JPS61134501A - Integral once-through type steam generator - Google Patents

Integral once-through type steam generator

Info

Publication number
JPS61134501A
JPS61134501A JP25794384A JP25794384A JPS61134501A JP S61134501 A JPS61134501 A JP S61134501A JP 25794384 A JP25794384 A JP 25794384A JP 25794384 A JP25794384 A JP 25794384A JP S61134501 A JPS61134501 A JP S61134501A
Authority
JP
Japan
Prior art keywords
water supply
cylinder
steam generator
valve body
once
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25794384A
Other languages
Japanese (ja)
Inventor
司 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP25794384A priority Critical patent/JPS61134501A/en
Publication of JPS61134501A publication Critical patent/JPS61134501A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、高速増殖炉発電プラントにおける二次系熱媒
体とタービン駆動系の熱媒体である水との熱交換を行な
わせる一体貫流側熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an integrated once-through heat exchange system that performs heat exchange between a secondary heat medium and water, which is a heat medium of a turbine drive system, in a fast breeder reactor power plant. Concerning vessels.

〔発明の技術的背景〕[Technical background of the invention]

第2図は高速増殖炉発電プラントの概略構成を示すもの
で、原子炉容器1より送出された一次系熱媒体すなわち
ホットレグ(液体ナトリウム)は、−次冷却系主循環ボ
ンブ2により中間熱交換器3へ送られ、二次系熱媒体く
液体ナトリウム)との熱交換により冷却され、コールド
レグ配管を通って原子炉容器1へ戻される。また、二次
系熱媒体は、−次冷却系主循環ボンプ4により中間熱交
換器3と蒸気発生器5との間を循環する。なお、蒸気発
生器5には蒸発器と加熱器が別体となった再循環型や、
蒸発器と加熱器の機能を一体にした一体貫流型等、種々
の形式のものがあるが、本発明は経済的に渓れた一体貫
流型蒸気発生器を対象とする。
Figure 2 shows the schematic configuration of a fast breeder reactor power plant. The primary heat medium, that is, the hot leg (liquid sodium) sent from the reactor vessel 1 is transferred to the intermediate heat exchanger via the secondary cooling system main circulation bomb 2. 3, is cooled by heat exchange with a secondary heat medium (liquid sodium), and is returned to the reactor vessel 1 through the cold leg piping. Further, the secondary heat medium is circulated between the intermediate heat exchanger 3 and the steam generator 5 by the secondary cooling system main circulation pump 4 . The steam generator 5 may be a recirculation type in which the evaporator and heater are separate, or
Although there are various types of steam generators, such as an integrated once-through steam generator that combines the functions of an evaporator and a heater, the present invention is directed to an economically viable integrated once-through steam generator.

一方、タービン駆動系の熱媒体サイクルは次の通りであ
る。すなわち蒸気発生器5より送出された過熱蒸気は、
主蒸気止め弁6を経て発電機駆動用の蒸気タービン7へ
供給され、このタービン7を駆動する。そして蒸気ター
ビン7駆動後の蒸気は復水器8で凝縮液化され、復水ポ
ンプ9により低圧給水加熱器10を経て脱気器11へ送
られ、ここで脱気される。その後、給水ポンプ12で流
量調節され、高圧給水加熱器13および給水調節弁14
を経て蒸気発生器5に給水され、ここで二次系熱媒体と
熱交換を行ない過熱蒸気となる。
On the other hand, the heat medium cycle of the turbine drive system is as follows. In other words, the superheated steam sent out from the steam generator 5 is
It is supplied through the main steam stop valve 6 to a steam turbine 7 for driving a generator, and drives this turbine 7. After driving the steam turbine 7, the steam is condensed and liquefied in a condenser 8, and sent by a condensate pump 9 to a deaerator 11 via a low-pressure feed water heater 10, where it is degassed. After that, the flow rate is adjusted by the feed water pump 12, and the high pressure feed water heater 13 and the feed water control valve 14
The water is then supplied to the steam generator 5, where it exchanges heat with the secondary heat medium and becomes superheated steam.

なお、前記主蒸気止め弁613よび蒸気タービン7をバ
イパスするバイパス路中にはタービンバイ刷 パス弁15が設けられている。
Note that a turbine bypass pass valve 15 is provided in a bypass path that bypasses the main steam stop valve 613 and the steam turbine 7.

