JPS61137041A - Method for testing film - Google Patents

Method for testing film

Info

Publication number
JPS61137041A
JPS61137041A JP59258874A JP25887484A JPS61137041A JP S61137041 A JPS61137041 A JP S61137041A JP 59258874 A JP59258874 A JP 59258874A JP 25887484 A JP25887484 A JP 25887484A JP S61137041 A JPS61137041 A JP S61137041A
Authority
JP
Japan
Prior art keywords
film
cut
test piece
seawater
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59258874A
Other languages
Japanese (ja)
Inventor
Toshio Sao
俊生 佐尾
Akio Shibata
昭男 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP59258874A priority Critical patent/JPS61137041A/en
Publication of JPS61137041A publication Critical patent/JPS61137041A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2255Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident ion beams, e.g. proton beams

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Ecology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Environmental Sciences (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To efficiently measure the life of a corrosion-proof org. coating agent with good accuracy, by obliquely cutting the org. coating material at a definite angle with respect to the surface of a film and measuring the penetration depths of various ions with respect to the cut cross-section of each cut coating material. CONSTITUTION:After a test piece is immersed in seawater for a definite period, said piece is taken out to sufficiently wipe off seawater on the surface of the film 12 formed to said test piece before drying. the test piece is cut in a dimension of about 5mm from the central part thereof to prepare a specimen consisting of a substrate metal 11 and the film 12. A Cl-ion penetration part 13 is formed to the film 12. The film 12 of the specimen is cut at a definite angle to the surface 14 thereof by a microtome (glass knife) to form a cut cross-section coming to a measuring surface and Cl-ion concn. distribution is measured by using an X-ray microanalyser.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は防食用有機系被覆材の塗膜1:対する各種イオ
ンの浸透深さを測定する塗膜試験方法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an improvement in a coating film testing method for measuring the penetration depth of various ions into a coating film 1 of an organic coating material for corrosion protection.

〔従来技術〕[Prior art]

海水環境における鋼材の防食用有機系被覆材の耐用年数
は、CAイオンが塗膜に浸透し、下地金属表面に到達す
る期間とほぼ一致するといわれている。このため、CA
イオンの浸透深さを測定し、各種防食用有機系被覆材の
寿命を推定する方法が一般的に行なわれている。
It is said that the service life of an organic anti-corrosion coating material for steel in a seawater environment is approximately the same as the period during which CA ions permeate the coating film and reach the underlying metal surface. For this reason, CA
A commonly used method is to measure the depth of ion penetration and estimate the lifespan of various anticorrosive organic coating materials.

ところで、?!膜に対するC!イオンの浸透深さの測定
は、従来1次のような手順で実施されている。これを第
2図を参照して説明する。
by the way,? ! C against membrane! Measuring the depth of ion penetration has conventionally been carried out using the following first-order procedure. This will be explained with reference to FIG.

(i)海水中にテストピースを一定期間浸漬する。(i) Immerse the test piece in seawater for a certain period of time.

(i)海水からテストピースを取り出し、塗膜表面の海
水を十分に拭取った後、放置(乾燥)する。
(i) Take the test piece out of the seawater, thoroughly wipe off the seawater on the surface of the coating film, and then leave it to dry (dry).

(ロ) テストピースの中央部から約10−の寸法で切
り出し下地金属1及び塗膜2からなる供試体Sを作製す
る。なお1図中の3はC!イオン浸透部である。
(b) A specimen S consisting of the base metal 1 and the coating film 2 is prepared by cutting out the test piece at a dimension of about 10 mm from the center. Note that 3 in figure 1 is C! This is the ion permeation part.

(馳 供試体Sを樹脂′4中に埋め込む。(Embed the specimen S in resin '4.

(v+  供試体Sを樹脂4中1=埋め込んだ状態で。(v+ Specimen S is 1=embedded in resin 4.

下地金属1及び塗膜2の断面が塗膜表面5及び下地金属
表面6::対して垂直となるよう!=エメリーペーパー
で研摩する。
Make sure that the cross sections of the base metal 1 and the coating film 2 are perpendicular to the coating film surface 5 and the base metal surface 6! = Polish with emery paper.

