JPS6113711B2 - - Google Patents

Info

Publication number
JPS6113711B2
JPS6113711B2 JP17780881A JP17780881A JPS6113711B2 JP S6113711 B2 JPS6113711 B2 JP S6113711B2 JP 17780881 A JP17780881 A JP 17780881A JP 17780881 A JP17780881 A JP 17780881A JP S6113711 B2 JPS6113711 B2 JP S6113711B2
Authority
JP
Japan
Prior art keywords
phthalic anhydride
weight
alkali metal
crude
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17780881A
Other languages
Japanese (ja)
Other versions
JPS5879990A (en
Inventor
Juichi Kita
Kentaro Sakamoto
Takahisa Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP17780881A priority Critical patent/JPS5879990A/en
Priority to GB08218761A priority patent/GB2105710B/en
Priority to US06/394,477 priority patent/US4436922A/en
Priority to DE19823225079 priority patent/DE3225079A1/en
Priority to FR8211850A priority patent/FR2508906A1/en
Publication of JPS5879990A publication Critical patent/JPS5879990A/en
Publication of JPS6113711B2 publication Critical patent/JPS6113711B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明はオル゜キシレンの接觊気盞酞化によ぀
おえられた粗補無氎フタル酞を粟補し、高玔床の
無氎フタル酞を補造する方法に関する。詳しく述
べるず、本発明は、䞊蚘粗補無氎フタル酞䞭に含
たれ、分離が困難である䞍玔物、䞻ずしおフタラ
むドを効率よく陀去するこずによ぀お、高玔床の
無氎フタル酞を補造するための方法に関する。 䞀般に、オル゜キシレンを原料ずしおバナゞり
ム系觊媒を甚い、接觊気盞酞化しお無氎フタル酞
をえるこずは、工業的に広く行なわれおいる。こ
の方法によりえられる粗補無氎フタル酞䞭には、
䞻たる䞍玔物ずしお副生のフタラむドが混入し、
工業的に通垞甚いられおいる蒞留装眮などによ぀
おは十分に分離できないこず、かくしお粟補無氎
フタル酞䞭には無芖しえない量のフタラむドおよ
びその他の䞍玔物が残留し、これが原因で補品品
質を䜎䞋せしめる傟向のあるこずはよく知られ
る。そのため、無氎フタル酞の補造プロセスにお
いおは、粗補無氎フタル酞䞭の䞻たる䞍玔物であ
るフタラむド量を極力䜎枛させ、䜎い氎準に保た
れるようにオル゜キシレンの接觊気盞酞化反応を
操䜜するこずが芁求される。すなわち、䞀般には
觊媒の掻性䜎䞋にずもなうオル゜キシレンの転化
率䜎䞋や䞭間副生物フタラむド量の増加を抑える
ために、反応枩床を埐々に䞊げる方法をずらざる
をえないのであり、このこずは觊媒寿呜を枛少す
るこずに぀ながる。そうでなくおも粗補無氎フタ
ル酞䞭には䞍玔物たる副生フタラむドの混圚は䞍
可避であり、このフタラむドを陀去するための
皮々の方法が、無氎フタル酞の工業的補品プロセ
スにおいお提案されおきた。 たずえば、特公昭45−10333号公報明现曞によ
れば、亜硫酞氎玠カリりムKHSO3やピロ亜硫
酞カリりムK2S2O5などのアルカリ金属のむオ
り含有化合物を甚いお粗補無氎フタル酞を凊理す
る方法が開瀺され、米囜特蚱第4165324号明现曞
によれば氎酞化ナトリりムNaOHや氎酞化カ
リりムKOHなどのアルカリ金属氎酞化物を
甚いお凊理する方法が開瀺されおいる。しかし、
これらの方法は以䞋の劂き欠点があり、工業的に
有利に採甚するには困難であるこずが指摘され
る。 たず前者の方法においおは、無氎フタル酞の粟
補工皋で残枣䞭にむオり化合物も共存しおくるた
め、この残枣の凊理たずえば焌华凊理の際に
倚量のむオり酞化物を発生し、公害問題をひき起
すこずになるし、むオり化合物そのものも蒞留装
眮の腐食などの原因ずなり易く、これらの問題解
決や回避のためには倚倧の費甚を芁する欠点があ
る。たた埌者の方法においおは、アルカリ金属氎
酞化物そのものの反応性が高いために、添加され
るべき粗補無氎フタル酞によ぀おは、きわめお危
険性が高くなる。すなわち、たずえば氎酞化カリ
りムを液状の粗補無氎フタル酞に添加した堎合、
その䞭に含たれる無氎マレむン酞が爆発的に重合
し、コヌクス状の重合物を圢成する。この反応は
きわめお急激であり無氎フタル酞補造装眮の安定
な運転にず぀お無芖できない障碍ずなるこずはも
ちろん、発生するコヌクス状重合物による配管、
バルブ、蒞留塔トレむなどの閉塞の原因ずもな
る。さらに氎酞化カリりムず無氎マレむン酞ずの
急激な反応の際無氎フタル酞やその他の䞍玔物の
分解反応をも招来しこれが無氎フタル酞ず反応し
タヌル状の重合物を発生せしめるこずにもなり、
粟補無氎フタル酞収率の倧巟な䜎䞋を招くこずも
指摘される。 さらに、フタラむドを酞化觊媒により酞化しお
高玔床の無氎フタル酞をえる方法も提案され、た
ずえば米囜特蚱第3208423号明现曞においおは臭
化コバルト、臭化マンガンのような重金属臭化物
を粗補無氎フタル酞に添加し、分子状酞玠ガスず
接觊せしめおいる。しかしながら、この方法は觊
媒ずしおの臭化物が高䟡であり、しかも回収再䜿
甚がきわめお困難であるこずで工業的には採甚し
えない方法である。たた同様な目的を達成するた
めに西独特蚱公開第1935008号明现曞にはバナゞ
りム酞化物を担䜓に担持させた觊媒を充填局に぀
め、ここぞ空気を通じ぀぀粗補無氎フタル酞を通
過せしめお、フタラむドの酞化を行なう方法が蚘
茉されおいる。しかしこの方法を採甚するず粗補
無氎フタル酞䞭に存圚するタヌル状物質が担持觊
媒衚面に付着し、觊媒掻性がきわめお短期間のう
ちに䜎䞋しおしたうこずがわか぀た。 元来、担持觊媒は觊媒掻性物質を担䜓衚面に効
果的に分散担持させおなるものであり、その調補
法も焌成条件などによりその觊媒掻性に倧きく圱
響を䞎えるこずはよく知られおいる。このような
担持觊媒を充填塔内郚に充填し固定床ずしお䜿甚
する方法は、したが぀お工業的に安定に䜿甚する
のは困難ずいわざるをえない。 本発明の目的は、䞊述のような欠点を解消し、
その操䜜維持管理がきわめお簡単な觊媒を甚い
お、フタラむドを酞化し、高玔床の無氎フタル酞
をえる方法を提䟛するこずにある。 本発明は以䞋の劂くに特定される。 (1) オル゜キシレンの接觊気盞酞化によ぀おえら
れた粗補無氎フタル酞を、マレむン酞、コハク
酞および安息銙酞よりなる矀から遞ばれた少な
くずも皮のカルボン酞のアルカリ金属塩䞊び
にマンガン、クロムおよび鉄を含有しおなる合
金組成物の存圚䞋、分子状酞玠含有ガスず高枩
においお接觊凊理し、぀いで蒞留操䜜に䟛する
こずを特城ずする高玔床無氎フタル酞の補造方
法。 (2) 粗補無氎フタル酞Kgに察し分子状酞玠含有
ガスを酞玠ガスに換算しお少なくずも×10-4
モル時間接觊させるこずを特城ずする䞊蚘(1)
蚘茉の方法。 (3) 接觊凊理が150℃〜300℃の枩床範囲、凊理時
間が0.5〜30時間であるこずを特城ずする䞊蚘
(1)たたは(2)蚘茉の方法。 (4) アルカリ金属塩の添加量が粗補無氎フタル酞
に察し、アルカリ金属原子ずしお10〜
10000ppm重量の範囲であるこずを特城ず
する䞊蚘(1)、(2)たたは(3)蚘茉の方法。 (5) 粗補無氎フタル酞Kgに察しマンガン、クロ
ムおよび鉄を含有しおなる合金組成物の接觊面
積が少なくずも×10-3m2であるこずを特城ず
する䞊蚘(1)、(2)、(3)たたは(4)蚘茉の方法。 (6) マンガン、クロムおよび鉄を含有しおなる合
金組成物䞭のマンガン含量が少くずも0.05重量
であるこずを特城ずする䞊蚘(1)、(2)、(3)、(4)
たたは(5)蚘茉の方法。 以䞋さらに本発明を詳しく説明する。 オル゜キシレンを接觊気盞酞化しおえられる粗
補無氎フタル酞䞭にはフタラむドが0.05〜1.0重
量含たれおいるのが通垞である。本発明におい
おフタラむドを含有する粗補無氎フタル酞をカル
ボン酞のアルカリ金属塩䞊びにマンガン、クロム
および鉄を含有しおなる合金組成物以䞋、マン
ガン含有合金組成物ずいう。ずの共存䞋、0.5〜
30時間、奜たしくは〜20時間、150〜300℃、奜
たしくは200〜300℃の枩床で分子状酞玠含有ガス
ず接觊凊理しお、フタラむド分の倧郚分を酞化凊
理し、぀いで通垞甚いられる蒞留操䜜に䟛するこ
ずにより、フタラむド分の倧巟に枛少した粟補無
氎フタル酞がえられる。この粟補品は、フタラむ
ド含量が倧巟に枛少しおいるだけではなく、同時
に熱安定床などの品質を悪化させる他の䞍玔物を
も陀去しえおいるため、フタラむドのみに起因す
る品質悪化が阻止されただけではない効果をも有
する補品であるこずが知芋されおいる。 本発明で甚いられるマンガン含有合金組成物
は、針金状のものを網状ずしたもので分子状酞玠
含有ガスが容易に通過しうる、ほずんど圧損倱を
䞎えないものが奜たしい。ずくに気液接觊装眮内
においお網状の局状に成型したものを充填しお、
この䞭ぞ粗補無氎フタル酞ず䞊蚘カルボン酞のア
ルカリ金属塩ずを投入し撹拌䞋に䞋方より分子状
酞玠含有ガスの気泡を発生せしめお加熱凊理する
方法が本発明を実斜する䞊でも぀ずも簡䟿か぀郜
合のよい方法ずなる。 本発明で甚いるマンガン含有合金組成物の組成
は、マンガンを少なくずも0.05重量含有するも
のであり、ずくにマンガンずクロムの含量が10重
量以䞊のものが奜たしい。そしお、その衚面積
ずしおは、凊理すべき粗補無氎フタル酞Kg圓り
少なくずも×10-3m2、奜たしくは×10-3m2以
䞊であるものが甚いられる。衚面積を倧きくする
こずは、凊理時間の短瞮に぀ながり、奜たしいこ
ずであるが、䜙りに倧きくするこずは圧損倱など
が増倧しお匊害も出おくる。 吹き蟌たれる分子状酞玠量は、粗補無氎フタル
酞䞭に含たれる䞍玔物のフタラむド量にもよる
が、粗補無氎フタル酞Kgに察し少なくずも
0.0001モル時、奜たしくは0.0005モル時以
䞊、ずくに奜たしくは0.001〜0.01モル時であ
る。 本発明のカルボン酞アルカリ金属塩類におい
お、アルカリ金属は、ナトリりム、カリりム、リ
チりム、セシりム、ルビゞりムなどが挙げられる
が、最も奜たしいのはカリりムである。たたカル
ボン酞ずしお最も奜たしいのはマレむン酞であ
る。 本発明においお䜿甚されるカルボン酞アルカリ
金属塩類の添加量は、粗補無氎フタル酞䞭に含た
れるフタラむド量にもよるが、粗補無氎フタル酞
に察し10〜10000ppm重量、奜たしくは20〜
2000ppm重量、より奜たしくは50〜1000ppm
重量の範囲である。 たた、本発明者らの知芋によれば、䞊蚘カルボ
ン酞のアルカリ金属塩以倖の有機酞塩、たずえ
ば、トルむル酞、フタル酞、フマル酞のアルカリ
金属塩などは、すべおある皋床の䞍玔物フタラむ
ド枛少効果はあるものの前蚘カルボン酞塩類にく
らべるずその有効性が劣る。その理由は明らかで
はないが、フタラむドに察する反応の芪和性たず
えば酞化掻性が本発明にかかる化合物にくらべよ
り劣぀おいるこずによるのであろうず掚察され
る。 さらに、本発明者らの知芋によれば、マンガン
含有合金組成物ず酞玠、カルボン酞アルカリ金属
塩ず酞玠の組合せ各々によ぀お達成される氎準に
くらべ、本発明の方法はさらにすぐれお有効であ
るこずがわか぀た。すなわち枩床の面でも、時間
の面でもきわめお顕著に改善されるこずが明らか
にな぀たのである。この理由はは぀きりずはしな
いが、カルボン酞のアルカリ金属塩ずマンガン含
有合金組成物ず分子状酞玠ずの盞剰的䜜甚による
ものず掚察される。 このように、本発明を甚いるこずにより、粗補
無氎フタル酞䞭のフタラむドは、極めお短時間の
うちに1/10〜1/1000にたで䜎枛され、もはや蒞留
しおえられる粟補無氎フタル酞はフタラむド量
0.01重量ないし、それ以䞋ずいう高品質が達成
される。さらに驚くべきこずには、本発明の方法
によ぀おえられる無氎フタル酞の熱安定性は、埓
来の方法によるものず比べ比范にならないほど良
奜であるこずである。以䞋本発明を実斜䟋により
さらに詳しく説明する。 実斜䟋  オル゜キシレンを原料ずしお接觊気盞酞化し、
䞋蚘組成の粗補無氎フタル酞をえた。 無氎フタル酞 99.3 重量以䞋同じ 安息銙酞 0.05 マレむン酞 0.07 フタル酞 0.03 フタラむド 0.50 䞊蚘粗補無氎フタル酞Kgずマレむン酞カリり
ム0.1100ppmに盞圓をフラスコにずり、底
郚より酞玠容量、窒玠95容量の混合ガス
3000ml時酞玠量ずしお×10-3モル時吹
き蟌み、270℃の枩床で10時間凊理した。フラス
コ䞭にはあらかじめ䞋蚘の組成ず構造を有する鉄
−クロム−マンガン合金の針金20を円板状に成
圢し固定した。 鉄−クロム−マンガン合金は次の組成ず構造を
有する。
The present invention relates to a method for producing highly pure phthalic anhydride by purifying crude phthalic anhydride obtained by catalytic gas phase oxidation of ortho-xylene. Specifically, the present invention relates to a method for producing highly pure phthalic anhydride by efficiently removing impurities, mainly phthalides, which are contained in the crude phthalic anhydride and are difficult to separate. . Generally, catalytic gas phase oxidation of orthoxylene as a raw material using a vanadium catalyst to obtain phthalic anhydride is widely practiced industrially. In the crude phthalic anhydride obtained by this method,
