width changing operation is completed, the short side must be translated in parallel. If such parallel movement is performed, the shell deformation resistance increases (when the width is reduced) or an air gap is created (when the width is expanded), making stable continuous casting impossible.

而して本発明は、前述し九幅変更開始時のチーA−量と
幅変更終了時の目標テーパー量との差から生じる目標幅
変更量に対する誤差を、前記前傾期から後傾期へ移行す
る間に短辺の上下端部の速度を同一とする平行移動期間
を設けることに工つて効果的に吸収せしめることに成功
し念ものである。
Therefore, the present invention reduces the error to the target width change amount caused by the difference between the chi A- amount at the start of the nine-width change and the target taper amount at the end of the width change from the forward tilt period to the backward tilt period. We have succeeded in effectively absorbing this by providing a parallel movement period in which the speeds of the upper and lower ends of the short sides are the same during the transition.

前記第1図の例は2種類の幅変更のノミターンを示すも
ので、目標幅変更量を幅変更時間’pwl 、1w2で
表し、前傾期開始(幅変更開始)から前傾期終了(平行
移動開始)までの時間をTrl、Tr2で、又平行移動
期間’k Thr ITh!  で表した。第5図はこ
の幅縮小時の短辺の移動状況を示す模式図であり。
The example in Fig. 1 shows two types of width change chisel turns, where the target width change amount is expressed as width change time 'pwl and 1w2, and the period from the start of the anteversion period (width change start) to the end of the anteversion period (parallel The time until the start of movement is Trl and Tr2, and the parallel movement period 'k Thr ITh! It was expressed as FIG. 5 is a schematic diagram showing the movement of the short side when the width is reduced.

前記前傾期には短辺の上端部速度Vuを下端部速度vj
工り常に一定速度だけ速く移動感せることに工って1点
鎖線で示す水平線Zに対する短辺1の傾斜角βが順次大
きくなり、前傾期は増しチー、e−itti小さくなっ
ていく。鋳型短辺の中心部が目標幅変更量のほぼ半量に
達したら上下端部速度を同一とする平行移動を行わしめ
るが、この平行移動期間は後述するLうに幅変更開始時
のチーA−量と幅変更終了時の目標テーノ〜1の差から
生じる目標幅変更量に対する誤差全吸収する程度の僅か
な時間である。該平行移動期間を経て後傾量に移行する
と、前傾期とは逆に上端部vVuLり下端速度VAf常
に一定速度速めることによって前記傾斜角βは順次小さ
くなり、前傾量が減っていくつ(本発明においては前記
傾斜角βが大きくなる方向、即ち鋳型中心側に傾いてい
きテーノソー量が小さくなっていく移動期間を前傾期、
逆に前記傾斜角βが小さくなる方向、即ち鋳型反中心側
に傾いていきテーノソー量が大きくなっていく移動期間
を後傾量とそれぞれ定義して用い友。) 一方、上下端部速IJjVu、V#は前後傾量において
一定の増速不α、即ち前傾期においては正方向。
During the forward tilt period, the upper end velocity Vu of the short side is changed to the lower end velocity vj
In order to make the vehicle feel as if it is constantly moving at a constant speed, the inclination angle β of the short side 1 relative to the horizontal line Z indicated by the dashed-dotted line gradually increases, and the forward tilt period increases and becomes smaller. When the center of the short side of the mold reaches approximately half of the target width change amount, parallel movement is performed to make the speed of the upper and lower ends the same, but this parallel movement period is the same as the amount of chi A at the start of width change, which will be described later. This is a short enough time to completely absorb the error in the target width change amount caused by the difference between the target width change amount and the target width change amount of ~1 at the end of the width change. After passing through the parallel movement period and transitioning to the amount of backward inclination, the inclination angle β gradually decreases by increasing the upper end vVuL and lower end velocity VAf at a constant speed, contrary to the forward inclination period, and the amount of forward inclination decreases ( In the present invention, the moving period in which the tilt angle β increases, that is, toward the center of the mold and the saw amount decreases, is referred to as a forward tilting period.
On the other hand, the movement period in which the tilt angle β decreases, that is, tilts away from the center of the mold and the saw amount increases, is defined as the backward tilt amount. ) On the other hand, the upper and lower end speeds IJjVu and V# are constant speed increases α in the amount of forward and backward tilting, that is, in the forward tilting period, they are in the positive direction.

つまり短辺移動速度が順次増加する増速率αを。In other words, the speed increase rate α at which the short side moving speed increases sequentially.

また後傾量においては負方向、つまり短辺移動速度が順
次減少する増速蚕α1正方向を基準とすれば減速巡とな
るが本発明では増速率に統一して用い、それを特に区別
して表す必要があるときはその符合で増速を(ホ)、減
速1=(→で表すことにする。
In addition, in the backward tilt amount, if the negative direction, that is, the positive direction of the accelerating silkworm α1 in which the short side moving speed decreases sequentially, it becomes a deceleration cycle, but in the present invention, it is unified to the accelerating rate, and it is specially differentiated. When it is necessary to express it, the sign will be used to express acceleration (e) and deceleration 1 = (→).

またこれを総称して言うときは以下増速率αと言う。)
と速度差ΔVと會有し、それぞれ時間と共に前#4iも
しくけ後傾量が増加する。而して第1図においては前傾
期の増速率をαl、上下端部速度Vu 、 VAの速度
差をΔvIで表し、減速する後傾量の増速率ヲα2.α
21で、又上下端部速qVu、Vikの速度差をΔv2
.Δv2tで表した。
In addition, when referring to this collectively, it will be referred to as the acceleration rate α below. )
and the speed difference ΔV, and the amount of forward #4i and backward tilt increases with time. In FIG. 1, the speed increase rate during the forward tilt period is expressed as αl, the speed difference between the upper and lower end speeds Vu and VA is expressed as ΔvI, and the speed increase rate of the backward tilt amount to be decelerated is expressed as α2. α
21, and the speed difference between the upper and lower end speeds qVu and Vik is Δv2
.. It was expressed as Δv2t.

尚、平行移動期間における増速率α及び速度差ΔVは「
零」である。
In addition, the speed increase rate α and speed difference ΔV during the parallel movement period are “
``Zero''.

次に幅拡大の場合を前記第1図(b)及び第6図の模式
図に基づいて説明する。幅拡大を実施するに当九つでは
前記幅縮小とは逆に短辺を鋳型反中心方向に移動させて
いくが、まずその前半では下端部速1fvl′(I−上
端部速度vu工り常に一定の速度だけ高める後傾操作を
行い、所定量の移動を行わせた後前述した幅変更開始時
のチー・ぐ−量と幅変更終了時の目標テーパー量の差か
ら生じる目標幅変更量に対する誤差を吸収する平行移動
期間を経た鏝、上端部vVuを下端部速度Vlエリ高め
る前傾量P1:を行う。この場合においても、前傾期及
び後傾量には上下端部速vVu 、 Vnは前述したよ
うに一定の増速率αと速度差ΔVを有し、それぞれ時間
と共に前傾量もしくは後傾量が増加する。
Next, the case of width expansion will be explained based on the schematic diagrams of FIG. 1(b) and FIG. 6. In order to widen the width, contrary to the aforementioned width reduction, the short side is moved in the direction away from the center of the mold, but in the first half, the lower end speed 1fvl' (I - upper end speed vu machining is always After performing a backward tilting operation to increase the speed by a certain amount and moving by a predetermined amount, the target width change amount resulting from the difference between the tip amount at the start of the width change and the target taper amount at the end of the width change as described above. After undergoing a parallel movement period to absorb errors, the trowel performs a forward tilting amount P1 to increase the upper end vVu and the lower end speed Vl.In this case, the forward tilting period and the backward tilting amount include the upper and lower end speeds vVu, Vn. As described above, has a constant speed increase rate α and a speed difference ΔV, and the amount of forward tilt or backward tilt increases with time.

以上のように1本発明では前記増速率αを後述する二う
に許容シェル変形抵抗をノセラメータとして鋼種や鋳片
サイズ、鋳造速度等に応じて予め求めて設定すると共に
、上端部速度Vuと上端部速度vjの速度差ΔVを前記
(1)に基づいて定め、前傾期及び後傾量のそれぞれの
期間中それを一定に維持して幅変更を実施することによ
り%BOや鋳片割れ等の鋳造欠陥を生じることなく最短
の時間で幅変更を行うこと2!!−第1の特徴とし、又
前傾期から後傾量へ移行する間に平行移動期間を設ける
ことによって幅変更開始時のテーパー量と幅変更終了時
の目標テーパー量の差から生じる目標幅変更量に対する
誤差を効果的に吸収せしめることを第2の特徴とするも
のである。
As described above, in the present invention, the speed increase rate α is determined in advance by determining the allowable shell deformation resistance as a nocerameter according to the steel type, slab size, casting speed, etc., as described later, and the upper end speed Vu and the upper end By determining the speed difference ΔV of the speed vj based on the above (1), and changing the width while maintaining it constant during the forward tilting period and the backward tilting amount, it is possible to prevent casting problems such as %BO and slab cracks. To change the width in the shortest possible time without causing defects 2! ! - The first feature, and by providing a parallel movement period during the transition from the forward tilt period to the backward tilt amount, the target width change occurs due to the difference between the taper amount at the start of the width change and the target taper amount at the end of the width change. The second feature is that errors in quantity can be effectively absorbed.

而して、まず始めに、前述した増速率α及び速度差Δψ
を制御因子とすることにより鋳造欠陥を生じることなく
最短時間で幅変更が実施できる理由について説明する。
Therefore, first of all, the speed increase rate α and the speed difference Δψ
The reason why the width can be changed in the shortest possible time without causing casting defects by using as a control factor will be explained.

前述したように1幅変更時の速度を高速化するには幅変
更中にF2Oや鋳片に欠陥等を生じさせないための配慮
が必要である。この念めには幅変更実施の全期間中にお
いて鋳片と短辺との間にエアーギャップを生じさせず、
かつ短辺にLつて過変に鋳片を押し込むことがないよう
に常に適正な押し込みを確保することが肝斐である。第
7図は短辺の移動と前記エアーギャップの生成条件を説
明する概念図であって%Xu、X#は短辺上端部及び下
端部の任意時点(幅変更開始から任意時間を経過した時
点)における移sir示し、βは当該時点での前述した
短辺と水平線2との傾斜角を、又σは垂直線に対する傾
斜角(θ=J’−90’)を表すものである。
As mentioned above, in order to increase the speed when changing one width, it is necessary to take care not to cause defects in the F2O or the slab during the width change. In order to ensure this, no air gap is created between the slab and the short side during the entire width change implementation period.
In addition, it is important to always ensure proper pushing so that the slab is not pushed in excessively on the short side. FIG. 7 is a conceptual diagram explaining the movement of the short side and the conditions for generating the air gap, where %Xu and ), β represents the inclination angle between the above-mentioned short side and the horizontal line 2 at the time, and σ represents the inclination angle with respect to the vertical line (θ=J'-90').

さて、微少時間dtの間に短辺上端がdXu、下端がd
XA移動するものとし、この間鋳片は鋳造速度f Uc
とすると〔Uc−dt〕だけ下方に移動し、第7図(a
tにおけるd点は重点へ、e点は61点へ移動する。こ
の間に短辺1の進む距離が小さいと、短辺と鋳片との間
に前記エアーギャップ(第7図(atにおけるη)を生
じる結果となる。これ′(f−避けるためには第7図(
b)に示すようにdtの間に短辺が(Uc・dt @ 
tanθ〕 以上移動すればよい。即ち。
Now, during the minute time dt, the upper end of the short side is dXu, and the lower end is dXu.
It is assumed that the slab moves by XA, and during this time the slab moves at a casting speed f Uc
Then, it moves downward by [Uc-dt] and becomes as shown in Fig. 7 (a
Point d at t moves to the important point, and point e moves to point 61. If the distance traveled by the short side 1 during this period is small, the above-mentioned air gap (η in Fig. 7 (at)) will occur between the short side and the slab. figure(
As shown in b), the short side between dt is (Uc・dt @
tan θ] or more. That is.

