JPS61135036A - Charged beam optical lens-barrel - Google Patents

Charged beam optical lens-barrel

Info

Publication number
JPS61135036A
JPS61135036A JP25793084A JP25793084A JPS61135036A JP S61135036 A JPS61135036 A JP S61135036A JP 25793084 A JP25793084 A JP 25793084A JP 25793084 A JP25793084 A JP 25793084A JP S61135036 A JPS61135036 A JP S61135036A
Authority
JP
Japan
Prior art keywords
deflection
parallel plate
deflector
plate electrodes
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25793084A
Other languages
Japanese (ja)
Inventor
Mamoru Nakasuji
護 中筋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25793084A priority Critical patent/JPS61135036A/en
Publication of JPS61135036A publication Critical patent/JPS61135036A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3007Electron or ion-optical systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Beam Exposure (AREA)

Abstract

PURPOSE:To simplify the structure of a charged beam optical lens-barrel by using a deflection device which consists of a pair of parallel plate electrodes, located in such a manner as to make the deflection center coincide with the main surface of a final-stage lens, and two pairs of parallel plate electrodes located in front of and in the back of said two parallel plate electrodes. CONSTITUTION:A charge beam optical lens-barrel for an electron beam exposure device of a similar device is constituted by installing a first electrostatic deflector, consisting of parallel plate electrodes 41 and used to deflect the beam in X-direction, along the main surface (P) of a final-stage lens 34 and installing a second electrostatic deflector, consisting of parallel plate electrodes 42 and 43 and used to deflect the beam in Y-direction, over and under the first deflector. Because of the above structure, linear lines of electric force are produced among the electrodes 41-43 and not only the center of X-direction deflection but also that of Y-direction deflection coincide with the main surface (P) of the objective 34, thereby simplifying the electrostatic deflectors with low aberration. Besides, it is possible to reduce the number of driving power supplies for the deflectors.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、電子ビーム露光装置やイオンビーム露光装置
等の荷電ビーム装置に用いられる荷電ビーム光学lt筒
の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a charged beam optical LT tube used in a charged beam device such as an electron beam exposure device or an ion beam exposure device.

(発明の技術的背景とその問題点〕 近年、半導体ウェハやマスク基板等の試料上に所望パタ
ーンを形成するものとして電子ビーム露光装置が開発さ
れているが、この装置では電子銃。
(Technical background of the invention and its problems) In recent years, electron beam exposure equipment has been developed to form desired patterns on samples such as semiconductor wafers and mask substrates, but this equipment uses an electron gun.

各種レンズ系及び各種偏向系等からなる電子ビーム光学
li筒が用いられている。この種の電子ビーム光学MI
!jでは、電子ビーム露光装置が試料台連続移動方式の
場合、ビーム走査用偏向器として一般に静電偏向器が用
いられる。さらに、試料台ステップアンドリピート方式
の場合、i!磁偏向器が良く用いられている。そして、
描画を高速で行う必要性から、ビーム走査用偏向器は電
11偏向器から静電偏向器に移りつつあるのが現状であ
る。しかし、従来用いられているブリレンズダブル偏向
方式の静電偏向では、ある程度走査視野が増えると、収
差が大きくて実用的でない。このため、8〜20極の多
電極静電偏向器が用いられるようになっている。
An electron beam optical cylinder consisting of various lens systems, various deflection systems, etc. is used. This kind of electron beam optical MI
! When the electron beam exposure apparatus is of a continuous sample stage movement type, an electrostatic deflector is generally used as a beam scanning deflector. Furthermore, in the case of the sample stand step-and-repeat method, i! Magnetic deflectors are often used. and,
Due to the need for high-speed writing, the beam scanning deflector is currently shifting from an electrostatic deflector to an electrostatic deflector. However, the electrostatic deflection of the conventionally used Brilens double deflection method is impractical due to large aberrations when the scanning field of view increases to a certain extent. For this reason, multi-electrode electrostatic deflectors with 8 to 20 poles have come to be used.