第3図は蒸気発生器反別辺部を示すもので、蒸気発生器
5は、”本体容器16の内部に多数の伝熱管17を内蔵
し、本体容器16の給水側には給水入口水室18が、ま
た蒸気出口側には蒸気出口水至19がそれぞれ設けられ
ている。給水入口水室18および蒸気出口水蜜19は4
〜6個ずつ、本体容器16の周方向に等間隔に設けられ
ている。
FIG. 3 shows the other side of the steam generator. 18, and a steam outlet water chamber 19 are provided on the steam outlet side.The water supply inlet water chamber 18 and the steam outlet water chamber 19 are provided with
~6 pieces are provided at equal intervals in the circumferential direction of the main container 16.

そして伝熱管17はそれらの給水入口水室1Bおよび蒸
気出口水至19に等分して各水室18に接続されている
The heat transfer tubes 17 are equally divided into a water supply inlet water chamber 1B and a steam outlet water chamber 19, and are connected to each water chamber 18.

給水入口水室18は、第4図(a)、  (t))に示
すように、本体容器16との間を多孔板状の管板20に
よって区画され、各給水入口水室18毎に割当てられた
伝熱管17は、その管板20の各孔に溶接により接続さ
れている。なお、符号21は各給水入口水室18毎に設
けられた給水ノズルであり、給水入口水室18の開口端
にはめくら蓋22がボルト23によって取付けられてい
る。したがって、給水ノズル21より給水入口水W18
内に流入した水は管板20の孔より伝熱管17内に供給
され、給水入口水室18内の二次系熱媒体に加熱されて
過熱蒸気となり、蒸気出口水至19を経て蒸気タービン
7へ供給される。
As shown in FIGS. 4(a) and 4(t), the water supply inlet water chamber 18 is partitioned from the main body container 16 by a perforated tube plate 20, and is allocated to each water supply inlet water chamber 18. The heat exchanger tubes 17 are connected to each hole of the tube sheet 20 by welding. Note that reference numeral 21 denotes a water supply nozzle provided for each water supply inlet water chamber 18 , and a blind lid 22 is attached to the open end of the water supply inlet water chamber 18 with bolts 23 . Therefore, the water supply inlet water W18 from the water supply nozzle 21
The water flowing into the tube plate 20 is supplied into the heat transfer tube 17 through the holes in the tube plate 20, and is heated by the secondary heat medium in the feed water inlet water chamber 18 to become superheated steam, which then passes through the steam outlet water chamber 19 to the steam turbine 7 supplied to

以上のような構成の高速増殖炉発電プラントにおいて、
原子炉停止時には炉心より多量の崩壊熱が発生するので
、この崩壊熱を除去する必要がある。
In a fast breeder reactor power plant with the above configuration,
When a nuclear reactor is shut down, a large amount of decay heat is generated from the reactor core, so this decay heat must be removed.

崩壊熱除去の運転は、主蒸気止め弁6を閉じ、バイパス
弁15を開いた状態で行なわれる。
The decay heat removal operation is performed with the main steam stop valve 6 closed and the bypass valve 15 open.

そこで、炉心より発生した崩壊熱のエネルギは、ポンプ
2により中間熱交換器3へ伝えられ、さらにポンプ4に
より蒸気発生器5へ伝えられる。一方、蒸気発生器5よ
り送出された過熱蒸気は、バイパス弁15を経て復水器
8へ流入し、ここで凝縮液化され、復水ポンプ9により
低圧給水加熱器10および脱気器11を通り、給水ポン
プ12で流量調節された後、高圧給水過熱器13および
給水調節弁14を経て蒸気発生器5に給水される。
Therefore, the energy of decay heat generated from the core is transmitted to the intermediate heat exchanger 3 by the pump 2, and further transmitted to the steam generator 5 by the pump 4. On the other hand, the superheated steam sent out from the steam generator 5 flows into the condenser 8 via the bypass valve 15, where it is condensed and liquefied, and passed through the low pressure feed water heater 10 and the deaerator 11 by the condensate pump 9. After the flow rate is adjusted by the water supply pump 12, the water is supplied to the steam generator 5 via the high-pressure water supply superheater 13 and the water supply control valve 14.