By-product phthalide is mixed in as the main impurity,
It is difficult to separate the phthalic anhydride sufficiently using the distillation equipment commonly used in industry, and thus a non-negligible amount of phthalide and other impurities remain in the purified phthalic anhydride, which may impair the quality of the product. It is well known that there is a tendency to decrease Therefore, in the production process of phthalic anhydride, it is required to reduce the amount of phthalide, which is the main impurity in crude phthalic anhydride, as much as possible and operate the catalytic gas phase oxidation reaction of ortho-xylene to maintain it at a low level. be done. In other words, in order to suppress the decrease in the conversion rate of ortho-xylene and the increase in the amount of intermediate by-product phthalide due to the decrease in the activity of the catalyst, it is necessary to gradually raise the reaction temperature. leading to a decrease in Even if this is not the case, the presence of by-product phthalide as an impurity is unavoidable in crude phthalic anhydride, and various methods for removing this phthalide have been proposed in the industrial production process of phthalic anhydride. For example, according to the specification of Japanese Patent Publication No. 45-10333, crude phthalic anhydride is produced using a sulfur-containing alkali metal compound such as potassium hydrogen sulfite (KHSO 3 ) or potassium pyrosulfite (K 2 S 2 O 5 ). A method of treatment is disclosed, and US Pat. No. 4,165,324 discloses a treatment method using an alkali metal hydroxide such as sodium hydroxide (NaOH) or potassium hydroxide (KOH). but,
It is pointed out that these methods have the following drawbacks and are difficult to be advantageously employed industrially. First, in the former method, sulfur compounds also coexist in the residue during the phthalic anhydride purification process, so a large amount of sulfur oxides are generated during the treatment of this residue (for example, incineration), causing a pollution problem. In addition, the sulfur compounds themselves tend to cause corrosion of distillation equipment, which is a drawback that requires a large amount of cost to solve or avoid these problems. Furthermore, in the latter method, since the alkali metal hydroxide itself has high reactivity, it can be extremely dangerous depending on the crude phthalic anhydride to be added. That is, for example, when potassium hydroxide is added to liquid crude phthalic anhydride,
The maleic anhydride contained therein polymerizes explosively to form a coke-like polymer. This reaction is extremely rapid and poses a non-negligible obstacle to the stable operation of phthalic anhydride production equipment, as well as piping and piping caused by the coke-like polymer generated.
It can also cause blockage of valves, distillation column trays, etc. Furthermore, the rapid reaction between potassium hydroxide and maleic anhydride also leads to decomposition reactions of phthalic anhydride and other impurities, which react with phthalic anhydride and generate tar-like polymers.
It is also pointed out that this results in a significant decrease in the yield of purified phthalic anhydride. Furthermore, a method has been proposed in which phthalide is oxidized using an oxidation catalyst to obtain highly pure phthalic anhydride. For example, in US Pat. No. 3,208,423, heavy metal bromides such as cobalt bromide and manganese bromide are converted into crude phthalic anhydride and brought into contact with molecular oxygen gas. However, this method cannot be adopted industrially because bromide as a catalyst is expensive and it is extremely difficult to recover and reuse it. Furthermore, in order to achieve the same objective, West German Patent Publication No. 1935008 discloses that a catalyst in which vanadium oxide is supported on a carrier is packed in a packed bed, and crude phthalic anhydride is passed through this bed while air is passed through it. A method for carrying out the oxidation of However, it has been found that when this method is adopted, tar-like substances present in the crude phthalic anhydride adhere to the surface of the supported catalyst, resulting in a decrease in catalytic activity within a very short period of time. Originally, a supported catalyst is a catalyst in which a catalytically active substance is effectively dispersed and supported on the surface of a carrier, and it is well known that the preparation method and calcination conditions greatly affect the catalytic activity. Therefore, it must be said that it is difficult to stably use the method of filling such a supported catalyst inside a packed column and using it as a fixed bed on an industrial scale. The purpose of the present invention is to eliminate the above-mentioned drawbacks,
The object of the present invention is to provide a method for oxidizing phthalide to obtain high-purity phthalic anhydride using a catalyst that is extremely easy to operate and maintain. The invention is specified as follows. (1) Crude phthalic anhydride obtained by catalytic gas phase oxidation of ortho-xylene is treated with an alkali metal salt of at least one carboxylic acid selected from the group consisting of maleic acid, succinic acid and benzoic acid, manganese, 1. A method for producing high-purity phthalic anhydride, which comprises contacting it with a molecular oxygen-containing gas at high temperature in the presence of an alloy composition containing chromium and iron, and then subjecting it to a distillation operation. (2) At least 1 x 10 -4 molecular oxygen-containing gas converted to oxygen gas per 1 kg of crude phthalic anhydride.
(1) above, characterized by contacting for mol/hour;
Method described. (3) The above characterized in that the contact treatment is performed at a temperature range of 150°C to 300°C and a treatment time of 0.5 to 30 hours.
The method described in (1) or (2). (4) The amount of alkali metal salt added is 10 to 10% as alkali metal atoms to crude phthalic anhydride.
