JPS6113700B2 - - Google Patents

Info

Publication number
JPS6113700B2
JPS6113700B2 JP8345280A JP8345280A JPS6113700B2 JP S6113700 B2 JPS6113700 B2 JP S6113700B2 JP 8345280 A JP8345280 A JP 8345280A JP 8345280 A JP8345280 A JP 8345280A JP S6113700 B2 JPS6113700 B2 JP S6113700B2
Authority
JP
Japan
Prior art keywords
oxygen
ammonia
mixed
reaction
olefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8345280A
Other languages
Japanese (ja)
Other versions
JPS579751A (en
Inventor
Yoshiaki Toyoda
Yoshihiro Ikeda
Ichisaburo Nakamura
Nobumasa Arashiba
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Toatsu Chemicals Inc
Original Assignee
Mitsui Toatsu Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals Inc filed Critical Mitsui Toatsu Chemicals Inc
Priority to JP8345280A priority Critical patent/JPS579751A/en
Publication of JPS579751A publication Critical patent/JPS579751A/en
Publication of JPS6113700B2 publication Critical patent/JPS6113700B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 本発明は、流動層法により、効率的かつ安全に
アクリロニトリル化合物を製造するアンモ酸化法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ammoxidation method for efficiently and safely producing an acrylonitrile compound by a fluidized bed method.

触媒の存在下、1分子の原料オレフイン及びア
ンモニアと3/2分子の酸素とから1分子のα・β
−不飽和ニトリル及び3分子の水を生成するいわ
ゆるアンモ酸化反応は、特にアクリロニトリルの
製造においては、ソハイオ法の出現以後、世界中
で極めて広く用いられている反応方法である。ア
クリロニトリルの製造プロセスとしては、一部
に、固定床反応法も嫁動しているが、ソハイオ法
に代表される流動層反応法がより一般的である。
すなわち、分子状酸素含有ガスを流動ガスとして
触媒を流動化させた中に、原料オレフインとアン
モニアの混合ガスを、分子状酸素含有ガスとは別
に吹き込むことにより高温で反応させ、α・β−
不飽和ニトリルを生成させる方法である。
In the presence of a catalyst, one molecule of α and β is produced from one molecule of raw material olefin and ammonia and 3/2 molecules of oxygen.
The so-called ammoxidation reaction, which produces an unsaturated nitrile and three molecules of water, is a very widely used reaction method throughout the world, especially in the production of acrylonitrile, since the advent of the Sohio process. As a manufacturing process for acrylonitrile, a fixed bed reaction method is also used in some cases, but a fluidized bed reaction method represented by the Sohio method is more common.
That is, a mixed gas of raw material olefin and ammonia is blown separately from the molecular oxygen-containing gas into a catalyst that is fluidized using a molecular oxygen-containing gas as a fluidizing gas to cause a reaction at high temperature.
This is a method for producing unsaturated nitriles.