−) X線マイクロアナライザで塗膜2の断面のC!イ
オン濃度の分布を測定し、塗膜表面4からのCI/イオ
ンの浸透深さを求める。
-) C of the cross section of coating film 2 using an X-ray microanalyzer! The ion concentration distribution is measured and the depth of CI/ion penetration from the coating surface 4 is determined.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上述した従来のCIイオンの浸透深さ測
定方法には次のような問題点がある。
However, the conventional CI ion penetration depth measurement method described above has the following problems.

(1)  各踵防食用有機系被覆材の塗膜に対するC4
イオンの浸透深さは海水中で年間当りわず−か5〜30
μmといわれており、こ?わずかな変化を検出するC;
は精度的に問題(±5μm程度の誤差)がある。
(1) C4 for the coating film of each heel anticorrosion organic coating material
The penetration depth of ions is only 5 to 30 per year in seawater.
It is said to be μm. C detects slight changes;
has a problem with accuracy (error of approximately ±5 μm).

(2)データの有意性を確認するためには、数多くのテ
ストピースを用い、しかも1〜3年の長期浸漬が必要で
ある。
(2) In order to confirm the significance of the data, it is necessary to use a large number of test pieces and to immerse them for a long period of 1 to 3 years.

(31X線マイクロアナライザの測定面(塗膜の断面)
をエメリーペーパで研摩しているが。
(31 Measurement surface of X-ray microanalyzer (cross section of coating film)
I am polishing it with emery paper.

削られた塗膜の微粉が測定面に分散して付着するため、
X線マイクロア、ナライザによるC!イオン濃度の分布
測定に誤差を生じる。。
Fine powder from the scraped paint film is dispersed and adheres to the measurement surface.
C! by X-ray microa and analyzer! This causes errors in measuring the distribution of ion concentrations. .

(4)分析用供試体の作製には長時間(4時間/個)を
要すると共に熟練が必要で、測定効率が低い。
(4) Preparation of specimens for analysis requires a long time (4 hours/piece), requires skill, and has low measurement efficiency.

本発明は上記問題点を解消するためになされたもので、
塗膜に対する各踵イオンの浸透深さを精度よく、かつ能
率よく測定し得る塗膜試験方法を提供しようとするもの
である。
The present invention was made to solve the above problems, and
The object of the present invention is to provide a coating film testing method that can accurately and efficiently measure the penetration depth of each heel ion into the coating film.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は有機系被覆材の塗膜断面を塗膜表面:=対して
一定の角度で斜め(二切削し、この切削断面について各
種イオンの浸透深さを測定することを特徴とするもので
ある。
The present invention is characterized in that a cross-section of a coating film of an organic coating material is cut obliquely (two times) at a constant angle with respect to the coating surface, and the penetration depth of various ions is measured for this cut section. .

以下1本発明を第1図を参照して詳細(二説明する。The present invention will be explained in detail below with reference to FIG.

(i)海水中シニテストビースを一定期間浸漬する。(i) Immerse the Sinitest beads in seawater for a certain period of time.

(=)  海水中からテストピースを取り出し、塗膜表
面の海水を十分に拭取った後、放!i(乾燥)する。
(=) Take the test piece out of the seawater, thoroughly wipe off the seawater on the coating surface, and then release it! i (dry).

(ii)  テストピースの中央部から約5−の寸法(
二切り出し下地金属11及び塗膜12からなる供試体を
作製する。なお1図中の13はC!イオンの浸透部であ
る。
(ii) Approximately 5-dimension from the center of the test piece (
A specimen consisting of two cut out base metals 11 and a coating film 12 is prepared. Note that 13 in Figure 1 is C! This is the part where ions penetrate.

(−ミクロトーム(ガラスナイフ)を用いて。(- using a microtome (glass knife).

供試体の!!1膜12をその表面14に対して一定の角
度で数μmずつ徐々に切削し、測定面となる切削断面1
5を形成する(第1図図示)。
The specimen! ! 1 film 12 is gradually cut by several μm at a constant angle to the surface 14, and the cut cross section 1 that becomes the measurement surface is obtained.
5 (as shown in Figure 1).

なお第1図中の16は下地金属表面である。Note that 16 in FIG. 1 is the base metal surface.