短辺上端部の移動量と下端部移動量に関して下記(21
、(31式が成り立てばよいことになる。
Regarding the amount of movement of the upper end of the short side and the amount of movement of the lower end, see the following (21)
, (It is sufficient if Equation 31 holds true.

dXu≧Uc1)dtetanσ□(2)dXI/≧U
c  *  dt  @tan& −(3)ここにta
nθは下記(4)式で表せる(θが小さいtめL m 
cosθ=Lとする)ことから、前記(21、(31式
をdtで割り、整理することによって下記(51、(6
1式%式% 従って、上端部速度Vu及び上端部速度V# 2前記(
51、(6)式を常に満足するように設定すると前記エ
アーギャップηが生じることなく幅変更を行なえること
が判った。
dXu≧Uc1) dtetanσ□ (2) dXI/≧U
c * dt @tan & - (3) ta here
nθ can be expressed by the following equation (4) (when θ is small, tL m
cos θ = L), by dividing the above formula (21, (31) by dt and rearranging, the following (51, (6
1 Formula % Formula % Therefore, the upper end speed Vu and the upper end speed V# 2 above (
51. It has been found that if the equation (6) is set so as to always be satisfied, the width can be changed without generating the air gap η.

次に鋳片上の任意の点が鋳型内を通過する間に受ける総
置形量(これt以下押込量δと言う)を第8図に基づい
て説明する。
Next, the total amount of displacement (hereinafter referred to as the indentation amount δ below t) that any point on the slab undergoes while passing through the mold will be explained based on FIG.

任意時刻tにおいて短辺上端で生成された点dはL /
 Uc待時間後短辺下端を通過する。この時短辺が移動
していると鋳片はT = t + L / Ucの時点
の短辺下端位置との差分だけ変形されて鋳型を出る。こ
の鋳型内通適時に鋳片が受ける総置形量、つまり前記押
込量δは下記(7)式で表すことができる。
The point d generated at the upper end of the short side at any time t is L /
After the Uc waiting time, it passes the lower end of the short side. At this time, if the short side is moving, the slab is deformed by the difference from the lower end position of the short side at the time T = t + L / Uc and leaves the mold. The total amount of shaping that the slab undergoes when passing through the mold, that is, the pushing amount δ can be expressed by the following equation (7).

a=XZ (t+7/Uc l −Xuftl   (
7)!;メニスカスからの垂直距離 而して該押込量δと前述した二了−ギャップを生じない
条件によって鋳片の押込状態は表され。
a=XZ (t+7/Uc l −Xuftl (
7)! ; The indentation state of the slab is expressed by the vertical distance from the meniscus, the indentation amount δ, and the condition that no gap occurs as described above.

この二つの条件を幅変更中の経過時間に対して変化させ
ないように制御することにエリ前述しt鋳造欠陥の生じ
ることのない安定した押込状態を維持出来ることが判つ
toそこで、本発明者等は前記条件を満足させるために
更に研究?継続し次。
By controlling these two conditions so that they do not change with respect to the elapsed time during the width change, we found that it is possible to maintain a stable pressed state without causing casting defects. Is further research needed to satisfy the above conditions? Continue next.

前記条件を満足させるためには、前記(5)〜(7)式
を同時に満足するVu 、 VL f求める必要がある
In order to satisfy the above conditions, it is necessary to find Vu and VL f that simultaneously satisfy the above equations (5) to (7).

下記(81、(91式及び(10)式は前記(5) 、
 (61式及び(7)式をそれぞれ時間で微分して得ら
れた式であり、この(8)〜[10)t一連立して下記
(1))式が得られる。
The following formulas (81, (91) and (10) are based on the above (5),
(This is an equation obtained by differentiating Equation 61 and Equation (7) with respect to time, respectively. By arranging the series of (8) to [10)t, the following equation (1) is obtained.

dVu / d t −Uc / L ・(Vu −’
II& ) −0−(8)dVt /dt −Uc/L
 ・(Vu −Vj)−0−(91V# (t +Z/
Uc 1− Vu(tl=0−(10)dVu / d
t = (Vu (t) −Vu (t −L/Uc 
)J/ (L/Uc)前記(1))式の解を一般解の式
で表すと下記(12)式となる。
dVu / d t -Uc / L ・(Vu -'
II&) -0-(8)dVt/dt-Uc/L
・(Vu −Vj)−0−(91V# (t +Z/
Uc 1-Vu (tl=0-(10)dVu/d
t = (Vu (t) −Vu (t −L/Uc
)J/ (L/Uc) When the solution to the above formula (1) is expressed as a general solution formula, it becomes the following formula (12).

Vu −A at + 8 − (12)(12)式に
おいてA、及びBは定数である。
Vu −A at + 8 − (12) In equation (12), A and B are constants.

又、前記(12)式を前記(9)に代入することによっ
てvbが下記(13)式で表される。
Further, by substituting the above equation (12) into the above (9), vb can be expressed by the following equation (13).

v7==A@ t + (B−A−L/Uc ) −(
13)つまり、該(12)及び(13)式より、前述し
た安定した押込状態を維持するにはVu及びV7 t−
幅変更開始からの経過時間tとの1次関数で設定すれば
良く、又Vuとvjは常に一定の速度差に保てば良いと
言う新知見が得られ友。
v7==A@t + (B-A-L/Uc) −(
13) In other words, from equations (12) and (13), in order to maintain the stable pushing state described above, Vu and V7 t-
New knowledge has been obtained that it is sufficient to set it as a linear function of the elapsed time t from the start of width change, and that Vu and vj should always be kept at a constant speed difference.

本発明者等は該知見に基づき実操業の連続鋳造中におけ
る幅変更においてさらに研究を重ねた結果、前記(12
)及び(13)式の定数Aを許容変形抵抗力2 pRラ
メ−ターとして求めた値に設定することにより、前記知
見を工業的規模で適用することが可能であることを確認
した。
Based on this knowledge, the present inventors conducted further research on changing the width during continuous casting in actual operation, and as a result, the above (12
) and (13), it was confirmed that the above knowledge could be applied on an industrial scale by setting the constant A in equations (13) to the values determined as the allowable deformation resistance 2 pR rammeter.

而して本発明における前記定数Aは前傾期及び後傾期で
は零以外の値であって、この九めvu及びVAは時間と
共に増速もしくは減速される。この幅変更期間中Vu及
びVA 2増速もしくは減速させる定数At一本発明で
は増速率αとして用いた。又。
In the present invention, the constant A has a value other than zero during the forward tilt period and the backward tilt period, and the ninth vu and VA are accelerated or decelerated with time. During this width change period, Vu and VA2 are accelerated or decelerated at a constant At, which is used as the speed increase rate α in the present invention. or.

前記(12)及び(13)式における定数Bは短辺上端
部の幅変更開始時の初期速度であり1幅変更やその時の
操業条件によって予め適宜決定すればj Vs 。
The constant B in the above equations (12) and (13) is the initial speed at the start of width change at the upper end of the short side, and is j Vs if appropriately determined in advance according to one width change and the operating conditions at that time.

前記増速率αが設定されるとVuとvl/の速度差は前
記(13)式の短辺長さL及び鋳造速qUcからe、V
 ” Vu −1)= a IIL / Uc −(1
)と求められ、前述した(1)式が得られる。
When the speed increase rate α is set, the speed difference between Vu and vl/ is determined by e, V from the short side length L and casting speed qUc in equation (13).
” Vu −1)= a IIL / Uc −(1
), and the above-mentioned equation (1) is obtained.

因に増速率αが零の場合は前記(1)式のΔv=Oとな
り、Vu = Vb 、即ち短辺の上下端部速度が同一
速度となる。これは従来法の幅変更における平行移動と
結果的に同一の状態になる。確かに従来法の平行移動期
間中は押込状態が安定した状態に僚友れるためこの部分
での鋳造欠陥の発生はなく。
Incidentally, when the speed increase rate α is zero, Δv=O in the above equation (1), and Vu=Vb, that is, the upper and lower ends of the short side have the same speed. This results in the same state as the parallel movement in width change in the conventional method. It is true that during the parallel movement period in the conventional method, the indentation state remains stable, so no casting defects occur in this area.

従来はこの平行移動を中心とし九幅変更/(ターンが実
施されていたわけである。しかしながらこの工うな従来
法では前述し友ように平行移動期の前後に傾斜角度変更
期が必要となり、この期間で適正な押込量を確保するこ
とが困難となった妙、幅変頁時間の短縮に限界が生じる
等の問題があった、本発明は、係る従来の問題を、増速
率αを零以外でがつ許容シェル変形抵抗力から求められ
る値に設定すると共に前記平行移動期間を幅変更開始前
のターンぞ一量と幅変更終了時の目標ターン4−量の差
から生じる目標幅変更量に対する誤差を吸収する九めに
のみ活用することにより抜本的な解決を可能とし念もの
である。
Conventionally, a nine-width change/(turn) was carried out centering on this parallel movement.However, in this conventional method, as mentioned above, an inclination angle change period is required before and after the parallel movement period, and during this period There were problems such as it was difficult to secure an appropriate pushing amount and there was a limit to shortening the page width change time.The present invention solves these conventional problems by setting the acceleration rate In addition to setting the parallel movement period to a value determined from the allowable shell deformation resistance, the error in the target width change amount resulting from the difference between the turn amount before the width change starts and the target turn amount at the end of the width change is determined. It is hoped that a drastic solution will be possible by utilizing it only in the ninth stage of absorbing it.

欠く増速率αの具体的な求め方について説明する。A specific method for determining the missing acceleration rate α will be explained.

増速率αを高くしていくと幅変更時間は短縮されてい(
が、成る値を越えると鋳片が座屈を生じて表面のシェル
が破断したり、或いは変形抵抗が大きくなり短辺を移動
せしめる駆動力が不足し幅変更が出来なくなる等の現象
音生じる工うになる。
As the speed increase rate α is increased, the width change time is shortened (
However, if this value is exceeded, the slab may buckle and the shell on the surface may break, or the deformation resistance will increase and the driving force to move the short side will be insufficient, making it impossible to change the width. I'm going to growl.

本発明者等は多くの実験を繰返した結果、前記増速率α
として許容シェル変形抵抗力から最適の範囲を求めるこ
とが可能であることを確認した。許容シェル変形抵抗力
はシェル強度から決定される場合と前記鋳型短片駆動力
から決定される場合とがある。
As a result of repeating many experiments, the inventors found that the acceleration rate α
It was confirmed that it is possible to determine the optimal range from the allowable shell deformation resistance. The allowable shell deformation resistance force is determined either from the shell strength or from the mold strip driving force.

まず鋳片シェルの強度から求める方法について説明する
First, we will explain how to determine it from the strength of the slab shell.