The method according to (1), (2) or (3) above, characterized in that the amount is in the range of 10,000 ppm (by weight). (5) The above (1) and (2) characterized in that the contact area of the alloy composition containing manganese, chromium and iron with respect to 1 kg of crude phthalic anhydride is at least 1×10 -3 m 2 , (3) or (4). (6) The above (1), (2), (3), and (4) characterized in that the manganese content in the alloy composition containing manganese, chromium, and iron is at least 0.05% by weight.
or the method described in (5). The present invention will be further explained in detail below. Crude phthalic anhydride obtained by catalytic gas phase oxidation of orthoxylene usually contains 0.05 to 1.0% by weight of phthalide. In the present invention, crude phthalic anhydride containing a phthalide is coexisted with an alkali metal salt of a carboxylic acid and an alloy composition containing manganese, chromium, and iron (hereinafter referred to as a manganese-containing alloy composition), with a 0.5 to
Contact treatment with a molecular oxygen-containing gas at a temperature of 150-300°C, preferably 200-300°C for 30 hours, preferably 1-20 hours, to oxidize most of the phthalide content, followed by conventional distillation. By subjecting it to the operation, purified phthalic anhydride with a significantly reduced phthalide content is obtained. This purified product not only has a significantly reduced phthalide content, but also removes other impurities that degrade quality, such as thermal stability, thereby preventing quality deterioration caused solely by phthalide. It has been found that this product has more than just this effect. The manganese-containing alloy composition used in the present invention is preferably one in the form of a wire mesh, through which molecular oxygen-containing gas can easily pass, and which causes almost no pressure loss. In particular, by filling the gas-liquid contact device with a net-like layered material,
A method in which crude phthalic anhydride and the alkali metal salt of the above-mentioned carboxylic acid are introduced into the mixture, and bubbles of molecular oxygen-containing gas are generated from below under stirring and heat treatment is the simplest and most convenient method for carrying out the present invention. This is a convenient method. The composition of the manganese-containing alloy composition used in the present invention is such that it contains at least 0.05% by weight of manganese, and it is particularly preferable that the content of manganese and chromium is 10% by weight or more. The surface area used is at least 1×10 -3 m 2 , preferably 5×10 -3 m 2 or more per kg of crude phthalic anhydride to be treated. Increasing the surface area is preferable because it leads to a reduction in processing time, but increasing the surface area too much may have disadvantages such as increased pressure loss. The amount of molecular oxygen blown into the crude phthalic anhydride depends on the amount of phthalide impurities contained in the crude phthalic anhydride, but at least
The amount is 0.0001 mol/hour, preferably 0.0005 mol/hour or more, particularly preferably 0.001 to 0.01 mol/hour. In the carboxylic acid alkali metal salts of the present invention, examples of the alkali metal include sodium, potassium, lithium, cesium, rubidium, etc., but potassium is most preferred. The most preferred carboxylic acid is maleic acid. The amount of the carboxylic acid alkali metal salts used in the present invention depends on the amount of phthalide contained in the crude phthalic anhydride, but is 10 to 10,000 ppm (by weight), preferably 20 to 10,000 ppm (by weight) based on the crude phthalic anhydride.
2000ppm (by weight), more preferably 50-1000ppm
(weight) range. Furthermore, according to the findings of the present inventors, organic acid salts other than the alkali metal salts of carboxylic acids, such as alkali metal salts of toluic acid, phthalic acid, and fumaric acid, all have a certain degree of effect in reducing impurity phthalide. Although some of them are less effective than the carboxylic acid salts mentioned above. The reason for this is not clear, but it is presumed that it is because the reaction affinity for phthalides, such as oxidation activity, is inferior to that of the compounds according to the present invention. Furthermore, according to the findings of the present inventors, the method of the present invention is even more effective than the levels achieved by the combinations of manganese-containing alloy compositions and oxygen, and alkali metal carboxylates and oxygen, respectively. I found out something. In other words, it has become clear that there is a very significant improvement in terms of both temperature and time. Although the reason for this is not clear, it is presumed that it is due to the additive effect of the alkali metal salt of carboxylic acid, the manganese-containing alloy composition, and molecular oxygen. As described above, by using the present invention, the phthalide in crude phthalic anhydride is reduced to 1/10 to 1/1000 in a very short time, and purified phthalic anhydride obtained by distillation is no longer phthalide. amount
A high quality of 0.01% by weight or less can be achieved. What is even more surprising is that the thermal stability of the phthalic anhydride obtained by the method of the invention is incomparably better than that obtained by conventional methods. The present invention will be explained in more detail below with reference to Examples. Example 1 Catalytic gas phase oxidation using orthoxylene as a raw material,
Crude phthalic anhydride having the following composition was obtained. Phthalic anhydride 99.3 (weight% and below are the same) Benzoic acid 0.05 Maleic acid 0.07 Phthalic acid 0.03 Phthalide 0.50 Put 1 kg of the above crude phthalic anhydride and 0.1 g of potassium maleate (equivalent to 100 ppm) in a flask, and add 5% by volume of oxygen and nitrogen from the bottom. 95% volume gas mixture
3000 ml/hour (oxygen amount: 6×10 −3 mol/hour) was blown into the reactor, and the treatment was carried out at a temperature of 270° C. for 10 hours. 20 g of an iron-chromium-manganese alloy wire having the following composition and structure was previously formed into a disk shape and fixed in the flask. The iron-chromium-manganese alloy has the following composition and structure.