しかし、通常この反応では、主目的とするα・
β−不飽和ニトリル以外にシアン化水素などのニ
トリル化合物、アクロレインなどのアルデヒド化
合物、アクリル酸などのカルボン酸化合物及び
CO、CO2の酸化炭素など、極めて多くの副生成
物を伴なつており、これらの好ましくない生成物
の抑制により選択率を高めることが非常に重要で
ある。一方、このアンモ酸化機構に関する議論は
種々なされてきているが、目的とするα・β−不
飽和ニトリルを得るためには、触媒上で原料オレ
フイン、アンモニア及び酸素の、3種の反応成分
の接触が必要であり、そのためには、これらの完
全な混合が不可欠である。すなわち、触媒層内に
供給された各反応成分は、活性化される段階、も
しくはその以前に所定の混合度によく混合されて
いる必要がある。しかし、反応器の構造及び原料
ガス供給機器の改造をいくらつくしても、反応器
に入つて初めて反応成分が混合されるという方法
においては、反応成分ガスの混合そのものを本質
的に改善するまでには至らず、その効果が少な
い。そこで、反応器に供給される前に、これらの
3種の反応成分を含むガスを、全量、あらかじめ
混合する方法が考えられるが、そのような混合ガ
スは、良好な反応成績を達成するための最適条件
下では、可燃性ガスの爆発範囲に入つてしまうの
で実現は困難であり、たとえ嫁動したとしても、
極めて安全性に欠けるものとなる。
However, in this reaction, the main objective is usually α・
In addition to β-unsaturated nitriles, nitrile compounds such as hydrogen cyanide, aldehyde compounds such as acrolein, carboxylic acid compounds such as acrylic acid,
It is accompanied by a large number of by-products such as CO, carbon oxides of CO2 , etc., and it is very important to increase the selectivity by suppressing these undesirable products. On the other hand, various discussions have been made regarding this ammoxidation mechanism, but in order to obtain the desired α/β-unsaturated nitrile, it is necessary to contact the three reaction components of raw material olefin, ammonia, and oxygen on a catalyst. are necessary, and for this purpose, their complete mixing is essential. That is, each reaction component supplied into the catalyst layer needs to be well mixed to a predetermined mixing degree at or before the activation stage. However, no matter how many modifications are made to the structure of the reactor and the raw material gas supply equipment, the method in which the reactants are mixed only after entering the reactor cannot essentially improve the mixing of the reactant gases themselves. However, the effect is small. Therefore, a method can be considered in which the entire amount of gas containing these three types of reaction components is mixed in advance before being supplied to the reactor, but such a mixed gas is not suitable for achieving good reaction results. Under optimal conditions, this would be difficult to achieve because it would fall within the explosion range of flammable gas, and even if it were possible,
This would be extremely unsafe.

その上、今日まで非常に多くのアンモ酸化触媒
が研究開発されて来ているにもかかわらず、その
選択性が十分でない故に、製造原単位の改善のた
めには、さらにこの3種の反応成分の混合方法に
関する改良を行い反応成績の向上を図る必要があ
る。しかも、これらの触媒は、反応中に活性が次
第に低下するということが避けられず、そのた
め、新しい触媒との入れ替えが必要となるが、触
媒コストが高く、工業的な実施の点からあまり好
ましくなかつた。
Furthermore, although a large number of ammoxidation catalysts have been researched and developed to date, their selectivity is not sufficient, so in order to improve the production unit consumption, it is necessary to It is necessary to improve the reaction results by improving the mixing method. Moreover, these catalysts inevitably lose their activity gradually during the reaction, and therefore must be replaced with new catalysts, which is not desirable from an industrial implementation point of view due to the high cost of the catalyst. Ta.

本発明者らはこれらの従来法の欠点を克服する
ため鋭意研究を重ねた結果、流動層反応器に供給
する空気の所定割合を、あらかじめ、オレフイン
及びアンモニアと混合し、これを、分子状酸素含
有ガスですでに流動化させた触媒反応層内に供給
すれば、爆発限界が回避されるとともに、反応成
績を従来のアンモ酸化法より向上させることがで
き、しかも触媒寿命を延長させ得ることを見出し
た。本発明はこの知見に基づきなされたものであ
る。
The present inventors have conducted intensive research to overcome the drawbacks of these conventional methods. As a result, a predetermined proportion of the air supplied to the fluidized bed reactor is mixed with olefin and ammonia in advance, and this is mixed with molecular oxygen. It has been shown that when supplied into a catalytic reaction bed that has already been fluidized with a containing gas, explosive limits can be avoided, the reaction performance can be improved over conventional ammoxidation methods, and the catalyst life can be extended. I found it. The present invention has been made based on this knowledge.