鋳型短辺に工り鋳片を押し込むと、鋳片表面に生成され
た凝固殻即ちシェルには歪が生じる。この際、前記シェ
ルにはその歪速度に応じた抵抗力が発生する。ところで
該抵抗力がシェルの限界強度以上である場合にはシェル
が座屈変形をおこし鋳造欠陥を生じる結果となる。この
ような欠陥の発生を避けるためにはシェルに生じる歪部
f’にシェル強度に対応する限界歪速度以下にしなけれ
ばならなro 本発明の幅変更法における前記シェルの歪速度上第9図
に基づいて説明する。短辺上端部からの任意の距4Hの
位置における微小押込量t−dxig)とし、微少時間
dtの間で上端部がdXu 、下端部がd■動い友とす
ると、前記8点にある鋳片が受ける微小押込量dME)
は下記(14)式で表せる。
When a machined slab is pushed into the short side of the mold, distortion occurs in the solidified shell formed on the surface of the slab. At this time, a resistance force corresponding to the strain rate is generated in the shell. However, if the resistance force exceeds the critical strength of the shell, the shell undergoes buckling deformation, resulting in casting defects. In order to avoid the occurrence of such defects, the strain rate in the strained portion f' of the shell must be lower than the critical strain rate corresponding to the shell strength. The explanation will be based on. Assuming that the minute indentation amount is t-dxig) at an arbitrary distance 4H from the upper end of the short side, and the upper end moves dXu and the lower end moves d■ during a minute time dt, the slab at the eight points minute indentation amount dME)
can be expressed by the following equation (14).

dX(Fi) = ((dX7−dXu ”I / L
 ) ・13+ dXu−Uc e dt IItan
θ □(14)従って単位時間当りの押込量は下記(1
5)式で表せる。
dX(Fi) = ((dX7-dXu ”I/L
) ・13+ dXu-Uc e dt IItan
θ □ (14) Therefore, the pushing amount per unit time is as follows (1
5) It can be expressed by the formula.

dxlF!l/dt = (VB −t/u )*Fi
/L+Vu −UC@ tanθところで幅変更の前半
期(幅縮小時は前傾期、幅拡大時は後傾顧では前述のよ
うにVu、VZは下記f16) 、 (17)式で表せ
る。
dxlF! l/dt = (VB -t/u)*Fi
/L+Vu -UC@tanθ By the way, the first half of the width change (in the forward leaning period when the width is reduced and in the backward leaning period when the width is expanding, Vu and VZ are f16 below as described above) can be expressed by equation (17).

Vu =(’I @t + 81 −  (16)”0
1=α1・ t+Bt=αI  IIL / Uc  
−(17)但しαl;幅変更の前半期における増速率B
t;幅変更の前半期における短辺上端部の初期速度 又、幅変更の後半期(幅縮小時は後傾期1幅拡大時は前
傾期)では下記(1)3) 、 (19)式で表せる。
Vu = ('I @t + 81 - (16)"0
1=α1・t+Bt=αI IIL/Uc
−(17) However, αl; speed increase rate B in the first half of width change
t: Initial velocity of the upper end of the short side in the first half of the width change. Also, in the second half of the width change (backward tilting period when the width is reduced, forward tilting period when the width is expanding), the following (1) 3), (19) It can be expressed as a formula.

Vu =%1) (t −Tr ) +th −(18
)VI=%  ・  (t   −Tr   )   
+  am  =α2  − L/Uc       
(19)但しα32幅変更の後半期に訃ける増速率B2
;幅変更の後半期における短辺上端部の初期速蜜 Tr ;前半期の開始から終了までの時間従って前記(
16) 、 (17)式を前記(15)式に代入すると
共に tanθ= (Xu −KA ) / L全考慮すると
前半期の押込率は下記(20)式となる。
Vu =%1) (t −Tr ) +th −(18
)VI=%・(t−Tr)
+ am = α2 − L/Uc
(19) However, the speed increase rate B2 will fail in the latter half of the α32 width change.
; Initial speed Tr at the upper end of the short side in the second half of the width change; According to the time from the start to the end of the first half, the above (
16) When formulas (17) and (17) are substituted into formula (15) and tanθ=(Xu −KA)/L is taken into account, the push-in rate for the first half is expressed as formula (20) below.

d X[Bl/d t = 81−at ・8/Uc 
−(20)同様に後半期の押込率は下記(20’ )式
となる。
dX[Bl/d t = 81-at ・8/Uc
- (20) Similarly, the push-in rate in the second half is expressed by the following formula (20').

dXiFil/dt=82 − α重  ”g2/Uc
  =α1   ・ Tr         (20’
)前記(20) 、 (20’)式の(dxtg)/d
t )を片側の短辺が受は待つ鋳片幅2Wの半量(・(
1/2)・2w)で割ると幅変更前半期と後半期の鋳片
の歪部健ε言131とε2(E)は下記(21) 、 
(22)式のLうに求められる。
dXiFil/dt=82 − α weight “g2/Uc
= α1 ・Tr (20'
) (dxtg)/d of the above formulas (20) and (20')
t), one short side of which is half the width of the slab width 2W (・(
When divided by 1/2) and 2w), the strained part of the slab in the first half and second half of the width change is calculated as follows (21):
It is determined by L in equation (22).

ε+1F3) = (B、=α1 ・[ii / Uc
 ) ・1 /W −(21)g*(Ff) −(th
 =α重 ”t/Uc=α1  ・Tr )・l/W 
  (22)これを図示すると第10図及び第1)図の
ように表せる。12aち第10図は幅縮小を示し、第1
0図(atが前半期、1)10図(b)が後半期である
。又、第1)図は幅拡大を示し、第1)図1alが前半
期、第1)図(b)が後半期である。第10図及び第1
)図において縦軸はメニスカスからの垂直距離、横軸は
歪速度εであり、それぞれ上下端部の歪速度εを設定す
ることによってα、Bは決定される。
ε+1F3) = (B, = α1 ・[ii / Uc
) ・1 /W −(21)g*(Ff) −(th
=α weight ”t/Uc=α1 ・Tr )・l/W
(22) This can be illustrated as shown in FIG. 10 and FIG. 1). 12a, Figure 10 shows the width reduction, and the first
Figure 0 (at is the first half, 1) Figure 10 (b) is the second half. Further, Fig. 1) shows the width expansion, and Fig. 1) 1al is the first half, and Fig. 1) (b) is the second half. Figure 10 and 1
) In the figure, the vertical axis is the vertical distance from the meniscus, and the horizontal axis is the strain rate ε, and α and B are determined by setting the strain rates ε at the upper and lower ends, respectively.

ところで前記歪速度εはそれが負(→となるとエアーギ
ャップが生じ、成る値以上となると鋳片が座屈現象を起
こし、前述したLうに安定し九鋳造ができなくなる。而
して歪速度εの適正範囲は零以上で、かつ許容される最
大値εmax以下(O≦ε≦tmax)である必要があ
る。
By the way, if the strain rate ε becomes negative (→), an air gap will occur, and if it exceeds the value, the slab will buckle, making it impossible to perform stable casting as described above. The appropriate range of should be greater than or equal to zero and less than or equal to the maximum allowable value εmax (O≦ε≦tmax).

本発明者等は前記tmax  Kついて種々調査した結
果、  ;maxは鋳片の上部と下部とで異なり、通常
の連続鋳造で製造される鋼種では第1表に示す値を適用
することにより、本発明の機能を確実に発揮できること
が確認できた。
As a result of various investigations regarding the above-mentioned tmax K, the present inventors found that ;max differs between the upper and lower parts of the slab, and by applying the values shown in Table 1 for steel types manufactured by ordinary continuous casting, It was confirmed that the function of the invention could be reliably demonstrated.

第  1  表 従って前記(21)、(223式より前半期における上
端部には下記(23)が、下端部には下記(24J式が
成立し、同様に後半期における上端部には下記(25)
、下端部には下記(26)式がそれぞれ成立する。
Table 1 Therefore, from the above (21) and (223 formula), the following (23) holds true for the upper end in the first half, the following (24J formula) holds true for the lower end, and similarly, the following (25) holds true for the upper end in the second half. )
, the following formula (26) holds true at the lower end.

0<Bt/W≦I+maxl          (2
3)0<(81=α1 @L/Uc ) ・1/W5S
max2− (24)0 < (Bz=α2@Tr)・
1/W≦’maxt  −(25)0 < (Bz=α
2・L/Uc=αi@Trii/W≦εmaxt−(2
63以上の各式を満足する。即ち幅変更中において安定
鋳造を維持するための相関を整理すると下記(a)〜(
h)の各式が求まる。
0<Bt/W≦I+maxl (2
3) 0<(81=α1 @L/Uc) ・1/W5S
max2− (24)0 <(Bz=α2@Tr)・
1/W≦'maxt - (25) 0 < (Bz=α
2.L/Uc=αi@Trii/W≦εmaxt−(2
63 or more expressions are satisfied. In other words, the following (a)-(
Each equation of h) is found.

B1> 0                 (a)
Bl >α、 −L/Uc             
 (b)Bl (We gmaxl         
     (C)Bl (We 2maz!+α1 *
L/Uc         (d)B2≧α1・T r
               (e)B、≧α1 *
Tr+α、 @El/UC(r)B、≦Wagmaxl
+αt 拳T r(g)B2 ≦W@ tmax鵞 +
α1sTr+α、  @L/Uc          
  (h)第12図はこの(a)〜(h)の関係を前述
した前半期と後半期とく区別して表したもので、第12
図(a)が前半期を、また第12図(b)が後半期を示
す。更に横軸は増速率α1.α鵞を、縦軸は初期速度B
l、B、である。第12図におけるハツチング部りが鋳
造欠陥の発生することのない、つまり安定した鋳造を継
続しつつ幅変更が可能な範囲を示している。従って、増
速率α1.α:として前記ハツチング部りの範囲内の任
意の値を選択して設定することKより、前述した本発明
の幅変更が実施できる。又、前記αhα鵞を設定するこ
とによって81+81も決定される。
B1>0 (a)
Bl > α, -L/Uc
(b) Bl (We gmaxl
(C) Bl (We 2maz!+α1 *
L/Uc (d) B2≧α1・Tr
(e) B, ≧α1 *
Tr+α, @El/UC(r)B, ≦Wagmaxl
+αt fist T r(g)B2 ≦W@tmax goose +
α1sTr+α, @L/Uc
(h) Figure 12 shows the relationship between (a) to (h), distinguishing between the first half and the second half, as described above.
Figure (a) shows the first half, and Figure 12 (b) shows the second half. Furthermore, the horizontal axis represents the speed increase rate α1. α, the vertical axis is the initial speed B
l, B,. The hatched area in FIG. 12 indicates a range in which no casting defects occur, that is, a range in which the width can be changed while stable casting is continued. Therefore, the speed increase rate α1. By selecting and setting K as α: any value within the range of the hatched portion, the width change of the present invention described above can be implemented. Furthermore, 81+81 is also determined by setting the αhα value.

ところで1幅変更は前述したように可能な限りにおいて
短時間で実施することが要求されており、係る要求を満
足すべき増速率αを前記ハツチング部りの範囲内より求
めることが必要である。而して幅縮小の前半期では増速
率α1及び初期速度B1が共に正で、その絶対値が大き
い程よい。このことより第12図(a)に示した点アが
最適条件となる、即ち、 B、 ==α1 * L/U c == W aεma
 x、    −(27)であればよい。後半期におい
ては前半期で通常操業時より傾斜せしめた傾斜角を元に
戻さねばならないことから α1 s’pr==α2・(Tw −T r J   
   −(28)Tw−Tr=−(α1/α2) ” 
T r      −(29)となり、幅変更時間を小
さくするためにはα2の絶対値は大きい程よいことにな
り、第12図(b) K示した点つが最適点となる。即
ち、 B2==α1 *Tr=Wa gmaX2+α1 @T
r+α2・L/Ucであればよい。
By the way, as mentioned above, it is required that the one-width change be carried out in as short a time as possible, and it is necessary to find the speed increase rate α that satisfies this requirement from within the range of the hatched portion. In the first half of the width reduction, both the speed increase rate α1 and the initial speed B1 are positive, and the larger the absolute value, the better. From this, point A shown in FIG. 12(a) becomes the optimal condition, that is, B, ==α1 * L/U c == W aεma
x, −(27) is sufficient. In the second half of the period, the angle of inclination that was made during normal operation in the first half of the period must be returned to its original value, so α1 s'pr==α2・(Tw −Tr J
−(28)Tw−Tr=−(α1/α2)”
T r -(29), and in order to reduce the width change time, the larger the absolute value of α2 is, the better, and the points shown by K in FIG. 12(b) are the optimal points. That is, B2==α1 *Tr=Wa gmaX2+α1 @T
It is sufficient if it is r+α2·L/Uc.