【衚】 かくしおえられた凊理埌の無氎フタル酞䞭には
フタラむドが0.01重量含たれおいた。この凊理
ずみの無氎フタル酞を実段数10の倚孔板を蚭けた
蒞留塔内埄32mmφ、高さ500mmを甚い、55mm
Hg絶察圧圧力䞋、還流比0.5で蒞留した。そ
の結果APHA10、凝固点131.12℃の粟補無氎フタ
ル酞をえた。 250℃で時間加熱による熱安定床をAPHA10
で高品質のものであ぀た。なおこの粟補無氎フタ
ル酞䞭にはフタラむドは0.008重量含たれおい
た。 実斜䟋  実斜䟋に甚いたず同じ粗補無氎フタル酞Kg
ず安息銙酞カリりム0.2200ppmに盞圓をフ
ラスコにずり、底郚より酞玠容量、窒玠95容
量の混合ガス4500ml時酞玠量ずしお9.4×
10-3モル時吹き蟌み280℃の枩床で時間凊
理した。フラスコ䞭にはあらかじめ䞋蚘の組成ず
構造を有する鉄−クロム−マンガン合金の針金
接觊面積75×10-3m2に盞圓を添加した。
[Table] The thus obtained treated phthalic anhydride contained 0.01% by weight of phthalide. This treated phthalic anhydride was distilled using a distillation column (inner diameter 32 mmφ, height 500 mm) equipped with 10 perforated plates.
Distilled under Hg (absolute) pressure with a reflux ratio of 0.5. As a result, purified phthalic anhydride with APHA10 and freezing point of 131.12℃ was obtained. APHA10 thermal stability by heating at 250℃ for 2 hours
It was of high quality. Note that this purified phthalic anhydride contained 0.008% by weight of phthalide. Example 2 1Kg of the same crude phthalic anhydride used in Example 1
and potassium benzoate 0.2g (equivalent to 200ppm) were placed in a flask, and a mixed gas of 5% by volume of oxygen and 95% by volume of nitrogen was poured from the bottom at 4500ml/hour (9.4× as the amount of oxygen).
10 −3 mol/hour) and treated at a temperature of 280° C. for 5 hours. A wire 5 of an iron-chromium-manganese alloy having the composition and structure shown below is placed in the flask in advance.
g (corresponding to a contact area of 75×10 −3 m 2 ) was added.