すなわち本発明は、流動層反応器を用いて、プ
ロピレン及びイソブチレンから選ばれた少なくと
も1種のオレフインと、アンモニアと、酸素とを
反応させてアクリロニトリル又はメタクリロニト
リルを製造するに当り、前記酸素のうち、オレフ
インに対し10〜110モル%に相当する量をあらか
じめオレフイン及びアンモニアの少なくとも一方
と混合し、このオレフイン、アンモニア及び酸素
の混合ガスを、酸素含有ガスで流動化させた触媒
反応層内に供給することを特徴とするアンモ酸化
法を提供するものである。
That is, the present invention provides a method for producing acrylonitrile or methacrylonitrile by reacting at least one olefin selected from propylene and isobutylene, ammonia, and oxygen using a fluidized bed reactor. Of this, an amount equivalent to 10 to 110 mol% of the olefin is mixed in advance with at least one of olefin and ammonia, and this mixed gas of olefin, ammonia, and oxygen is placed in a catalytic reaction layer fluidized with an oxygen-containing gas. The present invention provides an ammoxidation method characterized by supplying.

本発明に用いられる酸素とは分子状酸素を意味
し、酸素源としては、空気の他、如何なる酸素含
有ガスを用いてもさしつかえないが、空気を用い
るのが経済的であり、好ましい。また、本発明の
目的を達成するには、プロピレン、イソブチレン
又はその混合物とアンモニアに対する酸素含有ガ
スの混合量は、これら可燃性ガスもしくは、混合
可燃性ガスの爆発上限以上の範囲でよく、アンモ
酸化反応に必要な原料ガス全量を混合するには及
ばず、その必要もない。その上限はプロピレン、
イソブチレン又はその混合物に対し、酸素量110
モル%含むガス量であり、下限は酸素量10モル%
含むガス量である。酸素量が110モル%を越える
と、流動ガスとして用いられる酸素含有ガス量が
減少し、一方、反応器へ供給される原料オレフイ
ン、アンモニア及び酸素含有ガスからなる混合ガ
ス量が増大しすぎるために、反応器における流動
化状態及び混合状態に悪影響をもたらすととも
に、爆発範囲に入る恐れがある。また、10モル%
に満たない場合は、本発明の所望の効果が少なく
望ましくない。
The oxygen used in the present invention means molecular oxygen, and any oxygen-containing gas other than air may be used as the oxygen source, but air is preferably used because it is economical. Furthermore, in order to achieve the object of the present invention, the amount of oxygen-containing gas mixed with propylene, isobutylene or a mixture thereof and ammonia may be in a range equal to or higher than the upper limit of explosion of these flammable gases or mixed flammable gases, and ammonia oxidation This is not enough to mix the entire amount of raw material gas required for the reaction, and there is no need to do so. The upper limit is propylene,
Oxygen amount 110 for isobutylene or its mixture
It is the amount of gas containing mol%, and the lower limit is 10 mol% of oxygen.
This is the amount of gas included. When the amount of oxygen exceeds 110 mol%, the amount of oxygen-containing gas used as fluidizing gas decreases, while the amount of mixed gas consisting of raw material olefin, ammonia, and oxygen-containing gas supplied to the reactor increases too much. , which will have an adverse effect on the fluidization and mixing conditions in the reactor and may enter the explosive range. Also, 10 mol%
If it is less than , the desired effect of the present invention will be less and undesirable.