〔背景技術の問題点〕[Problems with background technology]

崩壊熱除去運転時の必要熱除去量は、原子炉停止直後で
は原子炉運転時の10%程度であるが、約1日経過する
と1%程度まで低下する。このため、蒸気発生器5の給
水側の流量も、時々刻々変化する必要熱除去量に合せて
変化するように制御することが望まれる。
The required amount of heat removal during decay heat removal operation is approximately 10% of the amount required for nuclear reactor operation immediately after the reactor is shut down, but decreases to approximately 1% after approximately one day has passed. For this reason, it is desirable to control the flow rate on the water supply side of the steam generator 5 so that it changes in accordance with the required amount of heat removal, which changes from moment to moment.

しかしながら一体貫流型蒸気発生器5では、崩壊熱除去
運転時に極端に給水流量を減少させると流動状態が不安
定になる。このため、一定母以上の給水流量を確保する
必要がある。
However, in the integrated once-through steam generator 5, if the feed water flow rate is extremely reduced during the decay heat removal operation, the flow state becomes unstable. For this reason, it is necessary to ensure a water supply flow rate above a certain level.

ところが、あまり冬日の給水を継続していると、除熱効
果が過ぎて炉心の温度が必要以上に下がり、運転開始時
の出力の立上がりが悪くなる問題がある。
However, if the water supply is continued for too long in the winter, the heat removal effect will be too much and the temperature of the core will drop more than necessary, causing a problem in which the rise in output at the start of operation will be slow.

したがって、流動状態を安定に維持し、しかも炉心の温
度が低下しすぎないように給水流量を制御しなければな
らず、このような給水流量の制御は極めて困難なもので
あった。
Therefore, the flow rate of the feed water must be controlled to maintain a stable fluid state and prevent the temperature of the reactor core from dropping too much, and such control of the flow rate of the feed water has been extremely difficult.

(発明の目的) 本発明はこのような問題を解決するためになされたもの
で、高速層殖炉発電プラントの一体貫流型蒸気発生器に
おいて、崩壊熱除去運転中、伝熱管には十分な給水流量
を確保して流動状態を安定に保ち、しかも除熱量は適宜
調節できるようにすることを目的とする。
(Purpose of the Invention) The present invention has been made to solve such problems, and is intended to provide sufficient water supply to the heat exchanger tubes during decay heat removal operation in an integrated once-through steam generator of a fast stratified reactor power plant. The purpose is to ensure a flow rate to keep the flow state stable, and to be able to adjust the amount of heat removed as appropriate.

〔発明の概要〕[Summary of the invention]

以上の目的達成のため、本発明に係る一体貫流型蒸気発
生器は、給水入口水室内にシリンダを収容し、このシリ
ンダを給水ノズルと各給水入口水室毎に割当てられた複
数の伝熱管に連通させるとともに、このシリンダ内に弁
体を設け、この弁体を駆動源を用いてシリンダ内で移動
させることにより、そのピストンの移動量に応じて前記
給水ノズルに連通可能な伝熱管の本数を漸次変化させる
ように構成される。
In order to achieve the above object, the integrated once-through steam generator according to the present invention houses a cylinder in the water supply inlet water chamber, and connects the cylinder to the water supply nozzle and a plurality of heat transfer tubes assigned to each water supply inlet water chamber. At the same time, by providing a valve body in this cylinder and moving this valve body within the cylinder using a driving source, the number of heat transfer tubes that can communicate with the water supply nozzle can be adjusted according to the amount of movement of the piston. It is configured to change gradually.

したがって、給水流山を必要熱除去」に応じて変化させ
、同時に弁体を移動させて水を流通させる伝熱管の本数
を選択することにより、その選択された伝熱管では常に
一定流量を確保して流動状態を安定に維持することが可
能になる・         1〔発明の実施例〕 第1@(a)、(b)は本発明の一実施例における一体
貫流型蒸気発生器105の給水入口水室118を示すも
ので、この給水入口水室118は蒸気発生器105の本
体容器116との間を多孔板状の管板120によって区
画され、各給水入口水室118毎に割当てられた伝熱管
117は、その管板120の合孔に溶接により接続され
ている。
Therefore, by changing the flow rate of the water supply according to the required heat removal and at the same time moving the valve body to select the number of heat transfer tubes through which water flows, a constant flow rate is always ensured in the selected heat transfer tubes. It becomes possible to maintain the fluid state stably. 1 [Embodiment of the invention] 1st @ (a) and (b) are the feed water inlet water chamber of the integrated once-through steam generator 105 in an embodiment of the invention 118, this water supply inlet water chamber 118 is partitioned from the main body container 116 of the steam generator 105 by a perforated tube plate 120, and heat transfer tubes 117 are assigned to each water supply inlet water chamber 118. are connected to the matching holes in the tube sheet 120 by welding.