【衚】 かくしおえられた凊理埌の無氎フタル酞䞭には
フタラむドが0.005重量含たれおいた。この凊
理ずみの無氎フタル酞を実段数10の倚孔板を蚭け
た蒞留塔内埄32mmφ、高さ500mmを甚い、55
mmHg絶察圧圧力䞋、還流比0.5で蒞留した。
その結果APHA10、凝固点131.12℃の粟補無氎フ
タル酞をえた。 250℃で時間加熱による熱安定床もAPHA10
の高品質のものであ぀た。なおこの粟補無氎フタ
ル酞䞭にはフタラむドは0.003重量含たれおい
た。 実斜䟋  実斜䟋で甚いたず同じ粗補無氎フタル酞500
Kgを内埄80cmφ、高さ120cmのタテ型凊理槜に入
れた。底郚に容量の酞玠、95容量の窒玠の
混合ガス吹き蟌み甚の分散盀、その䞊に撹拌噚が
蚭けられおなり、凊理槜䞭段郚に䞋蚘の組成ず構
造を有するクロムおよびマンガン合金網状物1250
接觊面積無氎フタル酞Kg圓り10×10-3m2に
盞圓を蚭眮した。
[Table] The thus obtained treated phthalic anhydride contained 0.005% by weight of phthalide. This treated phthalic anhydride was distilled into a distillation column (inner diameter 32 mmφ, height 500 mm) equipped with 10 perforated plates.
Distilled under mmHg (absolute) pressure with a reflux ratio of 0.5.
As a result, purified phthalic anhydride with APHA10 and freezing point of 131.12℃ was obtained. Thermal stability after heating at 250℃ for 2 hours is also APHA10.
It was of high quality. Note that this purified phthalic anhydride contained 0.003% by weight of phthalide. Example 3 Crude phthalic anhydride 500 same as used in Example 1
Kg was placed in a vertical treatment tank with an inner diameter of 80 cmφ and a height of 120 cm. A dispersion plate for blowing a mixed gas of 5% by volume of oxygen and 95% by volume of nitrogen is installed at the bottom, and a stirrer is installed on top of the dispersion plate for blowing a mixed gas of 5% by volume of oxygen and 95% by volume of nitrogen. thing 1250
g (corresponding to a contact area of 10×10 -3 m 2 per kg of phthalic anhydride).

