JPS61133847A - Promation of image clear of scattered line in x ray image - Google Patents

Promation of image clear of scattered line in x ray image

Info

Publication number
JPS61133847A
JPS61133847A JP59257138A JP25713884A JPS61133847A JP S61133847 A JPS61133847 A JP S61133847A JP 59257138 A JP59257138 A JP 59257138A JP 25713884 A JP25713884 A JP 25713884A JP S61133847 A JPS61133847 A JP S61133847A
Authority
JP
Japan
Prior art keywords
image
ray
scattered
low frequency
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59257138A
Other languages
Japanese (ja)
Inventor
Shoichi Yasui
安井 正一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP59257138A priority Critical patent/JPS61133847A/en
Publication of JPS61133847A publication Critical patent/JPS61133847A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5282Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to scatter

Abstract

PURPOSE:To remove scattered lines by electric calculation method, by making a low frequency image corresponding to the scattered line image from an X ray image to subtract it from the X ray image taken. CONSTITUTION:None of X ray grids and air gaps are used between an object 2 to be inspected and an X rays detector 3, an X ray image detected with an X rays detector 3 contain a large amount of scattered lines. The image is converted to an electrically digital image with an X ray image reader 4 to be fed to an image processor 5. Here, a low frequency image mainly composing the scattered line image is made out of the original image containing a large amount of scattered lines. Factors determining the wavelength and the ratio of the low frequency image include the X rays tube voltage, th thickness of the object being inspected, the area of irradiation area and the part of the object being inspected. The making of the low frequency image is done by image processing employing a spatial filtering or the like. An image clear of the scattered lines can be produced by subtracting the low frequency image corresponding to the scattered line image from the original image.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は撮影手段によって撮影されたX線画像(X線
フィルム、蓄積性螢光体ノート、イメーノイ/テンノフ
ァイアなどの検出器に形成された画像)を電気的信号に
変換しディジタル画像を作製する電気的X線画像システ
ムに関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] This invention relates to X-ray images taken by a photographing means (an image formed on a detector such as an ) into electrical signals to produce digital images.

〔発明の技術的背景〕[Technical background of the invention]

一般に臨床診断用X線画像を得るには、X線フィルム上
に直接X線画像を形成する方法と、X線をX線検出器で
とらえ電気的信号(こ変換しX線ディジタル画像として
像を形成する方法がある。
In general, to obtain X-ray images for clinical diagnosis, there are two methods: forming an X-ray image directly on X-ray film, and capturing X-rays with an X-ray detector and converting them into electrical signals (which are converted into digital X-ray images). There is a way to form it.

このX線画像を形成するさい昏こ、X線の散乱線を除去
する目的で、被検体とX線検出器の開にX線グリッド又
はエアギャグ(Groedel法、被検体とX線検出器
の開に10〜30Cjnの空間をあける。)を用い散乱
線を除去している。
When forming this X-ray image, in order to remove scattered X-ray rays, an X-ray grid or an air gag (Groedel method) is used between the subject and the X-ray detector. A space of 10 to 30 Cjn is left between the two.) to remove scattered radiation.

X線管電圧が高くなるにつれ散乱線の割合は多くなし、
画像コノトラストは低下する。また散乱線が多くなると
透過X線量の定量性も低下する。
As the X-ray tube voltage increases, the proportion of scattered radiation does not increase.
Image conotrust decreases. Furthermore, as the amount of scattered radiation increases, the quantitative quality of the amount of transmitted X-rays also decreases.

X線電圧60Kev以上ではX線の散乱線を除去するこ
とは診断をする上で必要となる。
At an X-ray voltage of 60 Kev or more, it is necessary to remove scattered X-rays for diagnosis.

〔背景技術の問題的〕[Problematic background technology]

一般に撮影手技(こよって撮影されたX線画像では、X
線の散乱線除去(こX線グ’1 ノドを用いる方法が施
行されている。X線グリッドを被検体とX線検出器の間
に入れることによし、X線グリッドにX線が吸収され直
接X線の損失が生じる。この直接X線の損失はX線管球
の負荷を増し患者の被曝線量も増重。また静止形X線グ
リッドでは格子縞が出現し高画質を得ることができない
。またX線グリッドに平行な散乱線は除去することがで
きない。このために画像コントラストは低下する。
In general, X-ray images taken using the imaging technique (X
Scattered radiation removal (this method uses an X-ray grid). By placing an X-ray grid between the subject and the X-ray detector, the X-ray grid absorbs the A loss of direct X-rays occurs. This loss of direct X-rays increases the load on the X-ray tube and increases the patient's exposure dose. Also, with a stationary X-ray grid, checkered fringes appear and high image quality cannot be obtained. Also, scattered rays parallel to the X-ray grid cannot be removed, which reduces image contrast.