しかしながら、多電極静電偏向器を用いた電子ビーム光
学鏡筒にあっては、次の(1)〜(5)のような問題が
あった。
However, the electron beam optical column using a multi-electrode electrostatic deflector has the following problems (1) to (5).

(1)構造が複雑であり、その製作が極めて困難である
(1) The structure is complicated and manufacturing thereof is extremely difficult.

(2加工精度があまりでないので、これを補うため全体
の寸法を大きくし相対的に精度を良くしなければならず
、このため大きい電圧の駆動電圧が必要となる。
(2) Since the machining accuracy is not very high, in order to compensate for this, the overall dimensions must be increased to relatively improve the accuracy, and for this reason, a large driving voltage is required.

(3多数の電極が密集して絶縁保持されているため、空
間に対する金属面の表面積が大きく、真空にした時の発
ガスが大きい。しかも、狭い空間から排気しなければな
らず、ビームが通る部分での真空度が良くならない。
(3) Because a large number of electrodes are closely packed and insulated, the surface area of the metal surface is large relative to the space, and when a vacuum is created, a large amount of gas is generated.Moreover, the exhaust must be evacuated from a narrow space, and the beam passes through it. The degree of vacuum in some areas does not improve.

(勾 8つの電極に全て異なる電圧を与える必要がある
ため、駆動電源が多数個必要になる。
(Since it is necessary to apply different voltages to all eight electrodes, multiple drive power supplies are required.

(5平行平板の偏向器に比べて偏向感度が小さく、電極
を長くする必要があり、鏡筒の全長が長くなり、空r1
電荷効果によるビームのボケが大きくなる。
(Compared to a 5-parallel plate deflector, the deflection sensitivity is lower, the electrodes need to be longer, the total length of the lens barrel becomes longer, and the empty r1
The beam blur due to the charge effect increases.

なお、上述した問題は電子ビーム光学鏡筒に限らず、イ
オンビーム光学鏡筒についても同様に言えることである
Note that the above-mentioned problem is not limited to electron beam optical barrels, but also applies to ion beam optical barrels.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、低収差でありながら静電偏向器の構成
を簡略化することができ、且つ静電偏向器の駆動電源の
数を減らすことのできる荷電ビーム光学鏡筒を提供する
ことにある。
An object of the present invention is to provide a charged beam optical lens barrel that can simplify the configuration of an electrostatic deflector while having low aberrations, and can reduce the number of driving power sources for the electrostatic deflector. be.

(発明の概要) 本発明の骨子は、複数の平行平板電極の配置により、静
電偏向器を構成することにある。
(Summary of the Invention) The gist of the present invention is to configure an electrostatic deflector by arranging a plurality of parallel plate electrodes.

8極或いは20極の多電極静電偏向器を用いる利点は、
X方向もY方向も同時に偏向中心と集束レンズの主面と
を一致させられることにある。通常の平行平板電極を4
枚同一2位置に設けると、電気力線は直線とならず曲線
となり、たちまち大きい収差がでてしまう。これを避け
るため、1軸に対して1対の平行平板電極をレンズ主面
と偏向中心を略一致させた位置に設ける。また、他軸に
対してはこの前後に2対の平行平板電極を設置し、2つ
の電極の合成の偏向中心をレンズ中心に一致させるよう
にする。
The advantages of using an 8-pole or 20-pole multi-electrode electrostatic deflector are:
The purpose is to make the center of deflection coincide with the main surface of the focusing lens in both the X and Y directions. 4 ordinary parallel plate electrodes
If they are placed at the same two positions, the lines of electric force will not be straight lines but curved lines, which will immediately cause large aberrations. In order to avoid this, a pair of parallel plate electrodes are provided with respect to one axis at positions where the main surface of the lens and the center of deflection substantially coincide. In addition, two pairs of parallel plate electrodes are installed before and after the other axis so that the combined deflection center of the two electrodes coincides with the center of the lens.