なお、符号121は各給水入口水v118毎に設けられ
た給水ノズルであり、給水入口水室118の開口端には
めくら蓋122がボルト123によって取付けられてい
る。
In addition, the code|symbol 121 is a water supply nozzle provided for each water supply inlet water v118, and the blind cover 122 is attached to the open end of the water supply inlet water chamber 118 by the bolt 123.

前記給水入口水室118の内部にはシリンダ124が収
容されている。このシリンダ124は前記めくら蓋12
2の内面に取付けてあり、したがってめくらM122と
一体に給水入口水室118の外部に取出すことが可能に
なっている。
A cylinder 124 is housed inside the water supply inlet water chamber 118 . This cylinder 124 is connected to the blind lid 12.
2, so that it can be taken out of the water supply inlet water chamber 118 together with the blind M122.

前記給水ノズル121は、シリンダ124周壁の一端側
に接続されている。ざらに給水入口水室118の内部に
は、前記管板120の合孔をシリンダ124内に連通さ
せる複数の接続管125が収容されている。ここで、管
板120の合孔には各給水入口水室118毎に割当てら
れた複数の伝熱管117が接続されているので、それら
の伝熱管117は、すべてシリンダ124および接続管
125を介して給水ノズル121に連通していることに
なる。上記接続管125とシリンダ124との接続位置
は、シリンダ124の端壁と、周壁の周方向および軸方
向とに万遍なくかつ整然と配列されている。
The water supply nozzle 121 is connected to one end of the peripheral wall of the cylinder 124. Roughly, inside the water supply inlet water chamber 118, a plurality of connecting pipes 125 are accommodated which connect the matching holes of the tube plate 120 to the inside of the cylinder 124. Here, since a plurality of heat exchanger tubes 117 assigned to each water supply inlet water chamber 118 are connected to the matching holes of the tube plate 120, all of these heat exchanger tubes 117 are connected via the cylinder 124 and the connecting tube 125. This means that it communicates with the water supply nozzle 121. The connecting positions of the connecting pipe 125 and the cylinder 124 are uniformly and orderly arranged on the end wall of the cylinder 124 and in the circumferential direction and axial direction of the peripheral wall.

また前記シリンダ124の内部には弁体としてのピスト
ン126がシリンダ124の軸方向に直線往復移動可能
に収容されている。そしてこのピストン126を最外方
(めくら蓋122側)へ位置させたときは、接続管12
5とシリンダ124との接続位置が全て給水ノズル12
1側にあり、最内方へ位置させたときは、ごく少数の接
続管125とシリンダ124との接続位置のみが給水ノ
ズル121側にある。そしてピストン126の移動量に
応じて給水ノズル121に連通する伝熱管117の本数
が漸次変化するように構成されている。
Further, a piston 126 as a valve body is housed inside the cylinder 124 so as to be capable of linear reciprocating movement in the axial direction of the cylinder 124. When the piston 126 is positioned at the outermost position (toward the blind lid 122 side), the connecting pipe 126
5 and the cylinder 124 are all connected to the water supply nozzle 12
1 side, and when positioned inwardly, only a small number of connection positions between the connecting pipe 125 and the cylinder 124 are on the water supply nozzle 121 side. The number of heat transfer tubes 117 communicating with the water supply nozzle 121 is configured to gradually change depending on the amount of movement of the piston 126.

給水入口水室118の外部にはピストン126を駆動す
る駆動源としての油圧シリンダ127が設けられ、この
油圧シリンダ127は制御部128により制御される。
A hydraulic cylinder 127 as a drive source for driving the piston 126 is provided outside the water supply inlet water chamber 118, and this hydraulic cylinder 127 is controlled by a control unit 128.