次に、幅拡大の前半期において幅変更時間を短縮するK
はaIIBTとも小さい程よい。従って第(12)図(
a)K示した点イが最適条件となり、初期速度B1は以
下のようKなる。
Next, K to shorten the width change time in the first half of width expansion.
The smaller the value of aIIBT, the better. Therefore, Fig. (12) (
a) Point A indicated by K becomes the optimal condition, and the initial speed B1 becomes K as shown below.

81 = O=W m g mmg+α1−L/Uc 
      (31)また、幅拡大の後半期においては TW−Tr=(α1/αt l ・T r     −
(32)の関係式においてα1(O1α!〉0となるこ
とから幅変更時間を小さくするにはα鵞が大きい程よい
。従って第12図(b) K示した点工が最適点となり
、初期速度B2は以下の通りとなる。
81 = O=W mg mmg+α1-L/Uc
(31) Also, in the latter half of width expansion, TW−Tr=(α1/αt l ・Tr −
In the relational expression (32), α1(O1α!〉0), so in order to reduce the width change time, the larger α is better.Therefore, the point shown in Fig. 12(b) is the optimal point, and the initial speed is B2 is as follows.

8!  =CLHaTr+α奮 * L/Uc=W@ 
;maxl  +α1  命Tr以上のように幅変更時
間を最短にするための増速率α及び初期速度Bが求めら
れるが、下記第2表はそれを一覧として表したものであ
る。
8! = CLHaTr + α * L / Uc = W @
;maxl +α1 The acceleration rate α and initial speed B are determined to minimize the width change time as described above, and Table 2 below shows them as a list.

第  2  表 前記第2表の条件下における上下端速度Yu 、 vt
は下記第3表(II!縮小ン及び第4表(幅拡大)のよ
りになる。
Table 2 Upper and lower end speeds Yu, vt under the conditions of Table 2 above
is according to Table 3 (II! Reduction) and Table 4 (Width expansion) below.

第3表及び第4表よ抄明らかなように幅縮小を開始する
九当たっては、短辺上端部の初期速度B1を前傾期にお
ける速度差Δv1とすればよ<、(Bl=ΔV、 =α
1・L/Uc)、この速度差ΔVlを確保するためには
短辺下端の初期速度を以下の式に示すように「0」とす
ることが幅変更時間を短縮するうえからは最も効果的で
ある。
From Tables 3 and 4, it is clear that when the width begins to narrow, the initial velocity B1 at the upper end of the short side is taken as the velocity difference Δv1 in the forward tilt phase.<, (Bl=ΔV, = α
1・L/Uc), in order to secure this speed difference ΔVl, it is most effective to set the initial speed at the lower end of the short side to "0" as shown in the formula below, in terms of shortening the width change time. It is.

第  3  表 第  4  表 Vl=Vu−(ΔVt ) =(αH1ll+αs・L/Ucl−(α1−t/Uc
)=αssl+「O」 同様に、幅拡大に当たっては短辺上端の初期速度を「0
」として幅変更を開始することが幅変更時間を短縮する
うえから最適であることが判った。前述した第1図はこ
の幅縮小変更開始時は初期短辺上端部速度を零、幅拡大
変更開始時は初期短辺上端部速度を零として幅変更を行
った実施例を示すものである。
Table 3 Table 4 Vl=Vu-(ΔVt)=(αH1ll+αs・L/Ucl-(α1-t/Uc
) = αssl + “O” Similarly, when expanding the width, set the initial velocity at the top of the short side to “0”.
It has been found that starting the width change as `` is the best way to shorten the width change time. The above-mentioned FIG. 1 shows an embodiment in which the width is changed with the initial speed at the upper end of the short side being zero when the width reduction change is started, and the initial speed at the top end of the short side is zero when the width expansion change is started.

又、木発明者等の経験では短辺の上方は下方に比しシェ
ル厚が薄いことから、一般に g maxl  、> i maxz        
        (34)であり、幅縮小の場合は α1〉αx                 (35
3幅拡大の場合は α1〈α雪           □(36)とするこ
とがシェル変形抵抗力から可能であって、幅変更速度の
高速化の点からは効果的である。一方、町〆α2となる
と前傾期から後傾期への移行のタイミングの制御が複雑
になる。従って、制−性の容易さを重視するときはα1
=α2とすることが好ましい。
Also, according to the experience of wood inventors, the shell thickness is thinner above the short side than below, so generally g maxl , > i maxz
(34), and in the case of width reduction α1〉αx (35
In the case of 3-width expansion, it is possible to set α1 <α snow □ (36) from the shell deformation resistance force, and it is effective from the viewpoint of increasing the width change speed. On the other hand, when it comes to town closing α2, control of the timing of transition from the forward tilt phase to the backward tilt phase becomes complicated. Therefore, when emphasis is placed on ease of control, α1
It is preferable that =α2.

次に許容シェル変形抵抗力が短辺の駆動装置の能力から
決定される場合について説明する。既設電動装置を利用
して本発明を実施する場合や設置場所或いは設備費等の
制約から駆動装置の能力を大きくすることに制限がある
場合等には、前述のシェル強度から設定されるα、Bで
は駆動力が不足し、幅変更を実施できない可能性がある
。このよつなときには、前記シェル強度内でかつ駆動装
置の能力を効率的に発揮できる増速率α及び初期速度B
を求めればよい。駆動装置には様々の方式があるが、代
表的なシリンダ一方式について、このシリンダー能力よ
り増速率α及び初期速度Bを求める具体的方法を以下に
説明する。
Next, a case where the allowable shell deformation resistance force is determined from the capability of the short side drive device will be described. When implementing the present invention using an existing electric device, or when there is a limit to increasing the capacity of the drive device due to constraints such as the installation location or equipment costs, α, which is set from the above-mentioned shell strength, In case B, there is a possibility that the driving force is insufficient and the width cannot be changed. In such a case, the speed increase rate α and the initial speed B can be set within the above-mentioned shell strength and at which the drive device can efficiently demonstrate its capabilities.
All you have to do is ask for. Although there are various types of drive devices, a specific method for determining the acceleration rate α and the initial speed B from the cylinder capacity for a typical one-cylinder type will be described below.

発明者らけα、Bを種々に変えて試験を行った結果鋳型
短辺を駆動するために必要な線駆動力Fここで! (1
3)は幅変更の前半期では前記(21)式で、後半期で
は(22)式で表されるように増速率α及び短辺上端部
の初期速度Bを設定すると求められる。
The inventor conducted tests with various α and B values and found that the linear driving force F required to drive the short side of the mold is here! (1
3) is obtained by setting the speed increase rate α and the initial speed B at the upper end of the short side as shown in the equation (21) above in the first half of the width change and as shown in the equation (22) in the second half.

又Hはシェル厚であり、下記(38)式で計算して求め
ればよ(、Gはクリープ定数であり、下記(39)式で
与えられる。
In addition, H is the shell thickness, which can be calculated using the following equation (38).G is the creep constant, which is given by the following equation (39).

H=Ho 、(L’UC) ”2 G=Go*exp(q/Be )          
 (39)尚、 (383式中においてHoは凝固係数
であり、通常普通鋼の場合18〜25 m+/m1nl
 /1の範囲内にあり、厳格には対象鋼種毎にシェル厚
を測定することによって求まる。(37)、(391式
中のG o + n + qは対象″’spnの物性か
ら定まる係数であって、鋼種毎に引張試験を行うことに
より求めることができる。
H=Ho, (L'UC) "2 G=Go*exp(q/Be)
(39) In addition, (in formula 383, Ho is the solidification coefficient, which is usually 18 to 25 m+/m1nl in the case of ordinary steel.
/1, and strictly speaking, it is determined by measuring the shell thickness for each steel type. (37), (G o + n + q in formula 391 is a coefficient determined from the physical properties of the target spn, and can be determined by performing a tensile test for each steel type.

更にsFi積分変数、 gJ−1″前述したように短辺
上端部からの距離であり、Reは温度(0K)である。
Furthermore, the sFi integral variable, gJ-1'', is the distance from the upper end of the short side as described above, and Re is the temperature (0K).

第13図に示すように短片を駆動させるために必要な上
下シリンダーの駆動力(以下必要駆動力と言う)をFu
(上シリンダーの必要駆動力)、Ft(下シリンダーの
必要駆動力)とすると、Fu 、 FAは下記(40)
、及び(41)式で求められる。
As shown in Fig. 13, the driving force of the upper and lower cylinders (hereinafter referred to as necessary driving force) necessary to drive the short piece is
(Required driving force of the upper cylinder) and Ft (Required driving force of the lower cylinder), Fu and FA are as follows (40)
, and (41).

Ft+=F (5o−j )LL−(40)F A= 
F −F u           −(41)但し、
」:メニスカスと上シリンダー取りつff位置との距離 Ll;上下シリンダー間の距離 F;上下シリンダーの必要総組動力 So;下記(42)式より求まる値 以上のようにα、Bを逐次変化させて前記(21)゜(
22]式より一を求め、このシと(37)式から必要線
駆動力Fを求める。この必要線駆動力Fが求ますると、
 (40)、(41)式により上下シリンダーの各々の
必要線駆動力Fu、Ftが求められる。一方、上下シリ
ンダーが短辺を介して鋳片九対して有効に作用しうる能
力(以下シリンダー能力という]は下記(433,(4
43式で示すようく、その発生能力Paから溶鋼静圧F
gと摺動摩擦力Fμを減じた値となる。
Ft+=F (5o-j)LL-(40)F A=
F −F u −(41) However,
”: Distance Ll between the meniscus and the upper cylinder mounting position ff; Distance F between the upper and lower cylinders; Required total assembly force So for the upper and lower cylinders; Sequentially change α and B so that they are equal to or greater than the values found from equation (42) below. (21)゜(
22] is obtained from equation (37), and the required linear driving force F is obtained from this equation and equation (37). When this required linear driving force F is found,
The required linear driving forces Fu and Ft for each of the upper and lower cylinders are determined by equations (40) and (41). On the other hand, the ability of the upper and lower cylinders to effectively act on the slab 9 through their short sides (hereinafter referred to as cylinder capacity) is as follows (433, (4
As shown in equation 43, from the generation capacity Pa, the static pressure F of molten steel is
It is the value obtained by subtracting g and sliding friction force Fμ.

Fuu=Fa  Fg−Fμ     □ (43)F
LL=、 Fa −Fg −Fμ(44)但し、Fuu
 :上7リンダー能力 Ftf ;下シリンダー能力 Fg;短片に作用する溶鋼静圧 Fμ ;摺動摩擦力 従って、 Fuu>Fu 、 FAA ) F’tを満足させる増
速率α、及び短辺上端部初期速度Bを設定し、上下端部
の速度差ΔVを求めればよい。
Fuu=Fa Fg−Fμ □ (43)F
LL=, Fa −Fg −Fμ (44) However, Fuu
: Upper 7 cylinder capacity Ftf; Lower cylinder capacity Fg; Molten steel static pressure acting on the short piece Fμ; Sliding friction force Therefore, Fuu>Fu, FAA) Acceleration rate α that satisfies F't, and initial speed B at the upper end of the short side , and find the speed difference ΔV between the upper and lower ends.

次に前述した増速率α及び速度差ΔVを制御因子として
幅変更を実施する場合において、幅変更開始時と終了時
のテーパー量を同一と仮定し、前傾操作から後傾操作へ
の、或いは後傾側から前傾期への切シ替えの時期を決定
する方法を説明する。
Next, when changing the width using the aforementioned speed increase rate α and speed difference ΔV as control factors, it is assumed that the taper amount at the start and end of the width change is the same, and from forward tilting operation to backward tilting operation, or A method for determining the timing of switching from the retroversion side to the anteversion phase will be explained.

