JPS61134638A - High temperature sensor - Google Patents

High temperature sensor

Info

Publication number
JPS61134638A
JPS61134638A JP25836284A JP25836284A JPS61134638A JP S61134638 A JPS61134638 A JP S61134638A JP 25836284 A JP25836284 A JP 25836284A JP 25836284 A JP25836284 A JP 25836284A JP S61134638 A JPS61134638 A JP S61134638A
Authority
JP
Japan
Prior art keywords
glass
temperature sensor
electrode
temperature
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25836284A
Other languages
Japanese (ja)
Inventor
Akio Kato
明夫 加藤
Shinro Oda
織田 真郎
Taiji Hayashi
林 泰治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP25836284A priority Critical patent/JPS61134638A/en
Publication of JPS61134638A publication Critical patent/JPS61134638A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

PURPOSE:To prevent the break of a temperature sensor element and to prevent bad influences due to softening of a glass by packing a crystallizable glass powder between the temperature sensor element and a metallic pipe and fusing and crystallizing the glass powder. CONSTITUTION:Platinum electrodes 3 are connected to both end parts of a thermistor element 1, and one electrode 3 is joined to the inside of the closed end of a metallic pipe 2. The other electrode 3 is joined to an electrode wire 4. Electric insulating materials 5 consisting of a crystallizable glass are packed in this pipe 2 and are crystallized by heat treatment. By this constitution, internal constituting parts of the element 1, electrodes 3, and the electrode wire 4 are fixed rigidly by insulating materials to improve the quakeproof property. Since the crystallizable glass is not flowed viscously unless its temperature exceeds the melting point of the deposited crystal, bad influences due to viscous flow for temperature are not generated.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車排気ガスのごとく高温度かつ振動下で
使われる高温センサに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high temperature sensor used under high temperature and vibration conditions such as automobile exhaust gas.

〔従来の技術〕[Conventional technology]

従来の例えばサーミスタ式排気温センサとしては、一端
が閉塞された金属パイプの内部にサーミスタ素子を収容
し、該素子と金にパイプとの間にマグネシア等の電気絶
縁粉末を充填し、かつサーミスタ素子の耐振性を図るた
めに金泥パイプの外径を絞り加工してサーミスタ棄子周
りの上記絶縁粉末の充填密度を上げた構成となっている
Conventional thermistor-type exhaust temperature sensors, for example, have a thermistor element housed inside a metal pipe with one end closed, electrically insulating powder such as magnesia filled between the element and the metal pipe, and the thermistor element In order to improve vibration resistance, the outside diameter of the gold mud pipe is reduced to increase the packing density of the insulating powder around the thermistor spool.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来構造のものでは金属パイプの外径を絞り加工す
るため、サーミスタ素子が破損したり、あるいは該素子
に接続した電極線が変形したりするなどの問題があった
In the conventional structure described above, since the outer diameter of the metal pipe is drawn, there are problems such as damage to the thermistor element or deformation of the electrode wire connected to the element.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、サーミスタ素子等の温度センサ素子と金属パ
イプとの間に、結晶化するガラス粉末を充填し、溶融、
結晶化してなる構成である。
In the present invention, glass powder that crystallizes is filled between a temperature sensor element such as a thermistor element and a metal pipe, and the glass powder is melted and
It has a crystallized structure.

C作用〕 本発明においては、結晶化するガラス粉末を溶融する段
階でガラス粉末どうしが溶着し、結晶化することになる
。従って、温度センサ素子と金属パイプとの間の結晶化
ガラスはその全体がガラス粒子間の結合により強固な構
造となり、振動下における温度センサ素子の金属パイプ
内での移動を防止できる。
C Effect] In the present invention, at the stage of melting the glass powder to be crystallized, the glass powders are welded together and crystallized. Therefore, the entire crystallized glass between the temperature sensor element and the metal pipe has a strong structure due to the bonds between the glass particles, and can prevent the temperature sensor element from moving within the metal pipe under vibration.

また、結晶化ガラスは、その熱処理温度以上、つまり析
出した結晶の融点以上にならなければ粘性流動を示さな
いため、通常の非結晶ガラスを用いた場合のように温度
に対する粘性流動を示すことによる悪影響、即ち絶縁抵
抗の低下、密度の低下といったことがない。
In addition, since crystallized glass does not exhibit viscous flow unless the temperature exceeds its heat treatment temperature, that is, the melting point of the precipitated crystals, it does not exhibit viscous flow with respect to temperature like when ordinary amorphous glass is used. There are no negative effects, such as a decrease in insulation resistance or a decrease in density.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、従来のように金属パイプ
の外径を減径しなくても、パイプ内部に温度センサ素子
を移動なきよう保持でき、従って従来のどと(温度セン
サ素子が破損するといった問題をなくすことができる。
As described above, according to the present invention, the temperature sensor element can be held inside the pipe without being moved without reducing the outer diameter of the metal pipe as in the past. This can eliminate problems such as

また、実用時においては結晶化ガラスが軟化することが
ないため、ガラスの軟化による悪影響は生じないという
効果がある。
In addition, since the crystallized glass does not soften during practical use, there is an effect that no adverse effects are caused by the softening of the glass.