制御部128は、崩壊熱除去運転中、必要除熱量に応じ
てピストン126を駆動し、必要除熱量の変化に伴う蒸
気発生器105への給水流量変化にも拘らず給水ノズル
121と連通する伝熱管117内の流量が常に一定にな
るように油圧シリンダ127を制御する。
During the decay heat removal operation, the control unit 128 drives the piston 126 according to the required amount of heat removal, and maintains a transmission that communicates with the water supply nozzle 121 despite changes in the flow rate of water supplied to the steam generator 105 due to changes in the required amount of heat removed. The hydraulic cylinder 127 is controlled so that the flow rate inside the heat pipe 117 is always constant.

そこで、以上の一体貫流型蒸気発生器105を使用した
高速増殖炉発電プラントによれば、原子炉停止に伴う崩
壊熱除去運転中、伝熱管117には充分な給水流量を維
持しつつ、全体としての除熱量は崩壊熱レベルの変化に
応じて調節することが可能となる。すなわち給水流量の
減少に伴いピストン126を徐々にシリンダ124の内
方へ移動していくことにより、給水ノズル121に連通
する伝熱管117の本数を減少させ、このとき通水して
いる伝熱管には一定量以上の給水8i量が確保される。
Therefore, according to the fast breeder reactor power plant using the above-described integrated once-through steam generator 105, during the decay heat removal operation associated with reactor shutdown, a sufficient water supply flow rate is maintained in the heat transfer tubes 117, and the overall The amount of heat removed can be adjusted according to changes in the decay heat level. That is, by gradually moving the piston 126 inward of the cylinder 124 as the water supply flow rate decreases, the number of heat exchanger tubes 117 communicating with the water supply nozzle 121 is reduced, and at this time, the number of heat exchanger tubes 117 communicating with the water supply nozzle 121 is reduced. In this case, the amount of water supply 8i above a certain amount is ensured.

したがって、崩壊熱除去運転時において、炉心を冷却し
すぎないように給水流量を減少させながら、伝熱管11
7には十分な給水流量を確保して流動状態を安定に保つ
ことができる。
Therefore, during the decay heat removal operation, the heat exchanger tubes 11 are
7, it is possible to ensure a sufficient water supply flow rate and maintain a stable flow state.

また、シリンダ124は、給水入口水室118の開口端
を閉塞するめくら蓋122の内面に取付けられ、そのめ
くら蓋122と一体に給水入口水v118の外部に取出
し可能としているので、シリンダ124の保守点検が容
易に行なえる。
Further, the cylinder 124 is attached to the inner surface of a blind lid 122 that closes the open end of the water supply inlet water chamber 118, and can be taken out to the outside of the water supply inlet water v118 together with the blind lid 122, so that maintenance of the cylinder 124 is possible. Easy to inspect.

なお、本発明は以上の実施例に限定されるものではない
Note that the present invention is not limited to the above embodiments.

たとえば弁体を、シリンダ内で一定角度回動可能なもの
とし、弁体の回動位置により給水ノズルに連通可能な伝
熱管の本数を変化させ得るものとしてもよい。
For example, the valve body may be rotatable within the cylinder by a certain angle, and the number of heat transfer tubes that can communicate with the water supply nozzle may be changed depending on the rotational position of the valve body.