次に図面に従がつて本発明方法を実施するのに
好適なフローシートの1例を説明する。酸素含有
ガスCは配管3から混合器6に導入され、ここで
配管1,2よりそれぞれ導入された、プロピレ
ン、イソブチレンもしくはその混合物A及びアン
モニアBと混合され、次いで流動層反応器7に吹
き込まれる。一方、残りの酸素含有ガスは、酸管
4から流動層反応器7に吹き込まれ、触媒を流動
化状態としている。流動層反応器内は所定の反応
条件下に維持され、アンモ酸化反応が行われる。
反応生成物は配管5より取り出される。各原料
A,B,Cの混合順序は図示のものには限定され
ず、例えば1個所で一度に混合してもよく、また
段階的に混合してもよい。混合器6としては、各
種スタテイツクミキサーをはじめ、ベンチユリ
ー、オリフイスなどの邪魔板などを用いてもよ
く、特に限定されない。また、好ましくは、プロ
ピレン、イソブチレンもしくはその混合物、アン
モニア及び酸素含有ガスは、反応器の触媒層に入
る前に完全混合されているのがよく、混合器を用
いないで配管内乱流混合を行つてもよい。
Next, an example of a flow sheet suitable for carrying out the method of the present invention will be explained according to the drawings. Oxygen-containing gas C is introduced from pipe 3 into mixer 6, where it is mixed with propylene, isobutylene or a mixture thereof A and ammonia B introduced from pipes 1 and 2, respectively, and then blown into fluidized bed reactor 7. . On the other hand, the remaining oxygen-containing gas is blown into the fluidized bed reactor 7 from the acid pipe 4 to fluidize the catalyst. The interior of the fluidized bed reactor is maintained under predetermined reaction conditions to carry out the ammoxidation reaction.
The reaction product is taken out from pipe 5. The order in which the raw materials A, B, and C are mixed is not limited to that shown in the drawings, and may be mixed at one location or in stages, for example. The mixer 6 may be any of various static mixers, as well as baffles such as a bench turret or an orifice, and is not particularly limited. Preferably, propylene, isobutylene or a mixture thereof, ammonia and the oxygen-containing gas are thoroughly mixed before entering the catalyst bed of the reactor, and turbulent mixing in the piping is performed without using a mixer. Good too.

以上のように本発明方法によれば、流動層反応
器に吹き込む酸素含有ガスの所定割合をあらかじ
めオレフイン及びアンモニアと混合するものであ
つて、この方法によれば、従来のアンモ酸化方法
よりもα・β−不飽和ニトリルの生成量が増加す
る、すなわち選択率が高まる。また、アンモ酸化
触媒は還元雰囲気に対する耐久性が弱いと考えら
れ、従来法ではそのために漸時活性が低下すると
いう問題があつたが、本発明方法によれば、触媒
層内における還元雰囲気の発生が抑制されてお
り、そのためその寿命を著しく延長することがで
きる。しかも本発明方法によれば、混合ガスによ
る爆発の危険が回避され、運転の安全性の点でも
極めて優れるものである。
As described above, according to the method of the present invention, a predetermined proportion of the oxygen-containing gas blown into the fluidized bed reactor is mixed with olefin and ammonia in advance. - The amount of β-unsaturated nitrile produced increases, that is, the selectivity increases. In addition, the ammoxidation catalyst is thought to have low durability against reducing atmospheres, and the conventional method had a problem in that its activity gradually decreased due to this, but according to the method of the present invention, a reducing atmosphere is generated within the catalyst layer. is suppressed, thereby significantly extending its service life. Moreover, according to the method of the present invention, the danger of explosion due to mixed gas is avoided, and the method is extremely superior in terms of operational safety.

次に本発明を実施例に基づきさらに詳細に説明
する。
Next, the present invention will be explained in more detail based on examples.