前記幅変更開始時と終了時のテーパー量が同一であれば
平行移動期間は「0」、つまり不要となり。
If the taper amount at the start and end of the width change is the same, the parallel movement period is "0", that is, unnecessary.

前傾期の終了点が即後煩期へ移行する折夛返し点となる
。例えば幅縮小を例にとると、第14図に示すようKそ
の前半は前傾操作が、又後半は後傾操作が行われる。こ
の前傾操作から後傾操作への切り替えの時期は以下の方
法で決定すればよい。
The end of the anteversion period is the turning point at which the anteversion phase immediately begins. For example, taking width reduction as an example, as shown in FIG. 14, a forward tilting operation is performed in the first half, and a backward tilting operation is performed in the second half. The timing of switching from the forward tilting operation to the backward tilting operation may be determined by the following method.

まず、幅変更全所要時間をTw、前傾期の所要時間に折
返し時間JをTrとすると、前傾期で通常操業時から所
定角まで深められた傾斜角は後傾側において前記幅変更
開始前の傾斜角まで戻す必要がある。このことより下記
(45J式が成立し、このり45)式より前傾期の速度
差Δvl及び後傾側の速度差Δv雪は下記(46)、(
473式のように求められる。
First, if the total width change time is Tw, and the time required for the forward tilting period and the turning time J is Tr, then the inclination angle deepened to a predetermined angle from normal operation in the forward tilting phase is the same on the backward tilting side before the width change starts. It is necessary to return the angle of inclination to . From this, the following formula (45J) is established, and from this formula 45, the speed difference Δvl in the forward tilting period and the speed difference Δv snow in the backward tilting side can be calculated as follows (46), (
It can be calculated as shown in formula 473.

ΔV1*Tr+ΔV2(Tw−Tr)=0  −(45
JΔV1 =α1 @L/Uc          (
461ΔV、=αI  IIL/Uc        
 −(47)尚、αlは前傾期における増速率でありそ
の方向は正(十]、α鵞は後傾側における増速率であり
その方向は負(−)となる。前記(46)、(47)式
よシ前記(45)式は下記(4B)式で表せる。
ΔV1*Tr+ΔV2(Tw-Tr)=0-(45
JΔV1 = α1 @L/Uc (
461ΔV, = αI IIL/Uc
-(47) In addition, αl is the speed increase rate in the forward lean phase and its direction is positive (10), and αl is the speed increase rate in the backward lean side and its direction is negative (-). (46), ( Equation 47) The above Equation (45) can be expressed as Equation (4B) below.

α1 eTr+αx ・(Tw−Tr )−0(483
次に目標幅変更量を2Qとすれば片側の短辺ではQだけ
動かせばよいことになり、下記(49)式が成立する。
α1 eTr+αx ・(Tw−Tr)−0(483
Next, if the target width change amount is 2Q, then the short side on one side only needs to be moved by Q, and the following equation (49) holds true.

(1/2 )=α1  ・T r” +B1  @ T
 r”(1/2 )”雪(Tw−Tr l” +B1 
s(Tw−Tr ) =Q −(49)この(49)式
に[(48)式を代入すると(1/2J−(1+(α1
/α2 )〕α1  ・Trl+[B1−(αI/αx
 l・Bt〕@Tr −Q=O(50)従って、この(
50)式を解くことによって前傾操作から後傾操作への
切り替えの時期、つまりTrが下記(51)、(52)
式で求めることができる。
(1/2)=α1 ・T r” +B1 @T
r” (1/2)” Snow (Tw-Tr l” +B1
s(Tw-Tr) = Q - (49) Substituting equation [(48) into equation (49) yields (1/2J-(1+(α1
/α2 )]α1 ・Trl+[B1−(αI/αx
l・Bt]@Tr −Q=O (50) Therefore, this (
50) By solving the equation, the timing of switching from forward tilting operation to backward tilting operation, that is, Tr, is as follows (51), (52)
It can be obtained using the formula.

αに、l!′=α2のとき Tr = (1/[: 1 + (αI/α2)〕・α
1)φ[−+1/2)・〔1+(α1/α2)〕・α1
+ (CBl−(αl/α21幸B2〕2+2(1+(
αl/αt+〕・αs ・Q)” /’ 〕−(51)
α1==α2のとき Tr=Q、/(81+B2 J           
       (52’この(52)式から判るように
、α1==αsとすればTrはQとBl * s、とよ
)単純に決まり、従ってその制御は容易となる。
To α, l! When '=α2, Tr = (1/[: 1 + (αI/α2)]・α
1) φ[-+1/2)・[1+(α1/α2)]・α1
+ (CBl-(αl/α21 happiness B2) 2+2(1+(
αl/αt+〕・αs・Q)”/'〕−(51)
When α1==α2, Tr=Q, /(81+B2 J
(52'As can be seen from equation (52), if α1==αs, then Tr is simply determined as Q and Bl*s), and therefore its control becomes easy.

又、全幅変更時間Twけ前記(481&よりTrはTw
の生食もしくは略半竜となり、目標幅変更量の172と
なった時期に前傾操作がら後傾操作へ移行すればよい。
In addition, the full width change time Tw is as described above (481 & Tr is Tw
It is sufficient to shift from the forward tilting operation to the backward tilting operation when the target width change amount reaches 172.

以上のように、α1==α、とすると制(2)が非常に
容易なため、以下、α1==α2の場合を代表に説明す
る。
As mentioned above, when α1==α, the formula (2) is very easy to achieve, so the case where α1==α2 will be explained below as a representative.

前述したように、幅変更開始前と終了時では鋳片幅が異
なることからテーパー量が変化することが普通であり、
特に本発明を実施することにより短時間に大量の幅変更
が可能となると必然的にテーパー量の変化も大きくなる
As mentioned above, since the width of the slab is different before and after changing the width, it is normal for the amount of taper to change.
In particular, if the present invention allows a large amount of width change in a short time, the change in taper amount will inevitably increase.

従来の幅変更方法では第3図及び第4■に示す第1ステ
ツプと第3ステツプでテーパー量を変更しておυ、目標
テーパー量に一致させる操作は第3ステツプで行われて
いた。この際テーパー量の変更は短辺下端部を移動させ
ることによって行うことから平行移動時のテーパー量と
目標テーパー量の差の分だけ幅変更量が多くなり、誤差
が生じる。この誤差を防止する丸めに従来は平行移動を
速く終もらせる等の方法で対処していた。ところが本発
明においては短辺の上下端部が常に異なった速度で移動
しているため前傾期及び後傾側に前記誤差を吸収するこ
とが困難であり、その効果的な対応が必要である。
In the conventional width changing method, the taper amount is changed in the first and third steps shown in FIGS. 3 and 4 (2), and the operation to match the target taper amount is performed in the third step. At this time, since the taper amount is changed by moving the lower end of the short side, the width change amount increases by the difference between the taper amount during parallel movement and the target taper amount, resulting in an error. Conventionally, rounding to prevent this error has been dealt with by methods such as terminating the parallel movement quickly. However, in the present invention, since the upper and lower ends of the short sides always move at different speeds, it is difficult to absorb the error in the forward and backward tilting periods, and an effective countermeasure is required.

次に前記テーパー量の変化を幅変更実施過程で行わしめ
、前記テーパー量の変化によって生じる恐れのある目標
幅変更量に対する誤差を吸収する方法について説明する
Next, a method will be described in which the taper amount is changed during the width change implementation process and an error with respect to the target width change amount that may occur due to the change in the taper amount is absorbed.

鋳片凝固収縮量の関係から鋳片幅が広くなるとテーパー
量は大きく(傾斜角βは小さく]、逆に鋳片幅が狭くな
るとテーパー量は小さく(傾斜角βは大きく)すること
が一般的に知られている。
In relation to the amount of slab solidification shrinkage, it is common that the wider the slab width, the larger the taper amount (smaller the inclination angle β), and conversely, the narrower the slab width, the smaller the taper amount (larger the inclination angle β). known to.

従って鋳片幅を縮小する場合、前傾期でのテーパーの変
更量よりも後傾期のテーパー変更量が少なくなり、テー
パー量を目標値く正しく一致させて幅変更を終了させる
と幅変更時間は第15図及び下記(54)式に示すTΔ
にだけ短くなり、これによって幅変更量も下記(55)
式に示すΔWだけ目標幅変更tに対して不足することに
なる。
Therefore, when reducing the width of the slab, the amount of taper change during the backward tilting stage will be smaller than the amount of taper change during the forward tilting stage, and if the width change is completed by correctly matching the taper amount to the target value, the width change time will be is TΔ shown in FIG. 15 and equation (54) below.
As a result, the width change amount is as follows (55)
This means that the target width change t is insufficient by ΔW shown in the equation.

T△c= l (2−cot AV         
 (54)又、鋳片幅拡大の場合においても後傾期のテ
ーパー変更量より前傾期のテーパー変更量の方が少なく
、前述したと同様にテーパー量を目標値に正しく一致さ
せて幅変更を終了させると幅変更時間は前記(54)式
と同一でTΔにだけ短くなり、これによって幅変更量は
下記(561式に示すΔWだけ不足することになる。
T△c=l (2-cot AV
(54) Also, in the case of expanding the slab width, the amount of taper change during the forward tilting stage is smaller than the amount of taper change during the backward tilting stage, and as mentioned above, the width can be changed by correctly matching the taper amount to the target value. When the width change time is completed, the width change time is shortened by TΔ, which is the same as the formula (54), and as a result, the width change amount becomes short by ΔW shown in the following formula (561).

、−TV ΔW==     Mt@at=(1/2)sa・(T
Δにlれ−!563丁トτムに 尚、(54]〜(56)式において、 に雪 ;幅変更終了時の目標チー7<−量に0 ;幅変
更開始時のテーパー量 ΔV ;短辺上端と下端の速度差 α ;短辺上下端の増速率 ’ILL :後半(幅縮小時は後傾期、幅拡大時は前傾
期)の短辺下端の移動速度 Tw;幅変更時間 前記(55)、(56)式の目標幅変更量に対する不足
量ΔWが幅変更開始時のテーパー量と幅変更終了時の目
標テーパー量の差から生じる目標幅変更量に対する誤差
に相当する。本発明においては前記誤差を前傾期から後
傾期へ移行する間に平行移動を行わせることによって吸
収するもので、前記誤差を吸収するために必要な平行移
動時間は下記(57)式で表すことができる。
, -TV ΔW== Mt@at=(1/2)sa・(T
Δni l-! In addition, in the formulas (54] to (56), the target team 7 < - amount at the end of the width change is 0; the taper amount ΔV at the start of the width change; the upper and lower ends of the short side. Speed difference α; Acceleration rate at the top and bottom ends of the short side 'ILL: Movement speed Tw of the bottom end of the short side in the second half (backward tilting period when width is reduced, forward tilting period when width is expanding); Width change time (55), ( The shortage amount ΔW with respect to the target width change amount in equation 56) corresponds to the error with respect to the target width change amount resulting from the difference between the taper amount at the start of the width change and the target taper amount at the end of the width change.In the present invention, the error is The error is absorbed by performing parallel movement during the transition from the forward tilt period to the backward tilt period, and the parallel movement time required to absorb the error can be expressed by the following equation (57).

Th=ΔW/Vut(57) VuL :平行移動時の短辺の移動速度次に前記誤差を
吸収する平行移動の具体的制御法の一例を第16図の線
図及び第17図のブロック図に示す幅縮小の実施例に基
づき説明する。
Th=ΔW/Vut(57) VuL: Moving speed of short side during parallel movement Next, an example of a specific control method for parallel movement to absorb the above error is shown in the line diagram in Fig. 16 and the block diagram in Fig. 17. The explanation will be based on the example of width reduction shown in FIG.