また弁体をシリンダの軸方向に直線往復移動可能でかつ
一定角度回動可能とし、そのシリンダの軸方向位置と回
動位置により給水ノズルに連通可    1能な伝熱管
の本数を変化させ得るものとしてもよく、このようにす
れば給水ノズルに連通可能な伝熱管の本数調節を一層微
少に行なえる。
In addition, the valve body can be moved back and forth linearly in the axial direction of the cylinder and can be rotated at a certain angle, and the number of heat transfer tubes that can be connected to the water supply nozzle can be changed depending on the axial position and rotational position of the cylinder. In this way, the number of heat exchanger tubes that can be communicated with the water supply nozzle can be adjusted even more minutely.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明によれば、高速増殖炉発電プラン
トの一体貫流型蒸気発生器において、崩壊熱除去運転中
、伝熱管には十分な給水流量を確保して流動状態を安定
に保ち、しかも除熱mは適宜調節して炉心を冷却しすぎ
ないようにし、原子炉起動時の出力の立上がりを早くす
ることができる。
As described above, according to the present invention, in an integrated once-through steam generator of a fast breeder reactor power plant, during decay heat removal operation, sufficient water supply flow rate is ensured in the heat transfer tubes to maintain a stable flow state, Moreover, the heat removal m can be appropriately adjusted to prevent the reactor core from being cooled too much, and the rise in output at reactor startup can be made faster.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)は本発明の一実施例を示す一体貫流型蒸気
発生器の断面図、同図(b)は同図(a)の1−I線に
沿う半断面図、第2図は高速増殖炉発電プラントの系統
図、第3図は同プラントにおける蒸気発生器周辺部の系
統図、第4図(a>は従来例を示す一体貫流型蒸気発生
器の断面図、同図(1))は同図(a)のIV−IV線
に沿う半断面図である。 1・・・原子炉容器、7・・・蒸気タービン、8・・・
復水器、105・・・一体貫流型蒸気発生器、116・
・・本体容器、117・・・伝熱管、118・・・給水
入口水!、121・・・管板、122・・・めくら蓋、
124・・・シリンダ、126・・・ピストン(駆動源
)、127・・・油圧シリンダ、128・・・制仰部。 A 手続補正層 昭和61年 3月 6日 1、事件の表示 特願昭59−257943号 2、発明の名称 一体貫流型蒸気発生器 3、補正をする者 事件との関係 特許出願人 (307)  株式会社 東芝 (ばか1名) 4、代理人 東京都港区虎ノ門1丁目26番5号第17森ビル〒10
5電話03(502>3181 (大代表)7゜補正の
内容 (1〉明1B書第3頁第8行目の「第2図」を「第3図
コと訂正する。 (2)明細書第4頁第16行目の「第3図」を「第4図
」と訂正する。 (3)明lll1書第5頁第6行目の「第4図」を「第
5図と訂正する。 (4〉明細書第12頁第13行目の1一定角度」を抹消
する。 (5)明!lIl書第12頁第17行目の「一層微少に
行なえる。」を以下に示すように訂正する。 記 「一本単位にて行なうことができる。その実施例を第2
図に示す。図に示すようにピストン126は回動しなが
ならシリンダー24内を往復動する。 これによってより精度の高い流星制御が可能となる。」 (6)明m書第13頁第9行目の「〜半断面図、」の後
に「第2図(a>は別の実施例を示す一体貫流型蒸気発
生器の断面図、同図(b>は同図(a>のI−I線に沿
う半断面図、同図(C)はピストンおよびシリンダを示
す斜視図、」を加入する。 (7〉明細書第13頁第9行目の「第2図Jを「第3図
」と訂正する。 (8)明細書第13頁第10行目の「第3図」を「第4
図Jと訂正する。 (9〉明細書第13頁第11行目の「第4図」を[第5
図Jと訂正する。 (10)図面における図番表示「M2図」、「第3図」
および「第4図」を「第3図」、「第4図」および「第
5図」と添附図面に未配する通り訂正する。 (11)図面第2図を別紙の通り追加する。 第合図 牛 第合図 第! (a) ■ (b)
FIG. 1(a) is a cross-sectional view of an integrated once-through steam generator showing an embodiment of the present invention, FIG. 1(b) is a half-sectional view taken along line 1-I in FIG. 1(a), and FIG. 3 is a system diagram of the fast breeder reactor power plant, FIG. 3 is a system diagram of the area around the steam generator in the same plant, and FIG. 1)) is a half cross-sectional view taken along the line IV-IV in FIG. 1... Nuclear reactor vessel, 7... Steam turbine, 8...
Condenser, 105...Integrated once-through steam generator, 116...
...Main container, 117...Heat transfer tube, 118...Water supply inlet water! , 121... tube plate, 122... blind lid,
124... Cylinder, 126... Piston (drive source), 127... Hydraulic cylinder, 128... Restraint part. A Procedural amendment layer March 6, 1985 1, Indication of the case Patent application No. 1987-257943 2, Name of the invention Integrated once-through steam generator 3, Person making the amendment Relationship with the case Patent applicant (307) Toshiba Corporation (1 idiot) 4. Agent No. 17 Mori Building, 1-26-5 Toranomon, Minato-ku, Tokyo 10
5 Telephone 03 (502>3181 (Main) 7゜Contents of amendment (1>"Figure2" in Mei 1B, page 3, line 8 is corrected to "Figure 3." (2) Specification Correct “Figure 3” on page 4, line 16 to “Figure 4.” (3) Correct “Figure 4” on page 5, line 6 of Book 1 to “Figure 5.” (4) Delete "1 fixed angle" on page 12, line 13 of the specification. (5) Delete "1 fixed angle" on page 12, line 17 of the book, as shown below. Corrected to ``This can be done for each piece.
As shown in the figure. As shown in the figure, the piston 126 reciprocates within the cylinder 24 while rotating. This allows for more precise meteor control. (6) On page 13, line 9 of the Memorandum, after ``~half-sectional view,'' ``Figure 2 (a> is a cross-sectional view of an integrated once-through steam generator showing another embodiment; (b> is a half-sectional view taken along the line I-I of the same figure (a>), and the same figure (C) is a perspective view showing the piston and cylinder.''(7> Specification, page 13, line 9) (8) Correct “Fig. 3” on page 13, line 10 of the specification to “Fig. 4.”
Correct figure J. (9>"Figure4" on page 13, line 11 of the specification [Figure 5]
Correct figure J. (10) Figure number display on drawings “M2 figure”, “Figure 3”
and ``Figure 4'' is corrected as ``Figure 3,'' ``Figure 4,'' and ``Figure 5,'' which are not included in the attached drawings. (11) Add Figure 2 of the drawing as attached. First signal cow first signal first! (a) ■ (b)