【衚】 そしおさらに、コハク酞カリりム25
50ppmに盞圓を添加した。しかるのちに、混
合ガスを840時3.5×10-3モル時Kgに盞
圓で通じ、275℃に加熱し぀぀15時間凊理し、
凊理埌実段数10の倚孔板を蚭眮した蒞留塔内埄
3.2cmφ、高さ50cmにお55mmHg絶察圧圧力
䞋還流比0.5で蒞留し、APHA10、凝固点131.11
℃、フタラむド含量0.05重量の高玔床無氎フタ
ル酞をえた。このものの250℃時間の加熱埌の
熱安定床はAPHA20であ぀た。 実斜䟋  実斜䟋で甚いたず同じ粗補無氎フタル酞500
Kgを内埄80cmφ、高さ120cmのタテ型凊理槜に入
れた。底郚にガス吹き蟌み甚の分散盀、その䞊に
撹拌噚が蚭けられおおり、凊理槜䞭段郚に䞋蚘の
組成ず構造を有するクロムおよびマンガン合金網
状物300接觊面積無氎フタル酞Kg圓り、2.7
×10-3m2を蚭眮した。
[Table] Additionally, 25g of potassium succinate
(equivalent to 50 ppm) was added. Afterwards, a mixed gas was passed through at 840/hour (equivalent to 3.5×10 -3 mol/hour Kg) and treated for 15 hours while heating to 275°C.
After treatment, the distillation column (inner diameter
Distilled at a reflux ratio of 0.5 under a pressure of 55 mmHg (absolute pressure) at a diameter of 3.2 cmφ and a height of 50 cm, with an APHA of 10 and a freezing point of 131.11.
℃, high purity phthalic anhydride with a phthalide content of 0.05% by weight was obtained. The thermal stability of this product after heating at 250°C for 2 hours was APHA20. Example 4 Crude phthalic anhydride 500 same as used in Example 1
Kg was placed in a vertical treatment tank with an inner diameter of 80 cmφ and a height of 120 cm. A dispersion plate for blowing gas is installed at the bottom, and a stirrer is installed above it. In the middle part of the treatment tank, 300g of chromium and manganese alloy mesh having the composition and structure shown below (contact area: 2.7g per 1kg of phthalic anhydride,
×10 -3 m 2 ).