まず5幅変更を実施するに当たって前傾期終了時のテー
パー量に1及び平行移動終了時の鋳片幅W2((1/2
)X鋳片幅)を下記(58)〜(60)式に基づいて求
める。
First, when implementing the 5-width change, the taper amount at the end of the forward tilting period is 1, and the slab width at the end of parallel movement W2 ((1/2
)X slab width) is determined based on the following equations (58) to (60).

Tr=(1/2α)((ΔV”+4α・(l ws−w
ol )) ’/”El =−ΔV * T r+にo
 −(r ’? )    −Δv)−(58)Wx=
w3 + ((1/ 21 ・α*(Tr”−TΔに2
)+ΔV 1)(T r −TΔに) ) −(601
w6:(幅変更前の鋳片幅)Xi/2 w3;(幅変更後の目標鋳片幅)Xi/2に0;幅変更
前のテーパー量 前記にl、WSが求められたら、予め求められていた増
速率α及び速度差ΔVを一定に維持して前傾操作を開始
する。この前傾期はテーパー量が前記にlVc達するま
で行われ、にlに達したら直ちに短辺の上下端部の速度
を同一として平行移動に移行する。この平行移動期にお
ける上下端部の速度は、前傾期終了時の短辺の上端部速
度vuIから下端速度vtlの間で任意に設定すればよ
く、本実施例では下端部速度vtlとした。
Tr=(1/2α)((ΔV”+4α・(l ws−w
ol))'/”El=−ΔV*Tr+to o
-(r'?) -Δv)-(58)Wx=
w3 + ((1/21 ・α*(Tr”−TΔ2
)+ΔV 1)(T r −TΔ) ) −(601
w6: (Slab width before width change) Xi/2 w3; (Target slab width after width change) 0 for Xi/2; Amount of taper before width change If l and WS are obtained above, calculate in advance The forward tilting operation is started while maintaining the speed increase rate α and the speed difference ΔV constant. This forward tilting phase is carried out until the taper amount reaches lVc, and immediately after reaching lVc, the velocity of the upper and lower ends of the short sides is made the same and the movement shifts to parallel movement. The speed of the upper and lower end portions during this parallel movement period may be arbitrarily set between the upper end speed vuI of the short side at the end of the forward tilt period and the lower end speed vtl, and in this embodiment, the lower end speed vtl is set.

前記平行移動時は鋳片幅が前記W!に達するまで行われ
、W2C達したら直ち(後傾期に移行する。
During the parallel movement, the slab width is W! The process continues until W2C is reached, and immediately after reaching W2C (transition to retroversion phase).

この後傾期に増速率は前傾期の増速率と方向を逆とする
のみで、その絶対値を同じとする(1α1)=ドα鵞1
)ことから、後傾期に移行した直後の短辺の上端部速度
Vulは前傾期終了時の下端部速度vtl<又下端部速
度VtSは前傾期終了時の上端部速度Vulにして、後
傾期の間増速率α及び速度差ΔVを一定に維持する。こ
の後傾操作によりテーパー量は幅変更開始時のテーパー
量に順次復帰するが、該テーパー量が目標テーパー量匂
に一致したらその時点で幅変更を終了する。
The speed increase rate during this backward leaning period is only the opposite direction to the speed increasing rate during the forward leaning period, but its absolute value is the same (1 α 1) = α 1
) Therefore, the upper end speed Vul of the short side immediately after transitioning to the backward tilting phase is the lower end speed Vtl at the end of the forward tilting phase, and the lower end speed VtS is the upper end speed Vul at the end of the forward tilting phase. The speed increase rate α and the speed difference ΔV are maintained constant during the backward tilt period. This backward tilting operation causes the taper amount to gradually return to the taper amount at the start of the width change, but when the taper amount matches the target taper amount, the width change ends at that point.

以上のよりに、前傾期終了時のテーパー量に1及び平行
移動終了時の鋳片幅W、を、前述した不足量ΔWKよっ
て生じる誤差、及び(58)〜(601式の演算過程で
生じる演算誤差を考慮して設定することにより、目標幅
変更量に対する誤差を前傾期から後傾期へ移行する間の
平行移動によって効果的に吸収することができる。
From the above, the taper amount at the end of the forward tilting period is 1, and the slab width W at the end of the parallel movement is the error caused by the aforementioned shortage ΔWK, and the error caused by the calculation process of equations (58) to (601). By setting the calculation error in consideration, the error with respect to the target width change amount can be effectively absorbed by the parallel movement during transition from the forward tilt period to the backward tilt period.

〔実施例〕〔Example〕

350屯/Hの湾曲形連続鋳造機において低炭素ktキ
ルド鋼の製造中に本発明を実施した。この連続鋳造轡の
設備仕様及び操業条件は第5表に示す連りである。
The invention was carried out during the production of low carbon kt killed steel in a 350 ton/H curved continuous caster. The equipment specifications and operating conditions for this continuous casting machine are as shown in Table 5.

第5表 まず、鋳片幅を1200nyxから1000mに幅縮小
し次実施例について述べる。この幅縮小を実施する場合
、テーパー量も8WRから5調に変更する必要がある。
Table 5 First, the following example will be described in which the slab width was reduced from 1200 nyx to 1000 m. When implementing this width reduction, it is also necessary to change the taper amount from 8WR to 5th tone.

ところで前述した説明においては短辺の上下端部速度を
、上端部はメニスカス部で、下端部は短辺下端で設定し
、該上下端部速度Vu、VLを基準に増速率α及び速度
差ΔV等を求めたが、短辺の駆動を上下のシリンダーで
行う場合にはこの上下のシリンダーの速度を基準にする
方が駆動制御等の上から好ましい。係る場合は前記上下
端速度Vu。
By the way, in the above explanation, the upper and lower end speeds of the short side are set at the meniscus section at the upper end and at the lower end of the short side at the lower end, and the acceleration rate α and the speed difference ΔV are calculated based on the upper and lower end speeds Vu and VL. However, when the short side is driven by the upper and lower cylinders, it is preferable from the viewpoint of drive control etc. to use the speeds of the upper and lower cylinders as a reference. In this case, the upper and lower end speeds Vu.

vLヲ以下の如く上下シリンダーの速度に置換して行え
ば!い。第13図に基づき上下シリンダーの間隔をLI
%短辺上端から上シリンダーまでの距離jをすると、上
下シリンダーの速度Vuc、VLcは下記(61L(6
2)式で表せる。
If you replace vL with the speed of the upper and lower cylinders as shown below! stomach. Based on Figure 13, set the interval between the upper and lower cylinders to LI
%If the distance from the upper end of the short side to the upper cylinder is j, the velocities of the upper and lower cylinders Vuc and VLc are as follows (61L (6
2) It can be expressed by the formula.

Vu c = (VL −Vu ) 拳j/L+Vu 
    −(61)VLc= (VV−Vu ) ・(
j+Lt J /L+Vu  −<623従って上下シ
リンダーの速度差は Vuc−Vtc=(VL−Vu )sLt /L=α・
L /U c     −(631となり、短辺の長さ
Lに代えて上下シリンダーの間隔をり、を用いればよい
Vu c = (VL - Vu) Fist j/L+Vu
-(61)VLc= (VV-Vu) ・(
j+Lt J /L+Vu -<623 Therefore, the speed difference between the upper and lower cylinders is Vuc-Vtc=(VL-Vu)sLt/L=α・
L/U c -(631), and instead of the length L of the short side, the distance between the upper and lower cylinders may be used.

本実施例でFi幅変更時間の最短化を狙って前記(27
)、(307式よシ前傾期の短辺上端部初期速度Blb
及び後傾期短辺上嬬部初期速度B2を以下のように設定
した。
In this embodiment, the above (27
), (Formula 307, initial velocity Blb of the upper end of the short side during the forward tilting phase
and the initial velocity B2 of the short side upper part during the backward tilt period were set as follows.

Bl=α1・Ll/Uc B、=+α1sTr 一方、αはシェル強度から設定される値ではシリンダー
の能力が不足したので、改めてシリンダー能力から決定
した、上下のシリンダー能力Fuu 。
Bl=α1・Ll/Uc B,=+α1sTr On the other hand, since the cylinder capacity was insufficient for α with the value set from the shell strength, the upper and lower cylinder capacities Fuu were determined from the cylinder capacity again.

pttは前記(431,(441式より7屯となった(
10屯−1,5屯−1,5屯J、、又、当該1ii!種
の引張試験結果よりGo=2.5 X 10−13((
kg/aJ) ” ・5ec)、n=0.32.q=2
8000(1,10K)が求められた。又、シェル厚の
測定によりHo = 20 (mm/minl/21で
あった。この条件下で増速率αを逐次変化させ、前記(
37)〜(41]&に基づいて必要駆動力Fu、Ftを
求めた。
PTT is 7 tons from the above (431, (441 type) (
10 ton - 1,5 ton - 1,5 ton J,, also, the said 1ii! From the tensile test results of seeds, Go = 2.5 x 10-13 ((
kg/aJ) ”・5ec), n=0.32.q=2
8000 (1,10K) was found. In addition, the shell thickness was measured and found that Ho = 20 (mm/minl/21). Under this condition, the speed increase rate α was successively changed, and the above (
The required driving forces Fu and Ft were determined based on 37) to (41) &.

第181%lがその結央を示すもので、上下シリンダー
の必要駆動力Fu、Ftがその節力puu 、 Ftt
以下である条件を満たすため忙増速率αは50m/m1
n’とした。従って、上下シリンダー速度差ΔVcは(
1)弐に相当する(63)式よシ Δvc=α争L1/Uc =50X640/ 1600
=20(m/m1r3) となった。
The 181st %l shows the center, and the required driving force Fu, Ft of the upper and lower cylinders is the nodal force puu, Ftt
In order to satisfy the following conditions, the busy speed increase rate α is 50m/m1
It was set as n'. Therefore, the upper and lower cylinder speed difference ΔVc is (
1) Equation (63) corresponding to 2: Δvc = α difference L1/Uc = 50X640/1600
=20 (m/m1r3).

前傾期の増速率α1と後傾期の増速率α鵞は前述したよ
うに制御性を高めるためにα1ゴa、とした。
The speed increase rate α1 during the forward tilt period and the speed increase rate α1 during the backward tilt period are set to α1goa in order to improve controllability, as described above.

従って前傾期及び後傾期における上下シリンダーの速度
は以下のように求められる。
Therefore, the speeds of the upper and lower cylinders in the forward tilting period and the backward tilting period are determined as follows.

幅縮小時の前傾期(0≦t≦Tr) Vuc=20+50 t (四/m1n)      
−(64)VLc = 50 t   (tm/m1n
)        (653幅縮小時の後傾期(Tr≦
t≦TV) Vuc=50(Tw−1)(+m/m1n)    −
(66)VLc =20+50(Tvr−t)(+w/
m1nJ   −(67)尚、幅変更開始時と終了時の
テーパー量を同一と仮定して、幅変更時間Tw、および
幅変更時間TwTr=0.2X ((1+0.5X10
0 )V′2−1 )=1:、23  (min)  
−(68)Tw=0.4X ((1+0.5X100 
)1A−1)=2.46 (m1nt   −(69)
又、幅変更開始時と終了時のテーパー量の差によって生
じる目標幅変更量に対する誤差は、片側で前記(54)
、(553式に基づいて下記(70)、(71)式で求
めた結果3.135m(片側]となり、平行移動時間T
hは平行移動速度を前傾期終了時の下シリンダー速度と
すると前記(57]式より下記(72)式となる。
Forward tilt period during width reduction (0≦t≦Tr) Vuc=20+50 t (4/m1n)
−(64)VLc = 50 t (tm/m1n
) (653 Retrograde period during width reduction (Tr≦
t≦TV) Vuc=50(Tw-1)(+m/m1n) −
(66) VLc =20+50(Tvr-t)(+w/
m1nJ - (67) Furthermore, assuming that the taper amount at the start and end of width change is the same, width change time Tw and width change time TwTr = 0.2X ((1 + 0.5X10
0)V'2-1)=1:, 23 (min)
-(68)Tw=0.4X ((1+0.5X100
)1A-1)=2.46 (m1nt-(69)
In addition, the error with respect to the target width change amount caused by the difference in the taper amount at the start and end of the width change is as described in (54) on one side.
, (Based on formula 553, the result obtained using formulas (70) and (71) below is 3.135 m (one side), and the parallel movement time T
h becomes the following equation (72) from the above equation (57), assuming that the parallel movement speed is the lower cylinder speed at the end of the forward tilt period.