即ち本発明は、荷電ビーム放出源から放出された荷電ビ
ームを集束偏向Ill 10 t、、て試料上に照射す
る荷電ビーム光学鏡筒において、最終段レンズの主面に
偏向中心が一致するように設けられた1対の平行平板1
itiからなり、前記ビームを一方向に偏向する第1の
静電偏向器と、上記最終段レンズの前段及び後段にそれ
ぞれ設けられた2対の平行平板電極からなり、前記ビー
ムを上記偏向器による偏向方向と直交する方向に偏向す
る第2の静電偏向器とで偏向装置を構成するようにした
ものである。
That is, the present invention provides a charged beam optical column that irradiates a charged beam emitted from a charged beam emission source onto a sample with a focused deflection Ill 10 t, such that the center of deflection coincides with the main surface of the final stage lens. A pair of parallel flat plates 1 provided
a first electrostatic deflector that deflects the beam in one direction; and two pairs of parallel plate electrodes provided before and after the final stage lens, respectively. A deflection device is configured with a second electrostatic deflector that deflects in a direction perpendicular to the deflection direction.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、次の■〜■のような効果が得られる。 According to the present invention, the following effects (1) to (4) can be obtained.

■ 静電偏向器の駆動74源が+x、−x、+y。■ The drive 74 sources for the electrostatic deflector are +x, -x, +y.

−yと4個で済み、しかも+側と一側が同一電圧で良く
、駆動電源が半分以下になる。
-y and 4 pieces are sufficient, and the voltage on the + side and the one side can be the same, reducing the driving power supply by half or less.

■ 静電偏向器の電極数が6枚と少なくなり、平行平板
だから構造が簡単である。
■ The number of electrodes in the electrostatic deflector is reduced to 6, and the structure is simple because it is a parallel flat plate.

■ 両軸とも偏向中心とレンズ主面とが一致しているた
め、低収差になる。
■ Since the center of deflection and the principal surface of the lens coincide on both axes, aberrations are low.

■ 平行平板電極のため、電極間全体が一様な電界分布
となっている。これは、8極の多電極静電偏向器等では
電極内径の半分程度しか一様な電界分布にならないのに
比較して対照的である。このため、平行平板の間隔を小
さくでき、偏向感度を大きくとれる。従って、駆動電圧
を小さくできるか、或いは鏡筒長を短くすることが可能
となる。
■ Because it is a parallel plate electrode, the electric field distribution is uniform throughout the electrode space. This is in contrast to an 8-pole multi-electrode electrostatic deflector, etc., which has a uniform electric field distribution of only about half the inner diameter of the electrodes. Therefore, the distance between the parallel plates can be reduced, and the deflection sensitivity can be increased. Therefore, it is possible to reduce the driving voltage or shorten the lens barrel length.

■ 平行平板で構造が簡単なため、表面積も少なく排気
もし易い構造になり、ビームが通る空間の真空度を高く
でき、ビームが安定する。
■ Since the structure is simple with parallel flat plates, the surface area is small and the structure is easy to pump out, increasing the degree of vacuum in the space through which the beam passes and stabilizing the beam.

(発明の実施例) 第3図は本発明の一実施例に係わる電子ビーム光学鏡筒
を用いた電子ビーム露光装置を示す概略構成図である。
(Embodiment of the Invention) FIG. 3 is a schematic configuration diagram showing an electron beam exposure apparatus using an electron beam optical lens barrel according to an embodiment of the invention.

図中11は試料室であり、この試料室11内には半導体
ウェハ等の試料12をe、wした試料ステージ13が収
容されている。試料ステージ13は、インターフェース
1つを介して計算機20からの指令を受けたステージ駆
動系14により駆動され、X方向(紙面左右方向)及び
Y方向(紙面表裏方向)に移動される。そして、ステー
ジ13の移動位置は、レーザ測長系15により測長され
、計算[20に送出されるものとなっている。
In the figure, reference numeral 11 denotes a sample chamber, and within this sample chamber 11 is housed a sample stage 13 on which samples 12 such as semiconductor wafers are held. The sample stage 13 is driven by a stage drive system 14 that receives a command from the computer 20 through one interface, and is moved in the X direction (left-right direction in the paper) and Y direction (front and back direction in the paper). Then, the moving position of the stage 13 is measured by the laser length measuring system 15 and sent to calculation [20].