一般をこはあまり用いられないがエアギャグ(Groe
del法)を被検体とX線検出器の間に入れた場合(こ
は、X線画像の幾何学的拡大もありX線管焦屯(こよる
幾何学的ボケも大きくなる。
Although it is not commonly used, air gags (Groe
del method) is placed between the subject and the X-ray detector (in this case, the X-ray image is also geometrically enlarged, and the X-ray tube focus (the resultant geometric blur) also increases.

このように現行のX線画像番こおけるX線の散乱線除去
は、きわめて多くの問題を含んでいる。
As described above, the removal of scattered X-rays in current X-ray image processing involves numerous problems.

〔発明の目的〕[Purpose of the invention]

この発明は上記事情にもとずいてなされたもので、電気
的X線画像ノステムにおいてX線の散乱線を電気的計算
手法によし、散乱線除去を目的とするものである。
This invention has been made based on the above circumstances, and aims to eliminate scattered rays by using an electrical calculation method to calculate scattered rays of X-rays in an electrical X-ray imaging system.

(発明の概要J この発明は上記目的を達成するため、X線の散乱線画像
が低周波画像から成り立つことに着目し、X線グリッド
やエアギャブを用いず撮影されたX線画像よし、散乱線
画像に相当する低周波画像を製作し、撮影されたX線画
像から差し引くことで、散乱線除去を達成する。
(Summary of the Invention J In order to achieve the above object, this invention focuses on the fact that X-ray scattered ray images consist of low-frequency images. Scattered radiation removal is achieved by creating a low-frequency image corresponding to the image and subtracting it from the captured X-ray image.

〔発明の実施例〕[Embodiments of the invention]

以下この発明を図面に示す。一実施例を参照して説明す
る。
This invention is illustrated in the drawings below. This will be explained with reference to one embodiment.

第1図は電気的X線画像システムのブロック図である。FIG. 1 is a block diagram of an electrical x-ray imaging system.

図中1はX線を曝射するX線管、2は被検体、3はX線
管1から曝射されて被検体2を透下したX線を検出する
X線検出器(X線フィルム、蓄積性螢光体シート、イメ
ージイノテンノファイアなど)、4はX線検出器3で検
出された画像を電気的ディンタル信号に変換するX線画
像読取装置、5はX線画像読取装置4で入力したディノ
タル画像を処理し散乱線画像に相当する低周波画像を作
り低周波画像減算を行なう画像処理装置、6は画像処理
装置5で散乱線番こ相当する低周波画像を減算した散乱
線除去画像を出力するX線画像表示装置(CRTなど)
又はX線画像記録装置(フィルム、紙などに視覚的表示
記録するための装置)である。
In the figure, 1 is an X-ray tube that emits X-rays, 2 is a subject, and 3 is an X-ray detector (X-ray film) that detects the X-rays emitted from the X-ray tube 1 and transmitted through the subject 2. , stimulable phosphor sheet, image innotenfire, etc.); 4 is an X-ray image reading device that converts the image detected by the X-ray detector 3 into an electrical digital signal; 5 is the X-ray image reading device 4; An image processing device that processes the input dinotal image to create a low frequency image corresponding to a scattered radiation image and performs low frequency image subtraction; 6 is an image processing device 5 for removing scattered radiation by subtracting a low frequency image corresponding to the scattered radiation image; X-ray image display device (CRT, etc.) that outputs images
or an X-ray image recording device (a device for visually displaying and recording on film, paper, etc.).