払に=(640/800 )X (5−83/20=0
.12 (minJ−(To) △W=(1/2)X50X0.12”+(1+(100
/640))X20X0.12=3.135(m)  
(71)Th−3,13s/ (50xO,12)=0
.05 (minl −(72)更に前傾期終了時のテ
ーパー量に1と平行移動終了時のW、 (鋳片幅/2)
は前記(59)、(60)式より下記(73)、(74
1式となる。
Pay = (640/800)X (5-83/20=0
.. 12 (minJ-(To) △W=(1/2)X50X0.12"+(1+(100
/640))X20X0.12=3.135(m)
(71) Th-3,13s/ (50xO,12)=0
.. 05 (minl - (72)) Furthermore, add 1 to the taper amount at the end of the forward tilting phase and W at the end of parallel movement, (slab width/2)
From the above formulas (59) and (60), the following (73) and (74
There will be 1 set.

1)=−(800/640 JX(20X1.23 l
+8=−22,75(鱈pW鵞=500+((1/21
x50x(1,23”−0,12” r+(1+(10
0/640))X20X(1,23−0,12J  )
=5.53.イト3 (21)1)1)前述のように上
下部速度Vu、VLを設定して幅変更を開始し、テーパ
ー量がに1と一致するまで前傾移動させ、上シリンダー
速度を下シリンダー速度と同一とし、鋳片幅が(W、X
2)となるまで平行移動させ、然るのち下シリンダー速
度を前傾期終了時の上シリンダー速度にしてテーパー量
が目標テーパー量に3に一致するまで後傾移動を行い幅
縮小を実施した。第19因は目標幅変更(縮小)量に対
する幅変更時間を従来法と比較して表わしたもので、実
線が前記本発明の実施例、破線が従来法である。第19
図において横軸は幅縮小量Qm /片側を示し、縦軸は
幅変更時間Tw分を示す。
1)=-(800/640 JX(20X1.23 l
+8=-22,75(cod pW cod=500+((1/21
x50x(1,23"-0,12"r+(1+(10
0/640))X20X(1,23-0,12J)
=5.53. Item 3 (21) 1) 1) As mentioned above, set the upper and lower speeds Vu and VL, start changing the width, move forward until the taper amount matches 1, and change the upper cylinder speed to the lower cylinder speed. is the same, and the width of the slab is (W,
2), and then the lower cylinder speed was changed to the upper cylinder speed at the end of the forward tilt period, and the backward tilt movement was performed until the taper amount matched the target taper amount to 3 to reduce the width. The 19th factor shows the width change time relative to the target width change (reduction) amount in comparison with the conventional method, where the solid line is the embodiment of the present invention and the broken line is the conventional method. 19th
In the figure, the horizontal axis indicates the width reduction amount Qm/one side, and the vertical axis indicates the width change time Tw.

また、従来法による幅縮小は第3図に示す方法で実施し
た。この場合発生エアーギャップ量を大きな鋳造欠陥を
生じない穆度に押さえ、かつ必要駆動力を7屯以下とし
て幅縮小を行うためには平行移動速度Vmは35 tp
−n /’分が限界であった。
Further, the width reduction by the conventional method was carried out by the method shown in FIG. In this case, in order to suppress the generated air gap amount to a level that does not cause large casting defects, and to reduce the width by reducing the required driving force to 7 tons or less, the parallel movement speed Vm must be 35 tp.
-n/' minutes was the limit.

第19図により、幅縮小量の大小にかかわらず。According to FIG. 19, regardless of the size of the width reduction amount.

本発明の実施例の方が従来法に比べて幅変更時間が短い
ことがわかる。また、幅縮小量が大きくなるほど本発明
の実施例による幅変更時間短縮効果は増大する。
It can be seen that the width changing time is shorter in the embodiment of the present invention than in the conventional method. Further, as the amount of width reduction increases, the effect of shortening the width change time according to the embodiment of the present invention increases.

第20 図1 (a)及び(b)は前記従来法(、)及
び本発明の実施例(b)の幅縮小における上717 y
ダー及び下シリンダー九作用するシェル変形抵抗力の幅
変更開始からの時間による変化を示すもので1図中、実
線は上シリンダ−、破線は下シリンダーに作用した必要
駆動力を示す。
20. Figure 1 (a) and (b) show the width reduction of the conventional method (,) and the embodiment (b) of the present invention.
Figure 1 shows the change in the shell deformation resistance force acting on the upper and lower cylinders over time from the start of the width change.

第20図ral及び(b) K示す上下シリンダーの最
大必要駆動力Fumax、Ftmaxは従来法及び実施
例ともにほぼ同等であり5本発明の実施によって必要駆
動力が増大することはなかった。尚、本実施例では平行
移動時間Thは前、後傾期の時間に比し極小であるため
前記図では省略した。又、発生エアーギャップについて
は、従来法の場合最大1.5f1発生するのに対し、本
発明忙よる場合殆ど零であシ、内部及び表面欠陥は全く
認められなかった。  ′次に鋳片幅を1000晴から
1200mK拡大した実施例について述べる。この場合
テーパー量は5mから8wK変更する必要がある。この
幅拡大においても前記幅縮小と同様に前記(37]〜(
41)式より、短辺1の上下シリンダー速度Vuc、V
tcが設定され、上下シリンダーの速度パターンが以下
の(751〜(781式で求められる。
The maximum required driving forces Fumax and Ftmax of the upper and lower cylinders shown in FIG. Note that in this embodiment, the parallel movement time Th is extremely small compared to the times of the forward and backward tilting phases, so it is omitted from the above diagram. In addition, as for the air gap generated, in the case of the conventional method, a maximum of 1.5 f1 was generated, whereas in the case of the present invention, it was almost zero, and no internal or surface defects were observed. 'Next, an example will be described in which the slab width was increased from 1000 mK to 1200 mK. In this case, the taper amount needs to be changed from 5m to 8wK. In this width expansion, as well as in the width reduction, the above (37) to (
From formula 41), the vertical cylinder speed Vuc, V of short side 1
tc is set, and the velocity pattern of the upper and lower cylinders is determined by the following formulas (751 to (781).

幅拡大時の後傾期(O≦t≦Trl Vuc=−50t   (ww/mLnJ      
    −(753VLc =20 50t  (we
/min+     −(763幅拡大時の前傾期(T
r≦t≦Tvr)Vuc=20 50  (Tw−t)
(+w/mtn) −C77)VLc =−50(Tw
−t)  (mm/min) −(78)又、幅変更開
始時と終了時のテーパー量を同一と仮定すると、幅変更
時間Tw及び後傾期の時間Trは次の(79)、(80
)式で与えられる。
Retroversion phase during width expansion (O≦t≦Trl Vuc=-50t (ww/mLnJ
−(753VLc =20 50t (we
/min+ -(763Anterior phase when width is expanded (T
r≦t≦Tvr)Vuc=20 50 (Tw-t)
(+w/mtn) -C77)VLc =-50(Tw
-t) (mm/min) -(78) Also, assuming that the taper amount at the start and end of the width change is the same, the width change time Tw and the retroversion period time Tr are as follows (79), (80
) is given by the formula.

Tr =0.2X ((1+0.5X100 )1/2
+1 )=1.63(mlnl −(79) Tw =Q、4X((1+0.5X100J1/2+1
 )=3.26(minJ  −(801 又 2幅変更開始時と終了時のテーパー量の差によって
生じる目標幅変更量釦対する誤差は、前記(54J、(
561式に基づいて下記(81J、(82)式で求めた
結果0.735−となり、平行移動時間Thは平行移動
速度を前傾期終了時の下シリンダー速度とすると前記(
57)式より下記(83)で求められる。
Tr =0.2X ((1+0.5X100)1/2
+1)=1.63(mlnl-(79) Tw=Q,4X((1+0.5X100J1/2+1
) = 3.26 (minJ - (801) Also, the error for the target width change amount button caused by the difference in the taper amount at the start and end of the 2-width change is (54J, (
Based on the following equation (81J, (82) based on the equation 561, the result is 0.735-, and the parallel movement time Th is calculated by the above (
It is determined by the following (83) from the formula 57).

TΔに=(6407800)×(l 8−513/20
=0.12(mi′n)−(81) ΔW=(1/21X50X0.12”+(100/64
0 )X20X0.12=0.735(m)  −(8
2)Th=0.735/(50/1.63−207=Q
、Q 1 (露) −(83)第21r!Aは、本実施
例に基づく幅変更時間を従来法と比較して表わしたもの
である。第21図において横軸は幅拡大量Qal/片側
を示し、縦軸は幅変更時間Tw分を示す。また図中実線
は本発明の実施例、破線は従来法を示す。従来法による
幅拡大は第4図に示す方法で実施し、平行移動速度Vm
は、幅縮小の場合と同様にエアーギャップ量を許容値以
下にし必要駆動力を7屯以内とするために15m/+が
限界であった。この幅拡大でも幅縮小の場合と同様に、
幅拡大量の大小にかかわらず本発明の実施例の方が従来
法に比べて幅変更時間が著しく短いことがわかる。
TΔ=(6407800)×(l 8-513/20
=0.12(mi'n)-(81) ΔW=(1/21X50X0.12"+(100/64
0)X20X0.12=0.735(m)-(8
2) Th=0.735/(50/1.63-207=Q
, Q 1 (Dew) - (83) 21st r! A shows the width change time based on this example in comparison with the conventional method. In FIG. 21, the horizontal axis shows the width expansion amount Qal/one side, and the vertical axis shows the width change time Tw. Further, the solid line in the figure shows the embodiment of the present invention, and the broken line shows the conventional method. Width expansion using the conventional method is carried out using the method shown in Figure 4, and the parallel movement speed Vm
As in the case of width reduction, the limit was 15 m/+ in order to keep the air gap amount below the allowable value and the required driving force within 7 tons. In this width expansion, as in the case of width reduction,
It can be seen that the width changing time is significantly shorter in the embodiment of the present invention than in the conventional method, regardless of the amount of width expansion.

又、発生エアーギャップ量及び必要駆動力についても、
発生エアーギャップ量は殆ど零であり、下シリンダーの
必要駆動力は7屯以下であり、幅縮小の場合と同様にそ
れぞれ許容値以内でめった。
Also, regarding the amount of air gap generated and the required driving force,
The amount of air gap generated was almost zero, and the required driving force of the lower cylinder was 7 tons or less, and as in the case of width reduction, each was within the allowable value.

(発明の効果) 以上詳述したようK、本発明の実施によや、鋳型の幅変
更が最小時間で可能となる。このため幅変更による鋳片
の幅が変化する部分を少なくでき、歩留を著しく向上で
きる。
(Effects of the Invention) As detailed above, by carrying out the present invention, the width of the mold can be changed in a minimum amount of time. Therefore, the portion where the width of the slab changes due to the width change can be reduced, and the yield can be significantly improved.