【衚】 そしおさらにコハク酞ナトリりム150
300ppmに盞圓を添加した。しかるのちに、
容量の酞玠、95容量の窒玠の混合ガスを
1200時酞玠量ずしお無氎フタル酞Kg圓り
×10-3モル時に盞圓で通じ、265℃に加熱
し぀぀12時間凊理し、凊理埌実段数10の倚孔板を
蚭眮した蒞留塔内埄3.2cmφ、高さ50cmにお
55mmHg絶察圧圧力䞋還流比0.5で蒞留し、
APHA10、凝固点131.12℃、フタラむド含量0.01
重量の高玔床無氎フタル酞をえた。このものの
250℃時間加熱埌の熱安定床はAPHA20であ぀
た。 比范䟋  実斜䟋においお、マレむン酞カリりム、クロ
ム−マンガン合金組成物を入れなか぀た以倖同様
の操䜜を行ないAPHA50で黄色着色した。凝固点
130.5℃の無氎フタル酞をえた。この無氎フタル
酞䞭のフタラむド分は0.48重量であり、250
℃、時間加熱での熱安定性は、APHA500以䞊
であ぀た。 実斜䟋〜25および比范䟋〜 実斜䟋で甚いたず同じ組成の粗補無氎フタル
酞をそれぞれKgずり、フラスコ䞭で第衚に瀺
すように添加剀、添加量、実斜䟋で甚いたず同
じ合金䜿甚量、熱凊理枩床、凊理時間をそれぞれ
倉化させ凊理埌の無氎フタル酞䞭のフタラむド量
を枬定し第衚に瀺す結果をえた。
[Table] And 150g of sodium succinate
(equivalent to 300 ppm) was added. However, later on,
A mixed gas of 5% by volume oxygen and 95% by volume nitrogen.
1200/hour (equivalent to 5 x 10 -3 mol/hour of oxygen per 1 kg of phthalic anhydride), heated to 265°C and treated for 12 hours, and after the treatment, a distillation column equipped with a perforated plate with 10 plates ( Inner diameter 3.2cmφ, height 50cm)
Distilled at a reflux ratio of 0.5 under 55 mmHg (absolute pressure) pressure,
APHA10, freezing point 131.12℃, phthalide content 0.01
% by weight of high purity phthalic anhydride was obtained. of this
Thermal stability after heating at 250°C for 2 hours was APHA20. Comparative Example 1 The same procedure as in Example 1 was carried out except that potassium maleate and the chromium-manganese alloy composition were not added, and the sample was colored yellow with APHA50. freezing point
Obtained phthalic anhydride at 130.5℃. The phthalide content in this phthalic anhydride is 0.48% by weight, and 250
Thermal stability when heated at ℃ for 2 hours was APHA500 or higher. Examples 5 to 25 and Comparative Examples 2 to 3 1 kg of each crude phthalic anhydride having the same composition as used in Example 4 was taken, and in a flask, the additives and amounts used in Example 4 were added as shown in Table 1. The amount of phthalide in the phthalic anhydride after the treatment was measured by varying the same amount of alloy used, heat treatment temperature, and treatment time, and the results shown in Table 1 were obtained.

【衚】【table】

Claims (1)