一方、試料室11の上方には、本実施例に係わる電子ビ
ーム光学鏡筒上止が配設されている。電子ビーム光学鏡
筒30は、電子fc31.各種レンズ32,33,34
.各種偏向器36.37及びアパーチャマスク38.3
9等から構成されている。偏向器36は、ビームを0N
−OFFするためのブランキング用偏向器であり、ブラ
ンキング回路16により偏向電圧を与えられる。隔向器
37は、ビームを試料12上でX方向及びY方向に走査
するためのビーム走査用偏向器(静電偏向器)であり、
後述する如く最終段レンズ(対物レンズ)34の位置に
設けられている。そして、偏向器37は走査回路17に
より偏向電圧を与えられるものとなっている。
On the other hand, above the sample chamber 11, an electron beam optical lens barrel upper stop according to this embodiment is disposed. The electron beam optical column 30 includes an electron fc31. Various lenses 32, 33, 34
.. Various deflectors 36.37 and aperture masks 38.3
It is composed of 9 mag. The deflector 36 directs the beam to 0N
- It is a blanking deflector for turning off, and is given a deflection voltage by the blanking circuit 16. The deflector 37 is a beam scanning deflector (electrostatic deflector) for scanning the beam on the sample 12 in the X direction and the Y direction,
As will be described later, it is provided at the position of the final stage lens (objective lens) 34. The deflector 37 is supplied with a deflection voltage by the scanning circuit 17.

ここで、上記ビーム走査用偏向器37は、第1図に示す
如く3つの平行平板電極41.42.43から構成され
ている。平行平板電極41はビームをX方向に偏向する
第1の静電偏向器をなすもので、対物レンズ34の主面
Pの位置に設けられている。そして、この電極41の偏
向中心はレンズ34の主面Pに一致するものとなってい
る。また、平行平板電極42.43は、をビームをY方
向に偏向する第2の静電偏向器を構成するもので、電極
42は上記電極41の上方に設けられ、電極43は電極
41の下方に設けられている。ビームをY方向に偏向す
る場合、第2図に示す如く平行平板電極42によりビー
ムを紙面右方向に偏向し、平行平板電極43により該ビ
ームをさらに紙面右方向に偏向する。そして、電極43
を出たビームの偏向中心は前記レンズ34の主面Pに一
致するものとなっている。
Here, the beam scanning deflector 37 is composed of three parallel plate electrodes 41, 42, and 43 as shown in FIG. The parallel plate electrode 41 serves as a first electrostatic deflector that deflects the beam in the X direction, and is provided at the main surface P of the objective lens 34 . The center of deflection of this electrode 41 coincides with the main surface P of the lens 34. Further, the parallel plate electrodes 42 and 43 constitute a second electrostatic deflector that deflects the beam in the Y direction.The electrode 42 is provided above the electrode 41, and the electrode 43 is provided below the electrode 41. It is set in. When deflecting the beam in the Y direction, as shown in FIG. 2, the beam is deflected to the right in the drawing by the parallel plate electrode 42, and further deflected to the right in the drawing by the parallel plate electrode 43. And the electrode 43
The deflection center of the beam exiting the lens 34 coincides with the main surface P of the lens 34.

なお、平行平板i!極42.43は同一偏向感度を有す
るもので平行平板電極41に対し同一距離に配置され、
且つ偏向時は共に同一電圧が印加されるものとなってい
る。また、第1因中51は偏向器やアパーチャマスク等
を収容する筒体、52は平行平板電極41 (42,4
3も同様)を筒体51に固定するための絶縁性の取付は
具を示している。
In addition, parallel plate i! The poles 42 and 43 have the same deflection sensitivity and are arranged at the same distance from the parallel plate electrode 41,
Moreover, the same voltage is applied to both during deflection. In addition, 51 in the first factor is a cylinder housing a deflector, an aperture mask, etc., and 52 is a parallel plate electrode 41 (42, 4
The insulating attachment for fixing the cylindrical body 51 to the cylindrical body 51 is shown as a tool.