Claims (6)

【特許請求の範囲】[Claims] (1)高速増殖炉発電プラントにおける二次系熱媒体を
本体容器内に流通させ、復水器より排出された水を、給
水ノズルより前記本体容器の一端側に設けられた給水入
口水室を通して本体容器内に配置された多数の伝熱管に
流入させ、二次系熱媒体との熱交換により生じた過熱蒸
気を蒸気タービンへ向けて送り出す一体貫流型蒸気発生
器において、前記給水入口水室内に収容され、前記給水
ノズルに連通するとともに複数の伝熱管にも連通するシ
リンダと、このシリンダ内に設けられシリンダ内での移
動量に応じて前記給水ノズルに連通可能な伝熱管の本数
を漸次変化させる弁体と、給水入口水室の外部において
前記弁体を駆動する駆動源とを具備したことを特徴とす
る一体貫流型蒸気発生器。
(1) In a fast breeder reactor power plant, the secondary heat medium is passed through the main vessel, and the water discharged from the condenser is passed through the water supply inlet water chamber provided at one end of the main vessel from the water supply nozzle. In an integrated once-through steam generator in which superheated steam generated by heat exchange with a secondary heat medium flows into a large number of heat transfer tubes arranged in a main body container and is sent toward a steam turbine, a A cylinder that is housed and communicates with the water supply nozzle and also communicates with a plurality of heat exchanger tubes, and a cylinder that is provided within this cylinder and gradually changes the number of heat exchanger tubes that can communicate with the water supply nozzle according to the amount of movement within the cylinder. What is claimed is: 1. An integrated once-through steam generator, comprising: a valve body that causes the valve body to rotate; and a drive source that drives the valve body outside a water supply inlet water chamber.
(2)前記弁体を、シリンダの軸方向に直線往復移動可
能なピストンとしたことを特徴とする特許請求の範囲第
1項記載の一体貫流型蒸気発生器。
(2) The integral once-through steam generator according to claim 1, wherein the valve body is a piston that is capable of linearly reciprocating in the axial direction of the cylinder.
(3)前記駆動源を油圧シリンダとしたことを特徴とす
る特許請求の範囲第1項記載の一体貫流型蒸気発生器。
(3) The integrated once-through steam generator according to claim 1, wherein the drive source is a hydraulic cylinder.
(4)前記弁体を一定角度回動可能とし、その回動位置
により給水ノズルに連通可能な伝熱管の本数を変化させ
るものとしたことを特徴とする特許請求の範囲第1項記
載の一体貫流型蒸気発生器。
(4) The integrated unit according to claim 1, characterized in that the valve body is rotatable by a certain angle, and the number of heat transfer tubes that can communicate with the water supply nozzle is changed depending on the rotational position. Once-through steam generator.
(5)前記弁体をシリンダの軸方向に直線往復移動可能
でかつ一定角度回動可能とし、そのシリンダの軸方向位
置と回動位置により給水ノズルに連通可能な伝熱管の本
数を変化させるものとしたことを特徴とする特許請求の
範囲第1項記載の一体貫流型蒸気発生器。
(5) The valve body is capable of reciprocating linearly in the axial direction of the cylinder and can be rotated by a certain angle, and the number of heat transfer tubes that can be communicated with the water supply nozzle is changed depending on the axial position and rotational position of the cylinder. An integrated once-through steam generator according to claim 1, characterized in that:
(6)前記シリンダは、給水入口水室の開口端を閉塞す
るめくら蓋の内面に取付けられ、そのめくら蓋と一体に
給水入口水室の外部に取出し可能としたことを特徴とす
る特許請求の範囲第1項記載の一体貫流型蒸気発生器。
(6) The cylinder is attached to the inner surface of a blind lid that closes the open end of the water supply inlet water chamber, and can be taken out to the outside of the water supply inlet water chamber together with the blind lid. An integrated once-through steam generator according to scope 1.
JP25794384A 1984-12-06 1984-12-06 Integral once-through type steam generator Pending JPS61134501A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25794384A JPS61134501A (en) 1984-12-06 1984-12-06 Integral once-through type steam generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25794384A JPS61134501A (en) 1984-12-06 1984-12-06 Integral once-through type steam generator