加えて幅変更開始前と終了時(おける′テーバー量の差
から生じる目標幅変更量に対する誤差を幅変更実施過程
で効率的に吸収できるようKなったため、鋳片幅130
0〜650■の間で任意量の幅変更が、その幅変更中に
おけるエアーギャップ量やシェル変形抵抗力を常に許容
値以下にして実施できるようになる。この結果高速の幅
変更を実施しても鋳片割れやブレークアウト等のない安
定した操業が可能となる。
In addition, the width of the slab was changed to 130 mm in order to efficiently absorb the error in the target width change amount caused by the difference in the Taber amount before and after the width change (before and after the width change is started).
It becomes possible to change the width by any amount between 0 and 650 square meters while keeping the air gap amount and shell deformation resistance force below the allowable value during the width change. As a result, stable operation without cracking or breakouts is possible even when changing the width at high speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明に基づく幅変更時に
おける短辺の上端部及び下端部の水平方向移動速度を説
明するための線図、第2図は周知の幅可変鋳型の一例を
示す斜視図である。第3図((a) 、 (b)、(c
)>及び第4図((a) 、 (b) 、 (c) )
は従来の幅変更方法の一例を示す模式図でり、第3図が
幅縮小、第4図が幅拡大である。第5図〜第21図は本
発明に基づ〈実施例を示す図であり、第5のは幅縮小時
の短辺の移動状況を示す模式図、第6図は幅拡大時の短
辺の移動状況を示す模式図、第7図(a) 、 (b)
は短辺の移動と前記エアーギャップの生成条件を説明す
る概念図、第8圀は鋳片上の任意の点が鋳型内を通過す
る間に受ける線質形量を説明する概念図、第9図は本発
明の幅変更法におけるシェルの歪速度を説明する概念図
である。第10図(a) 、 (b)及び第1)図(a
) 、 (b)はシェルの歪速度と増速率との関係を示
す線図であり、第10図が幅縮小を、第1)図が幅拡大
を示す。第12図(a> 、 (b)は鋳造欠陥の発生
することのないα及びBの範囲を示す@図、第13図は
短辺を駆動する上下シリンダーの配列状態を示す構造図
、第14図は幅縮小時の短辺上下端部移動速度の他の実
施例を示す線図、第15図はテーパー量変更によって発
生する幅変更量の誤差を説明するための線図、第16図
は幅縮小の実施例を示す線図、第17図は幅縮小におけ
る具体的制御手段の一例を示すブロック図、第18図は
必要駆動力からαを求める方法の一例を示す線図、第1
9図は目標幅変更(縮小J−IK対する幅変更時間を従
来法と比較して表わした図、第20図(a) 、 (b
)は従来法と本発明の実施例の幅縮小における上シリン
ダー及び下シリンダーに作用するシェル変形抵抗力の幅
変更開始からの時間による変化を示す図、第21図は本
発明実施例に基づく幅変更時間を従来法と比較して表わ
した図である。 1.1a、1b;鋳型短辺、2;鋳型長辺。 3a、3b:、駆動装置、4;鋳片。 代叩人 弁1士  秋 沢 政 光 信2名 軟 井10図 (Q) 弁14図 71’1.51)D (1)0L ) I:1 ’n−14重’H”命:f;
+tロ ッ 杖 η          N          \区 
 嘩)〜ニー〇〇か 工 七 H’n−Jff41’l’f*J’ψ7.4で(、てヱ
丁区e O″ 釈 弁21回 中晶m大+Q(mm1片イ躬) 自発手続補正書 昭和60年5月21 日
Figures 1 (a) and (b) are diagrams for explaining the horizontal movement speed of the upper and lower ends of the short side when changing the width according to the present invention, and Figure 2 is a diagram of a known variable width mold. It is a perspective view showing an example. Figure 3 ((a), (b), (c)
)> and Figure 4 ((a), (b), (c))
2A and 2B are schematic diagrams showing an example of a conventional width changing method, in which FIG. 3 shows width reduction, and FIG. 4 shows width expansion. Figures 5 to 21 are diagrams showing examples based on the present invention, the fifth is a schematic diagram showing the movement of the short side when the width is reduced, and the sixth is a schematic diagram showing the movement of the short side when the width is expanded. Schematic diagram showing the movement status of Figure 7 (a) and (b)
8 is a conceptual diagram explaining the movement of the short side and the conditions for generating the air gap, 8th panel is a conceptual diagram illustrating the amount of linear mass received by an arbitrary point on the slab while passing through the mold, and FIG. 9 FIG. 2 is a conceptual diagram illustrating the strain rate of the shell in the width changing method of the present invention. Figure 10 (a), (b) and Figure 1) (a)
) and (b) are diagrams showing the relationship between the strain rate and the acceleration rate of the shell, in which Figure 10 shows width reduction and Figure 1) shows width expansion. Figures 12 (a> and b) are diagrams showing the ranges of α and B where no casting defects occur, Figure 13 is a structural diagram showing the arrangement of the upper and lower cylinders that drive the short sides, and Figure 14 The figure is a diagram showing another example of the moving speed of the upper and lower ends of the short side when width is reduced. Figure 15 is a diagram for explaining the error in the width change amount caused by changing the taper amount. 17 is a diagram showing an example of width reduction; FIG. 17 is a block diagram showing an example of a specific control means in width reduction; FIG. 18 is a diagram showing an example of a method for determining α from the required driving force;
Figure 9 is a diagram showing the target width change (width change time for reduced J-IK compared to the conventional method; Figures 20 (a) and (b)
) is a diagram showing the change in the shell deformation resistance force acting on the upper and lower cylinders with time from the start of width change in width reduction in the conventional method and the embodiment of the present invention. It is a figure showing change time compared with a conventional method. 1.1a, 1b: short side of the mold, 2: long side of the mold. 3a, 3b: Drive device, 4: Slab. Representative speaker 1 benshi Aki Sawa Masa Mitsunobu 2 Softui 10 diagrams (Q) Ben 14 diagrams 71'1.51) D (1) 0L) I: 1 'n-14 heavy'H" Life: f;
+t rock cane η N \ ward
(Fighting) ~ Knee〇〇 or Engineering 7 H'n-Jff41'l'f*J'ψ7.4 (, Te Ding Ward e O'' Interpretation 21 times crystal m large + Q (mm 1 piece i) Spontaneous Procedural amendment May 21, 1985

Claims (1)

【特許請求の範囲】[Claims] (1)連続鋳造中に鋳型短辺を移動せしめて鋳片幅を拡
大もしくは縮小するに際し、前記短辺の移動を該短辺を
鋳型中心側へ順次傾ける前傾期と、鋳型反中心側へ順次
傾ける後傾期とに区分し、前記各期間における短辺上下
端部の水平方向移動速度の増速率αを予め許容シェル変
形抵抗力をパラメータとして求めると共に前記上下端部
の移動速度の差ΔVを下記(1)式で定め、当該期間中
、前記増速率α及び速度差ΔVを一定に維持して幅変更
を行う方法において、幅変更開始時のテーパー量と幅変
更終了時の目標テーパー量の差から生じる目標幅変更量
に対する誤差を、前傾期から後傾期へ移行する間に平行
移動期間を設けることにより吸収することを特徴とする
連続鋳造中における鋳片幅変更方法。 ΔV=α・L/Uc(1) 但しΔV;短辺上端と下端の速度差(mm/min) α;短辺上下端の増速率(mm/min^2) L;鋳型短辺長さ(mm) Uc;鋳造速度(mm/min)
(1) When moving the short side of the mold during continuous casting to expand or reduce the width of the slab, the short side is moved in two stages: a forward tilting phase in which the short side is sequentially tilted toward the center of the mold, and a phase in which the short side is tilted toward the center of the mold. The acceleration rate α of the horizontal movement speed of the upper and lower ends of the short side in each period is determined in advance using the allowable shell deformation resistance force as a parameter, and the difference ΔV between the movement speeds of the upper and lower ends is determined in advance. is determined by the following equation (1), and in a method in which the width is changed while maintaining the speed increase rate α and the speed difference ΔV constant during the period, the taper amount at the start of the width change and the target taper amount at the end of the width change. A method for changing slab width during continuous casting, characterized in that an error in a target width change amount caused by a difference in width is absorbed by providing a parallel movement period during transition from a forward tilting period to a backward tilting period. ΔV=α・L/Uc (1) However, ΔV: Speed difference between the top and bottom ends of the short side (mm/min) α: Speed increase rate at the top and bottom ends of the short side (mm/min^2) L: Length of the short side of the mold ( mm) Uc: Casting speed (mm/min)
JP26038184A 1984-11-09 1984-12-10 Method for changing ingot width Granted JPS61137659A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP26038184A JPS61137659A (en) 1984-12-10 1984-12-10 Method for changing ingot width
AU47023/85A AU554019B2 (en) 1984-11-09 1985-09-03 Changing slab width in continuous casting
CA000490523A CA1233011A (en) 1984-11-09 1985-09-12 Method of changing width of slab in continuous casting
EP85306509A EP0182468B1 (en) 1984-11-09 1985-09-13 Method of changing width of slab in continuous casting
DE8585306509T DE3578554D1 (en) 1984-11-09 1985-09-13 METHOD FOR CHANGING THE WIDTH OF A CAST STRAND IN CONTINUOUS CASTING.
BR8504644A BR8504644A (en) 1984-11-09 1985-09-23 PROCESS FOR CHANGING WIDTH UNDER CONTINUOUS FOUNDATION AND APPLIANCE FOR CONTINUOUS FOUNDRY MOLD, OF THE TYPE OF VARIABLE WIDTH
ES547211A ES8702811A1 (en) 1984-11-09 1985-09-23 Method for varying the width of a slab cast in a continuous-casting mould
US06/783,589 US4660617A (en) 1984-11-09 1985-10-03 Method of changing width of slab in continuous casting
ES554807A ES8704368A1 (en) 1984-11-09 1986-05-09 Method for varying the width of a slab cast in a continuous-casting mould
US06/883,395 US4727926A (en) 1984-11-09 1986-07-29 Apparatus for changing width of slab in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26038184A JPS61137659A (en) 1984-12-10 1984-12-10 Method for changing ingot width

Publications (2)

Publication Number Publication Date
JPS61137659A true JPS61137659A (en) 1986-06-25
JPH0219744B2 JPH0219744B2 (en) 1990-05-02

Family

ID=17347129

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26038184A Granted JPS61137659A (en) 1984-11-09 1984-12-10 Method for changing ingot width

Country Status (1)

Country Link
JP (1) JPS61137659A (en)

Also Published As

Publication number Publication date
JPH0219744B2 (en) 1990-05-02

Similar Documents

Publication Publication Date Title
CN102294455B (en) Non-stopped-pouring high-speed short-edge width regulating method of slab continuous casting machine crystallizer
JP4057119B2 (en) Method and apparatus for high speed continuous casting equipment for reducing sheet thickness during solidification
US2493264A (en) Movable form for concrete masses
JP2727007B2 (en) Method and apparatus for vibrating continuous casting mold
JPS61137659A (en) Method for changing ingot width
US3978909A (en) Mold with convex sidewalls for continuous casting machines
US2160645A (en) Foundry mold and the like
JP2810273B2 (en) Construction method of concrete arch
CN2185167Y (en) Mechanism for tilting casting ladle
JPH0985396A (en) Method for completing casting in continuous casting
CN217412397U (en) Control device for inhibiting liquid level fluctuation of continuous casting crystallizer
CN107745113A (en) Ladle trunnion optimum height location determining method
JPH06292959A (en) Device for supporting cast slab
JPH0219745B2 (en)
JPS61269964A (en) Automatic adjusting device for die clamping force
JPS619956A (en) Method for reducing billet width in continuous casting
JP2770691B2 (en) Steel continuous casting method
JPS5853359A (en) Sequential continuous casting method for dissimilar kinds of steel
US1815186A (en) Method of casting metals
JPH0441061A (en) Method for changing width of cast slab in continuous casting of steel
JPH10109144A (en) Method for changing width of continuously cast slab
JPS62263854A (en) Prevention method for molten steel spout-out from end part of continuous casting slab
JPH03110054A (en) Method for driving continuous casting machine
JPH0557066B2 (en)
JP2913114B2 (en) Method of expanding mold width during continuous casting

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term