このような構成であれば、第1及び第2の静電偏向器を
構成するための平行平板電極41,42゜43がそれぞ
れ異なった位置に配置されているので、各電極間におい
ては電気力線は直線となる。
With this configuration, the parallel plate electrodes 41, 42° 43 for forming the first and second electrostatic deflectors are arranged at different positions, so that no electric force is generated between each electrode. The line becomes a straight line.

しかも、X方向は勿論のこと、Y方向に関しても偏向中
心が対物レンズ24の主面Pと一致することになる。こ
のため、前述した■〜■のような効果が得られ、描画速
度の高速化及び描画精度の向上をはかり得る。
Furthermore, the center of deflection coincides with the main surface P of the objective lens 24 not only in the X direction but also in the Y direction. Therefore, effects such as those described in (1) to (4) described above can be obtained, and it is possible to increase the drawing speed and improve the drawing accuracy.

なお、本発明は上述した実施例に限定されるものではな
い。例えば、前記第2の静Ig向器を構成する2対の平
行平板電極は、必ずしも同一感度である必要はなく、ざ
らに第1の静電偏向器をなす平行平板電極から等距離に
ある必要もない。要は、前段の平行平板電極で偏向され
たビームが後段の平行平板1i極で振り増しされ、その
偏向中心が最終段レンズの主面と一致するように偏向感
度及び偏向電圧等を制御すればよい。また、ビーム走査
用の静電偏向器より前段の光学系の構成は第3図に何等
限定されるものではなく、仕様に応じて適宜変更可能で
ある。さらに、電子ビームの代りにイオンビームを用い
るイオンビーム光学l[簡に適用することも可能である
。その他、本発明の要旨を逸脱しないt!囲で、種々変
形して実施することができる。
Note that the present invention is not limited to the embodiments described above. For example, the two pairs of parallel plate electrodes that make up the second electrostatic deflector do not necessarily have to have the same sensitivity, and they need to be roughly equidistant from the parallel plate electrode that makes up the first electrostatic deflector. Nor. In short, the beam deflected by the parallel plate electrode in the front stage is redirected by the parallel plate 1i pole in the rear stage, and the deflection sensitivity and deflection voltage are controlled so that the center of deflection coincides with the main surface of the final stage lens. good. Further, the configuration of the optical system upstream of the electrostatic deflector for beam scanning is not limited to that shown in FIG. 3, and can be changed as appropriate according to specifications. Furthermore, ion beam optics using an ion beam instead of an electron beam can also be easily applied. In addition, t! which does not depart from the gist of the present invention! This can be implemented with various modifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係わる電子ビーム光学鏡筒
の要部構成を示す断面図、第2図は2対の平行平板電極
による偏向作用を説明するための模式図、第3図は上記
電子ビーム光学鏡筒を用いた電子ビーム露光装置を示す
概略構成図である。 11・・・試料室、12・・・試料、13・・・試料ス
テージ、14・・・ステージ駆動系、15・・・レーザ
測長系、16・・・ブランキング回路、17・・・走査
回路、18・・・電源、19・・・インターフェース、
20・・・制御計算機、ニー・・電子光学鏡筒、31・
・・電子銃、32゜33.34・・・レンズ、36.3
7・・・偏向器、38゜39・・・アパーチャマスク、
41,42.43・・・平行平板電極。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 量
FIG. 1 is a sectional view showing the main structure of an electron beam optical column according to an embodiment of the present invention, FIG. 2 is a schematic diagram for explaining the deflection effect of two pairs of parallel plate electrodes, and FIG. 3 1 is a schematic configuration diagram showing an electron beam exposure apparatus using the above electron beam optical column. DESCRIPTION OF SYMBOLS 11... Sample chamber, 12... Sample, 13... Sample stage, 14... Stage drive system, 15... Laser length measurement system, 16... Blanking circuit, 17... Scanning circuit, 18... power supply, 19... interface,
20...control computer, knee...electron optical lens barrel, 31...
...electron gun, 32°33.34...lens, 36.3
7... Deflector, 38° 39... Aperture mask,
41, 42, 43...parallel plate electrodes. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)荷電ビーム放出源から放出された荷電ビームを集
束偏向制御して試料上に照射する荷電ビーム光学鏡筒に
おいて、最終段レンズの主面に偏向中心が一致するよう
に設けられた1対の平行平板電極からなり、前記ビーム
を一方向に偏向する第1の静電偏向器と、上記最終段レ
ンズの前段及び後段にそれぞれ設けられた2対の平行平
板電極からなり、前記ビームを上記偏向器による偏向方
向と直交する方向に偏向する第2の静電偏向器とを具備
してなることを特徴とする荷電ビーム光学鏡筒。
(1) In a charged beam optical column that focuses and deflects a charged beam emitted from a charged beam emission source and irradiates it onto a sample, a pair of lenses are provided so that the center of deflection coincides with the main surface of the final stage lens. a first electrostatic deflector that deflects the beam in one direction; and two pairs of parallel plate electrodes provided before and after the final stage lens, respectively, to deflect the beam in one direction. A charged beam optical lens barrel comprising a second electrostatic deflector that deflects in a direction perpendicular to the direction of deflection by the deflector.
(2)前記第2の静電偏向器は、前段及び後段側の平行
平板電極によるビームの各偏向方向を周方向とし、該偏
向器の偏向中心を前前記最終段レンズの主面に一致させ
るものであることを特徴とする特許請求の範囲第1項記
載の荷電ビーム光学鏡筒。
(2) The second electrostatic deflector is configured such that each deflection direction of the beam by the front-stage and rear-stage parallel plate electrodes is a circumferential direction, and the deflection center of the second electrostatic deflector is aligned with the main surface of the front-last stage lens. A charged beam optical lens barrel according to claim 1, characterized in that the charged beam optical lens barrel is:
JP25793084A 1984-12-06 1984-12-06 Charged beam optical lens-barrel Pending JPS61135036A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25793084A JPS61135036A (en) 1984-12-06 1984-12-06 Charged beam optical lens-barrel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25793084A JPS61135036A (en) 1984-12-06 1984-12-06 Charged beam optical lens-barrel