〔実施例〕〔Example〕

第1図において、lはサーミスタ素子、2は耐熱合金パ
イプであり、一端が閉塞されている。サーミスタ素子1
の両端部には白金電極3が接続してあり、電極3の一方
は金属パイプ2の閉塞端の内部に接合しである。電極3
の他方は、電極線4に接合しである。5は結晶化ガラス
、よりなる電気絶縁材である。これは結晶化するガラス
粉末、もしくは該粉末とアルミナ、シリカ、マグネシア
などの電気絶縁粉末との混合物を、金属パイプ2内へ充
填した後、適当な熱処理を行ない、前記結晶化するガラ
スを充分熔融し、結晶化したものである。該絶縁材5に
使用の結晶化するガラスは、自動車用排気温センサの使
用環境を考え、耐熱性1000℃以上、即ち析出結晶の
溶融温度が1000℃以上のものを選定した。この結晶
化するガラスは例えばMgO−BaO−B2O3SiO
2系のガラスであり、適当な温度上昇で850℃まで加
熱し、850℃で10分以上保持することにより、充分
結晶化することができる。
In FIG. 1, 1 is a thermistor element, and 2 is a heat-resistant alloy pipe, one end of which is closed. Thermistor element 1
Platinum electrodes 3 are connected to both ends of the metal pipe 2, and one of the electrodes 3 is bonded to the inside of the closed end of the metal pipe 2. Electrode 3
The other end is connected to the electrode wire 4. 5 is an electrical insulating material made of crystallized glass. This involves filling a metal pipe 2 with a glass powder that crystallizes, or a mixture of the powder and an electrically insulating powder such as alumina, silica, or magnesia, and then performing appropriate heat treatment to sufficiently melt the glass that crystallizes. and is crystallized. The crystallizing glass used for the insulating material 5 was selected to have a heat resistance of 1000° C. or higher, that is, a melting temperature of precipitated crystals of 1000° C. or higher, considering the usage environment of the automobile exhaust gas temperature sensor. This crystallized glass is, for example, MgO-BaO-B2O3SiO
It is a 2-type glass, and can be sufficiently crystallized by heating it to 850°C with an appropriate temperature increase and holding it at 850°C for 10 minutes or more.

本実施例によれば、絶縁材5によって、サーミ    
 1スタ素子1、電極3、および電極線4よりなる内部
構成部品をリジッドに固定し、耐振性を向上させること
ができる。ここで具体的な効果例を示せば、第1図の構
造の排気温センサと、絶縁材5の代りにMgO粉末をタ
ッピングで充填した比較用センサ(全体構造は第1図と
同じ)とを用い、両センサに200HzX30G程度の
振動を加えたところ、比較用センサは5〜7時間程度で
、電極折れ、接合部剥離などの不具合を生じた。しかし
、上記第1図の本実施例のセンサは20時間経過後も不
具合は発生しなかった。また耐振性に関して、本実施例
と同様の効果を得るために、結晶化ガラスの代りに通常
の非結晶ガラスを使用することも可能であるが、通常の
ガラスは高温(800℃〜1000℃)において絶縁抵
抗を確保しにくい。
According to this embodiment, the insulating material 5
Internal components consisting of the one-star element 1, electrode 3, and electrode wire 4 are rigidly fixed, and vibration resistance can be improved. Here, to give a concrete example of the effect, we will compare the exhaust temperature sensor with the structure shown in Fig. 1 and the comparison sensor (the overall structure is the same as Fig. 1), which is filled with MgO powder by tapping instead of the insulating material 5. When vibrations of about 200 Hz x 30 G were applied to both sensors, the comparative sensor developed problems such as electrode breakage and joint peeling after about 5 to 7 hours. However, the sensor of this embodiment shown in FIG. 1 did not have any problems even after 20 hours had elapsed. Regarding vibration resistance, it is also possible to use ordinary amorphous glass instead of crystallized glass in order to obtain the same effect as in this example, but ordinary glass is not suitable for high temperatures (800°C to 1000°C). It is difficult to ensure insulation resistance in

例えば900℃の作業温度を有するホウケイ酸ガラスと
本実施例の結晶化ガラスとを比較すれば、800℃〜1
000℃において1〜2桁程桁線絶縁抵抗晶化ガラスは
大きい。
For example, if we compare borosilicate glass, which has a working temperature of 900°C, and the crystallized glass of this example,
At 000°C, the insulation resistance of crystallized glass is one to two orders of magnitude higher.