(Vl  次いで、X線マイクロアナライザを用いて塗
膜12の切削断面15のCIイオン濃度分布を測定し、
塗膜表面14からのC!イオンの浸透深さを求める。
(Vl Next, the CI ion concentration distribution of the cut cross section 15 of the coating film 12 was measured using an X-ray microanalyzer,
C from coating surface 14! Find the depth of ion penetration.

〔作用〕[Effect]

上述した本発明によれば以下に列挙する作用、効果を有
する。
According to the present invention described above, the functions and effects listed below are obtained.

(11有機系被覆材の塗膜を一定角度で切削することに
より、その切削断面(測定面)を拡大(数十倍)するこ
とができるため、C!イオンの浸透深さの測定精度を向
上できる。
(11 By cutting the coating film of organic coating material at a certain angle, the cut cross section (measurement surface) can be enlarged (several tens of times), improving the measurement accuracy of the penetration depth of C! ions can.

(2)塗膜に対するC!イオンの僅かな浸漬深さを精度
よく測定できるため、各稲防食用有機系被覆材の耐用年
数を短期間の浸漬試険で推定できる。
(2) C for paint film! Since the small immersion depth of ions can be measured with high precision, the service life of each organic coating material for rice corrosion protection can be estimated through a short-term immersion test.

(3)測定面をエメリーペーパで研摩する必要がなく、
研摩作業に起因する測定誤差を解消できる。
(3) There is no need to polish the measurement surface with emery paper,
Measurement errors caused by polishing work can be eliminated.

(4)測定用供試体の作製は、従来法に比して比較的容
易であるため1作製所要時間(1時間/個)と短かくで
きる。
(4) The production of measurement specimens is relatively easy compared to conventional methods, so the time required for one production can be shortened (1 hour/piece).

〔発明の実施例〕[Embodiments of the invention]

以下1本発明の詳細な説明する。 The present invention will be explained in detail below.

まず、タールエポキシ系塗料を銅材表面(二約100μ
mの厚さで塗布してテストピースとし。
First, apply tar epoxy paint to the surface of the copper material (approximately 100μ
Coat it with a thickness of m and use it as a test piece.

これを約3カ月間海水中に浸漬した。つづいて。This was immersed in seawater for about 3 months. Continuing.

テストピースを海水中から取出し、海水をよく拭取り放
置した後、前述した(ir)〜(V)の手順により塗膜
のCiイオンの浸透深さを測定した。その結果を下記表
に示す。なお1表中には従来法によるC!イオンの浸透
深さ測定結果を併記した。
The test piece was taken out of the seawater, the seawater was thoroughly wiped off, and the test piece was left to stand, and then the penetration depth of the Ci ions in the coating film was measured according to the procedures (ir) to (V) described above. The results are shown in the table below. In addition, Table 1 shows C! according to the conventional method. The results of measuring the ion penetration depth are also shown.

上表より明らかな如く1本発明は従来法に比べて測定値
のバラツキが少なく、かつ供試体の作製所要時間も短か
くできることがわかる。
As is clear from the table above, it can be seen that the present invention has less variation in measured values than the conventional method, and can also shorten the time required to prepare the specimen.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く1本発明によれば塗膜に対する各種イ
オンの浸透深さを精度よく、かつ能率よく測定でき、ひ
いては防食用有機系被覆材の耐用年数を的確に把握でき
る等顕著な効果を有する塗膜試験方法を提供できる。
As detailed above, according to the present invention, it is possible to measure the penetration depth of various ions into a coating film with high precision and efficiency, and it has also achieved remarkable effects such as being able to accurately grasp the service life of an organic coating material for corrosion protection. It is possible to provide a coating film test method having the following properties.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の試験方法ζユ用いられるCフイオンの
浸透深さ測定用供試体の斜視図、第2図は従来の同供試
体を示す概略図である。 11・・・下地金属、12・・・塗膜、15・・・切削
断面。
FIG. 1 is a perspective view of a specimen for measuring the penetration depth of C ions used in the test method of the present invention, and FIG. 2 is a schematic diagram showing the conventional specimen. 11... Base metal, 12... Paint film, 15... Cutting cross section.