Publications (1)

Publication Number Publication Date
JPS61135036A true JPS61135036A (en) 1986-06-23

Family

ID=17313169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25793084A Pending JPS61135036A (en) 1984-12-06 1984-12-06 Charged beam optical lens-barrel

Country Status (1)

Country Link
JP (1) JPS61135036A (en)

Similar Documents

Publication Publication Date Title
JP3268583B2 (en) Particle beam device
JP4215282B2 (en) SEM equipped with electrostatic objective lens and electrical scanning device
NL1025272C2 (en) Device operating with an electron beam and correction of aberration occurring thereby.
EP0051733A1 (en) Electron beam projection system
US3930181A (en) Lens and deflection unit arrangement for electron beam columns
JPS6290839A (en) Ion microbeam device
JPS5871545A (en) Variable forming beam electron optical system
US5998795A (en) Electron beam pattern-writing column
CA1214577A (en) Focused ion beam column
US5793048A (en) Curvilinear variable axis lens correction with shifted dipoles
KR20010007211A (en) Apparatus and method for image-forming charged particle beams and charged particle beam exposure apparatus
US5708274A (en) Curvilinear variable axis lens correction with crossed coils
JPH0447944B2 (en)
JP4234242B2 (en) Electron beam drawing device
US6522056B1 (en) Method and apparatus for simultaneously depositing and observing materials on a target
US6005250A (en) Illumination deflection system for E-beam projection
JP2003504803A5 (en)
JP2003028999A (en) Charged particle beam controller, charged particle beam optical device using the same, charge particle beam defect inspection device and control method for charged particle beam
JPH01220352A (en) Scanning electron microscope and its analogous device
JPS61135036A (en) Charged beam optical lens-barrel
JP2009065193A (en) Electron beam plotting method and device therefor
US20030006377A1 (en) Tandem acceleration electrostatic lens
JP7308581B2 (en) Charged particle beam device, composite charged particle beam device, and method of controlling charged particle beam device
US5736742A (en) Objective lens and charged particle beam system
JP3772067B2 (en) Charged particle beam irradiation equipment