第2図は他の実施例を示すシース形熱電対式温度センサ
で、内部構成部品としてサーミスタなどの代りに、熱電
対素線6を金属パイプ2内へ入れた後、結晶化ガラスよ
り成る絶縁材5で固定する。
FIG. 2 shows a sheath type thermocouple temperature sensor showing another embodiment, in which instead of a thermistor or the like as an internal component, a thermocouple element wire 6 is inserted into a metal pipe 2, and an insulator made of crystallized glass is inserted into the metal pipe 2. Fix with material 5.

第3図は更に他の実施例で、温度ヒユーズである。FIG. 3 shows yet another embodiment, which is a temperature fuse.

ヒユーズ線7にリード線8を溶接し、ヒユーズ線7の周
りに空間9ができるように碍管10、碍管11、碍子円
板12が配しである。なお、空間9にはヒユーズ7の溶
融温度以下で流動性をもつフラックス、もしくはガラス
を充填してもよい。
A lead wire 8 is welded to the fuse wire 7, and an insulator tube 10, an insulator tube 11, and an insulator disk 12 are arranged so that a space 9 is created around the fuse wire 7. Note that the space 9 may be filled with flux or glass that has fluidity below the melting temperature of the fuse 7.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す断面図、第2図および
第3図はそれぞれ本発明の他の実施例を示す断面図であ
る。 ■・・・サーミスタ素子、2・・・金属パイプ、5・・
・電気絶縁材。
FIG. 1 is a sectional view showing one embodiment of the invention, and FIGS. 2 and 3 are sectional views showing other embodiments of the invention. ■...Thermistor element, 2...Metal pipe, 5...
・Electrical insulation material.

Claims (1)

【特許請求の範囲】[Claims] 一端が閉塞された金属パイプ内部に温度センサ素子を収
容し、かつ該センサ素子と前記金属パイプとの間に、結
晶化するガラス粉末、もしくは該結晶化するガラス粉末
とアルミナ、シリカ、マグネシアなどの絶縁粉末との混
合物を充填し、これを溶融、結晶化して成る高温センサ
A temperature sensor element is housed inside a metal pipe with one end closed, and between the sensor element and the metal pipe, a crystallizing glass powder or a mixture of the crystallizing glass powder and alumina, silica, magnesia, etc. A high-temperature sensor made by filling a mixture with insulating powder, melting it, and crystallizing it.
JP25836284A 1984-12-05 1984-12-05 High temperature sensor Pending JPS61134638A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25836284A JPS61134638A (en) 1984-12-05 1984-12-05 High temperature sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25836284A JPS61134638A (en) 1984-12-05 1984-12-05 High temperature sensor

Publications (1)

Publication Number Publication Date
JPS61134638A true JPS61134638A (en) 1986-06-21

Family

ID=17319178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25836284A Pending JPS61134638A (en) 1984-12-05 1984-12-05 High temperature sensor

Country Status (1)

Country Link
JP (1) JPS61134638A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232332A (en) * 2010-04-08 2011-11-17 Denso Corp Temperature sensor and manufacturing method of the same
KR101220213B1 (en) * 2011-05-19 2013-01-25 대광센서 주식회사 Temperature Senser, and Method of manufacturing and mounting thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011232332A (en) * 2010-04-08 2011-11-17 Denso Corp Temperature sensor and manufacturing method of the same
KR101220213B1 (en) * 2011-05-19 2013-01-25 대광센서 주식회사 Temperature Senser, and Method of manufacturing and mounting thereof

Similar Documents

Publication Publication Date Title
JP5205180B2 (en) Temperature sensor for temperature sensor
US5917150A (en) Mineral-insulated cable terminations
JPS61134638A (en) High temperature sensor
JPH0332005B2 (en)
JPH0255922B2 (en)
JP2577315B2 (en) Tube with cap
JPS6133422Y2 (en)
JPS60124802A (en) Glass-sealed type thermistor
JPH0616465Y2 (en) Ceramic heater
JPS59210333A (en) Temperature detector
JPS583265Y2 (en) Sea heater
JPS5914231A (en) High temperature fuse
SU1052886A1 (en) Method of manufacturing hot junction of thermocouple
JPS6345726A (en) Manufacture of high temperature fuse
JPS639974Y2 (en)
JPS59226431A (en) High temperature fuse
JPH0343926A (en) Thermal fuse
JPS61140831A (en) High temperature fuse
JPS60124803A (en) Glass-sealed type thermistor
JPS6350763Y2 (en)
JPS59146123A (en) Method of producing high temperature fuse
JPS5916237A (en) High temperature fuse
JPH04196611A (en) Air-tight terminal and piezoelectric vibrator
JPS6156931B2 (en)
JPS6235245B2 (en)