【特蚱請求の範囲】  オル゜キシレンの接觊気盞酞化によ぀おえら
れた粗補無氎フタル酞を、マレむン酞、コハク酞
および安息銙酞よりなる矀から遞ばれた少なくず
も皮のカルボン酞のアルカリ金属塩䞊びにマン
ガン、クロムおよび鉄を含有しおなる合金組成物
の存圚䞋、分子状酞玠含有ガスず高枩においお接
觊凊理し、぀いで蒞留操䜜に䟛するこずを特城ず
する高玔床無氎フタル酞の補造方法。  粗補無氎フタル酞Kgに察し分子状酞玠含有
ガスを酞玠ガスに換算しお少なくずも×10-4モ
ル時間接觊させるこずを特城ずする特蚱請求の
範囲蚘茉の方法。  接觊凊理が150℃〜300℃の枩床範囲、凊理時
間が0.5〜30時間であるこずを特城ずする特蚱請
求の範囲たたは蚘茉の方法。  アルカリ金属塩の添加量が粗補無氎フタル酞
に察し、アルカリ金属原子ずしお10〜10000ppm
重量の範囲であるこずを特城ずする特蚱請求
の範囲、たたは蚘茉の方法。  粗補無氎フタル酞Kgに察しマンガン、クロ
ムおよび鉄を含有しおなる合金組成物の接觊面積
が少なくずも×10-3m2であるこずを特城ずする
特蚱請求の範囲、、たたは蚘茉の方法。  マンガン、クロムおよび鉄を含有しおなる合
金組成物䞭のマンガン含量が少くずも0.05重量
であるこずを特城ずする特蚱請求の範囲、、
、たたは蚘茉の方法。
[Scope of Claims] 1. Crude phthalic anhydride obtained by catalytic gas phase oxidation of ortho-xylene is treated with at least one alkali metal carboxylic acid selected from the group consisting of maleic acid, succinic acid and benzoic acid. 1. A method for producing high-purity phthalic anhydride, which comprises contacting it with a molecular oxygen-containing gas at high temperature in the presence of a salt and an alloy composition containing manganese, chromium, and iron, and then subjecting it to a distillation operation. 2. The method according to claim 1, wherein 1 kg of crude phthalic anhydride is contacted with a molecular oxygen-containing gas for at least 1×10 -4 mol/hour in terms of oxygen gas. 3. The method according to claim 1 or 2, wherein the contact treatment is performed at a temperature range of 150°C to 300°C and for a treatment time of 0.5 to 30 hours. 4 The amount of alkali metal salt added is 10 to 10,000 ppm as alkali metal atoms relative to crude phthalic anhydride.
4. The method according to claim 1, 2 or 3, wherein the weight is within a range of (weight). 5. Claims 1, 2, 3 or 5, characterized in that the contact area of the alloy composition containing manganese, chromium and iron with respect to 1 kg of crude phthalic anhydride is at least 1×10 -3 m 2 . The method described in 4. 6 Manganese content in the alloy composition containing manganese, chromium and iron is at least 0.05% by weight
Claims 1, 2,
3. The method described in 4 or 5.
JP17780881A 1981-07-06 1981-11-07 Preparation for phthalic anhydride of high purity Granted JPS5879990A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP17780881A JPS5879990A (en) 1981-11-07 1981-11-07 Preparation for phthalic anhydride of high purity
GB08218761A GB2105710B (en) 1981-07-15 1982-06-29 Method for manufacture of high-purity phthalic anhydride
US06/394,477 US4436922A (en) 1981-07-06 1982-07-01 Method for manufacture of high-purity phthalic anhydride
DE19823225079 DE3225079A1 (en) 1981-07-06 1982-07-05 METHOD FOR THE PRODUCTION OF HIGH Purity Phtalic Acid Anhydride
FR8211850A FR2508906A1 (en) 1981-07-06 1982-07-06 PROCESS FOR THE PREPARATION OF HIGH-PURITY PHTHALIC ANHYDRIDE FROM RAW PHTHALIC ANHYDRIDE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17780881A JPS5879990A (en) 1981-11-07 1981-11-07 Preparation for phthalic anhydride of high purity

Publications (2)

Publication Number Publication Date
JPS5879990A JPS5879990A (en) 1983-05-13
JPS6113711B2 true JPS6113711B2 (en) 1986-04-15

Family

ID=16037445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17780881A Granted JPS5879990A (en) 1981-07-06 1981-11-07 Preparation for phthalic anhydride of high purity

Country Status (1)

Country Link
JP (1) JPS5879990A (en)

Also Published As

Publication number Publication date
JPS5879990A (en) 1983-05-13

Similar Documents

Publication Publication Date Title
EP0497521B1 (en) Removal of carbonyl impurities from a carbonylation process stream
US5214185A (en) Continuous process for preparing dimethyl carbonate
JPH11503154A (en) Recovery of acetic acid from dilute aqueous streams formed during the carbonation process
JPS62129247A (en) Purification of crude terephthalic acid
US4436922A (en) Method for manufacture of high-purity phthalic anhydride
EP0636599B1 (en) Process for the production of acetic acid
JPH0753447A (en) Production of 3-pentenoic acid and catalyst therefor
JP2937292B2 (en) Continuous production method of dimethyl carbonate
JPS6113711B2 (en)
JP3143598B2 (en) Method for producing high-purity phthalic anhydride
US6410753B2 (en) Process for producing trimellitic anhydride
JP2795360B2 (en) Continuous production of dimethyl carbonate
JPS6113710B2 (en)
EP1631383B1 (en) Oxidation of aromatic hydrocarbons using brominated anthracene promoters
JPS6056150B2 (en) Production method of high purity phthalic anhydride
JP4204097B2 (en) Method for producing methyl methacrylate
JPH01132574A (en) Production of high-purity phthalic anhydride
JP2962454B2 (en) Continuous production method of dimethyl carbonate
JPS60199855A (en) Production of benzoic acid
JP3915152B2 (en) Method for producing benzyl acetate
JPS588074A (en) Preparation of high purity phthalic anhydride
JPH10237061A (en) Production of high-purity phthalic anhydride
JPH04145035A (en) Method of manufacturing phenol
JPH10237062A (en) Production of high-purity phthalic anhydride
JPS623139B2 (en)