実施例 1 図示したフローシートに従いアクリロニトリル
を製造した。まず、流動層反応器7(内径55mm)
にアンモ酸化触媒(例えばモリブデン酸触媒)を
充てんし、空気:アンモニア:プロピレンをモル
比で11:1.15:1.0で供給して反応させるに際
し、その供給する空気の10容量%を配管3より混
合器6に導入し、配管1,2よりそれぞれ導入し
たプロピレン及びアンモニアと予備混合した。こ
の混合ガスを反応器の、分散板の上方に設けたス
ーパージヤーから反応器中に吹き込んだ。一方、
残りの空気は、配管4から反応器中の分散板に吹
き込んだ。このようにして440℃でアンモ酸化反
応を行わせたところ、1回通過のアクリロニトリ
ル転化率(生成したアクリロニトリルのモル数/
供給したプロピレンのモル数×100)は75.3%で
あつた。なお、この場合のプロピレンに対する分
子状酸素の予備混合率は23.1モル%であつた。
Example 1 Acrylonitrile was produced according to the illustrated flow sheet. First, fluidized bed reactor 7 (inner diameter 55 mm)
is filled with an ammoxidation catalyst (e.g. molybdate catalyst), and when reacting by supplying air:ammonia:propylene at a molar ratio of 11:1.15:1.0, 10% by volume of the supplied air is added to the mixer from pipe 3. 6 and premixed with propylene and ammonia introduced through pipes 1 and 2, respectively. This mixed gas was blown into the reactor from a superjar provided above the distribution plate of the reactor. on the other hand,
The remaining air was blown into the distribution plate in the reactor through pipe 4. When the ammoxidation reaction was carried out at 440°C in this way, the conversion rate of acrylonitrile in one pass (number of moles of acrylonitrile produced/
The number of moles of propylene supplied x 100) was 75.3%. In this case, the premix ratio of molecular oxygen to propylene was 23.1 mol%.

実施例 2 プロピレン及びアンモニアと予備混合して、ス
ーパージヤーから反応器に供給する空気の量を40
容量%とした以外は実施例1と全く同様にしてア
クリロニトリルを製造したところ、1回通過の転
化率は75.5%であり、その後100時間運転して
も、その転化率はほとんど変化しなかつた。な
お、この場合のプロピレンに対する分子状酸素の
予備混合比率は92.4モル%であつた。
Example 2 The amount of air fed to the reactor from the super jar by premixing with propylene and ammonia is 40
Acrylonitrile was produced in exactly the same manner as in Example 1, except that the conversion rate was 75.5% in one pass, and the conversion rate remained almost unchanged even after 100 hours of operation. In this case, the premix ratio of molecular oxygen to propylene was 92.4 mol%.

実施例 3 供給する空気:アンモニア:プロピレンのモル
比を9.0:1.15:1.0とした以外は実施例1と同様
にしてアクリロニトリルを製造したところ、1回
通過の転化率は74%であり、その後100時間連続
運転して転化率を測定しても変化は認められず、
良好な触媒活性が維持されていることがわかつ
た。この場合のプロピレンに対する分子状酸素の
予備混合比率は18.9モル%であつた。
Example 3 Acrylonitrile was produced in the same manner as in Example 1 except that the molar ratio of supplied air: ammonia: propylene was 9.0:1.15:1.0. No change was observed even when the conversion rate was measured after continuous operation for hours.
It was found that good catalytic activity was maintained. In this case, the premix ratio of molecular oxygen to propylene was 18.9 mol%.

比較例 (従来のアンモ酸化法) 実施例3と同様の流動層反応器を用い、配管3
より混合器6に空気を導入しないで、供給空気の
全量を配管4より、反応器の分散板に吹き込み、
混合器6ではアンモニアとプロピレンのみを混合
し、これをスーパージヤーから吹き込んだ以外は
実施例3と同様に反応させたところ、1回通過の
アクリロニトリルの転化率は73%であつたが、そ
の後75時間連続運転したところ、転化率は68.8%
に低下した。
Comparative example (conventional ammoxidation method) Using the same fluidized bed reactor as in Example 3, pipe 3
The entire amount of supplied air is blown into the dispersion plate of the reactor through the pipe 4 without introducing air into the mixer 6,
In mixer 6, only ammonia and propylene were mixed, and the reaction was carried out in the same manner as in Example 3 except that this was blown into the super jar.The conversion rate of acrylonitrile in the first pass was 73%, but after that After 75 hours of continuous operation, the conversion rate was 68.8%.
It declined to .

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明を実施するのに好適なフローシー
トの1例を示す。 符号の説明、1〜5……配管、6……混合器、
7……流動層反応器、A……プロピレン、イソブ
チレン又はその混合物、B……アンモニア、C…
…酸素含有ガス。
The drawing shows one example of a flow sheet suitable for carrying out the invention. Explanation of symbols, 1 to 5... Piping, 6... Mixer,
7...Fluidized bed reactor, A...Propylene, isobutylene or a mixture thereof, B...Ammonia, C...
...Oxygen-containing gas.