Publications (1)

Publication Number Publication Date
JPS61134501A true JPS61134501A (en) 1986-06-21

Family

ID=17313361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25794384A Pending JPS61134501A (en) 1984-12-06 1984-12-06 Integral once-through type steam generator

Country Status (1)

Country Link
JP (1) JPS61134501A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784046B2 (en) 2009-10-09 2014-07-22 Mitsubishi Heavy Industries, Ltd. Turbine
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
US9353640B2 (en) 2010-12-22 2016-05-31 Mitsubishi Hitachi Power Systems, Ltd. Turbine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8784046B2 (en) 2009-10-09 2014-07-22 Mitsubishi Heavy Industries, Ltd. Turbine
US9353640B2 (en) 2010-12-22 2016-05-31 Mitsubishi Hitachi Power Systems, Ltd. Turbine
WO2015098092A1 (en) * 2013-12-26 2015-07-02 川崎重工業株式会社 Liquefied fuel gas evaporation promoting device and fuel gas supply system for ships
JP2015124807A (en) * 2013-12-26 2015-07-06 川崎重工業株式会社 Liquefied fuel gas evaporation acceleration apparatus and fuel gas supply system for marine vessel

Similar Documents

Publication Publication Date Title
CN105957567B (en) A kind of steam generator secondary side Heat Discharging System of Chinese
GB1407531A (en) Steam power stations
GB906079A (en) Improvements in boiling coolant nuclear reactor systems and methods of operating such systems
US3069342A (en) Heat exchange arrangement for nuclear power plant
CN114743697A (en) Passive residual heat removal system based on sea cooling time-limit-free heat pipe reactor
JPS61134501A (en) Integral once-through type steam generator
RU98105693A (en) METHOD AND DEVICE FOR COOLING A PARTIAL LOW PRESSURE TURBINE
SU581892A3 (en) Nuclear power plant
JPH03221702A (en) Duplex type heat exchanger for waste heat recovery
US4301650A (en) Pressure regulating apparatus for a closed water circuit
GB1382288A (en) Heat exchangers
CN109712726B (en) Ocean nuclear power platform reactor waste heat discharge system
EP3734150B1 (en) Double-loop nuclear reactor steam generating plant having a blowdown and drainage system
US5335252A (en) Steam generator system for gas cooled reactor and the like
CN113847111A (en) LNG cold energy power generation system with around tubular heat exchanger
CN115111577A (en) Thermal power peak regulation system and method for single-tank fused salt heat storage coupling of steam ejector
KR920000084A (en) Steam generation system to balance fluid temperature
CN208816195U (en) A kind of double pressure ORC electricity generation systems
US3802498A (en) Shell and tube heat exchanger with central conduit
US3374149A (en) Nuclear reactor heat transfer system
CN215927491U (en) LNG cold energy power generation system with around tubular heat exchanger
WO2023168067A3 (en) Thermal energy storage system and method with heat recovery steam generator
CN104990061A (en) Externally-arranged steam cooler connection system in steam turbine heat regenerative system
JPH0547965Y2 (en)
JP2023157702A (en) Steam turbine plant and steam turbine plant control method