Claims (1)

【特許請求の範囲】[Claims] 有機系被覆材の塗膜断面を塗膜表面に対して一定の角度
で斜めに切削し、この切削断面について各種イオンの浸
透深さを測定することを特徴とする塗膜試験方法。
A coating film testing method characterized by cutting a cross section of the coating film of an organic coating material diagonally at a constant angle to the coating surface, and measuring the penetration depth of various ions on this cut section.
JP59258874A 1984-12-07 1984-12-07 Method for testing film Pending JPS61137041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59258874A JPS61137041A (en) 1984-12-07 1984-12-07 Method for testing film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59258874A JPS61137041A (en) 1984-12-07 1984-12-07 Method for testing film

Publications (1)

Publication Number Publication Date
JPS61137041A true JPS61137041A (en) 1986-06-24

Family

ID=17326240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59258874A Pending JPS61137041A (en) 1984-12-07 1984-12-07 Method for testing film

Country Status (1)

Country Link
JP (1) JPS61137041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508039A (en) * 2018-06-21 2021-02-25 エルジー・ケム・リミテッド A method for quantifying the amine compound constituting the separation membrane active layer before the production of the separation membrane active layer, a method for quantifying the polyamide or unreacted amine compound in the separation membrane active layer, and setting of production conditions for the separation membrane active layer. How to set standards or manufacturing conditions

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021508039A (en) * 2018-06-21 2021-02-25 エルジー・ケム・リミテッド A method for quantifying the amine compound constituting the separation membrane active layer before the production of the separation membrane active layer, a method for quantifying the polyamide or unreacted amine compound in the separation membrane active layer, and setting of production conditions for the separation membrane active layer. How to set standards or manufacturing conditions

Similar Documents

Publication Publication Date Title
Galliano et al. Evaluation of corrosion protection properties of additives for waterborne epoxy coatings on steel
Bacon et al. Electrolytic resistance in evaluating protective merit of coatings on metals
Lord et al. Coulometric determination of submicrogram amounts of silver
JPH0543268B2 (en)
JP4962353B2 (en) Cross-cut test method and cross-cut test apparatus
Ende et al. Characterization of chromate-phosphate conversion layers on Al-alloys by electrochemical impedance spectroscopy (EIS) and optical measurements
JPS61137041A (en) Method for testing film
JP4714646B2 (en) Sample for end surface corrosion resistance evaluation of plated steel sheet, end surface corrosion resistance evaluation apparatus, and end surface corrosion resistance evaluation method
Mabbutt et al. Technical note Novel configurations for electrochemical noise measurements
Wünsche et al. Electrochemical impedance spectroscopy and corrosion point counting on metal sheet edges with different cathodic dip coat materials
JP2009098113A5 (en)
Xu et al. Prediction of long-term service life of an organic coating based on short-term exposure results
CN114544485B (en) Method for evaluating wet adhesion of heavy metal anti-corrosion coating
CN114062006A (en) On-site sampling and electrochemical corrosion test method for concrete surface anticorrosive material
US3770593A (en) Accelerated test method for determining coating adherence and ability to withstand corrosion
CN111487185A (en) Method for simulating atmospheric corrosion process of galvanized steel
Young et al. Film-Continuity of Synthetic Resin Coatings
Prime et al. Residual stresses in a bi-material laser clad measured using compliance
FI58217C (en) FOERFARANDE FOER BESTAEMNING AV EGENSKAPER HOS ETT METALLFOEREMAOL GENOM MAETNING AV POTENTIALSKILLNADEN MELLAN DETTA FOEREMAOL OCH ETT ANNAT METALLFOEREMAOL SAMT EN PASTA FOER UTFOERING AV FOERFARANDET
Ponte et al. Porosity determination of nickel coatings on copper by anodic voltammetry
Smith et al. A Micro Solution‐Potential Measuring Technique
He Investigation of anticorrosive property of epoxy phenolic coating by AC-DC-AC method
Cerisola et al. Electrochemical test methods for the protective power control of painted steel surfaces
Anderson et al. An electrolytic chromium plate thickness tester
Jun The effects of inhomogeneity in organic coatings on electrochemical measurements using a wire beam electrode: Part I