Claims (1)

【特許請求の範囲】[Claims] 1 流動層反応器を用いて、プロピレン及びイソ
ブチレンから選ばれた少なくとも1種のオレフイ
ンと、アンモニアと、酸素とを反応させてアクリ
ロニトリル又はメタクリロニトリルを製造するに
当り、前記酸素のうち、オレフインに対し10〜
110モル%に相当する量を、あらかじめ、オレフ
イン及びアンモニアの少なくとも一方と混合し、
このオレフイン、アンモニア及び酸素の混合ガス
を、酸素含有ガスで流動化させた触媒反応層内に
供給することを特徴とするアンモ酸化方法。
1. When producing acrylonitrile or methacrylonitrile by reacting at least one olefin selected from propylene and isobutylene, ammonia, and oxygen using a fluidized bed reactor, among the oxygen, olefin Against 10~
An amount equivalent to 110 mol% is mixed in advance with at least one of olefin and ammonia,
An ammoxidation method characterized by supplying this mixed gas of olefin, ammonia, and oxygen into a catalytic reaction bed fluidized with an oxygen-containing gas.
JP8345280A 1980-06-21 1980-06-21 Ammoxydation Granted JPS579751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8345280A JPS579751A (en) 1980-06-21 1980-06-21 Ammoxydation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8345280A JPS579751A (en) 1980-06-21 1980-06-21 Ammoxydation

Publications (2)

Publication Number Publication Date
JPS579751A JPS579751A (en) 1982-01-19
JPS6113700B2 true JPS6113700B2 (en) 1986-04-15

Family

ID=13802828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8345280A Granted JPS579751A (en) 1980-06-21 1980-06-21 Ammoxydation

Country Status (1)

Country Link
JP (1) JPS579751A (en)

Also Published As

Publication number Publication date
JPS579751A (en) 1982-01-19

Similar Documents

Publication Publication Date Title
US5225575A (en) Oxidation process and apparatus
US5973186A (en) Process for producing acrylonitrile or methacrylonitrile from propane or isobutane by ammoxidation
KR100231872B1 (en) Method for production of phenol and its derivatives
US3833638A (en) Ammoxidation of saturated hydrocarbons
TW201134552A (en) Gas phase reaction method
US3417128A (en) Method of preparing acrylonitrile or methacrylonitrile by catalytic ammoxidation of propylene or isobutylene
US2076953A (en) Manufacture of hydrocyanic acid
KR20010021832A (en) Improved Vapor Phase Oxidation of Propylene to Acrolein
EP3707115B1 (en) Controlling carbon dioxide output from an odh process
KR0169027B1 (en) Process for producing unsaturated nitrile
CN1724513A (en) Catalytic (amm) oxidation process for conversion of lower alkanes to carboxylic acids and nitriles
US3253014A (en) Process for preparing acrylonitrile by catalytic synthesis from olefins, ammonia and oxygen
US2701260A (en) Production of unsaturated nitriles by selective oxidation
JP2007308423A (en) Method for producing unsaturated acid or unsaturated nitrile
JPS6113700B2 (en)
JPS6231609B2 (en)
US3670009A (en) Ammoxidation of saturated hydrocarbons
US4388248A (en) Ammoxidation processes
MXPA01005955A (en) Process and apparatus for fluid bed reactions.
US4087462A (en) Production of formaldehyde in a fluidized bed with a fixed temperature gradient
US3670006A (en) Ammoxidation of saturated hydrocarbons
US3445501A (en) Catalytic ammoxidation of olefins to nitriles
US4082786A (en) Process of production of aromatic nitriles
JP5106720B2 (en) Ammoxidation catalyst and method for producing nitrile compound using the same
JP2003164763A (en) Method for manufacturing composite oxide catalyst for oxidizing propylene