上記のように構成された電気的X線画像システムは次の
ように作用する。被検体2とX線検出器3の間にはX線
グリッド又はエアギャブが用いられていないため、X線
検出器3に検出されるX線画像は散乱線を多量に含む画
像である。これをX線画像読取装置4(こより電気的デ
ィジタル画像に変換し、画像処理装置5へ送られる。こ
こで散乱線を多く含む原画像から、散乱線画像の主体を
なす低周波画像を作製する。この低周波画像の波長と割
合を決定する要素として、X線管電圧、被検体厚、照射
野面積、被検体部位などの要素がある。
The electrical X-ray imaging system configured as described above operates as follows. Since no X-ray grid or air gab is used between the subject 2 and the X-ray detector 3, the X-ray image detected by the X-ray detector 3 is an image containing a large amount of scattered rays. This is converted into an electrical digital image by the X-ray image reading device 4 and sent to the image processing device 5. Here, from the original image containing many scattered rays, a low frequency image, which is the main part of the scattered ray image, is created. There are factors such as the X-ray tube voltage, the thickness of the subject, the area of the irradiation field, and the part of the subject that determine the wavelength and proportion of this low-frequency image.

これらの要素データから散乱線画像に相当するより厳密
な低周波画像を作製することができる。
A more precise low-frequency image corresponding to a scattered radiation image can be created from these elemental data.

この低周波画像を作製する方法として、空間フィルタリ
ングをこよる画像処理と、フーリエ変換を用いスペクト
ル解析を行なって周波数フィルタリング、)〜リエ逆変
換を行なうことによって低周波画像を再構成する画像処
理の2方法が一般的である。
The methods for creating this low-frequency image include image processing that involves spatial filtering, frequency filtering that uses Fourier transform to perform spectral analysis, and image processing that reconstructs the low-frequency image by performing spectral analysis using Fourier transform. Two methods are common.

ここでは近年頻繁(こ行なわれている空間フィルタリ/
グによる画像処理で、低周波画像を作製する方法(こつ
いて説明する。これは2次元的な入力画像のX線量情報
を2次元的に処理して新たな画像を得るための処理であ
るが、この空間フィルタリングの中でも特に多く用いら
れるものが該たたみ込みろ波(Kernel  Con
volution  Filtering )と呼ばれ
る処理である。
Here, we will introduce the spatial filtering that has been carried out frequently in recent years.
A method of creating low-frequency images through image processing using Among these spatial filtering methods, the most commonly used one is convolutional filtering (Kernel Convolution filtering).
This is a process called volume filtering.

第2図はこのたたみ込み沖波を説明するための図であっ
て、入力画像の隣接するtX&個の要素たとえば第2図
(AleこArrr−1+ n−5Arrrl+ rl
、Arrrl+ n+l・・・・・・・・・・・・・・
・Am−1+ n+1.として示した3×3個の各ま丁
目に入れられているものはX線検出器で撮像して得られ
る画像の各画素であるが、この9個の画素のうち中央の
画素Amenは該画像の標本化点のX線量情報を与える
ものであし、このX線全情報が大きい場合は該画像の輝
度が高くなっているものとする。
FIG. 2 is a diagram for explaining this convolutional offshore wave, in which adjacent tX& elements of the input image, for example,
,Arrrl+n+l・・・・・・・・・・・・・・・
・Am-1+ n+1. What is placed in each of the 3 x 3 blocks shown as is each pixel of the image obtained by taking an image with an X-ray detector, but among these nine pixels, the center pixel Amen is the image It gives the X-ray dose information of the sampling point, and if this total X-ray information is large, it is assumed that the brightness of the image is high.

したかって第2図回申のAnr 1. n−l、Am−
1,n、・・・・ ・・・・Arrr+−1,n+1、
は上記中央の画素Am、 n iこ隣接した各画素の輝
度情報である。
Therefore, Anr of Figure 2 Circular 1. n-l, Am-
1, n, ... Arrr+-1, n+1,
is the luminance information of the central pixel Am, n i adjacent pixels.

このような構成を有する入力画像の中の画素Am+ n
とそのまわりの各画素に対して、水平方向をこ4個、垂
直方向にに個配例された要素たとえば第2図■をこ示し
たオペレータBll、BI2.・・B33を作用させた
場合(二対応する第2図(Oiこ示した出力Hm+ n
は Hmn=B I IAnT−L+ n−l+B I 2
Arrr−L rr−1−B I 3Am−1、n+1
+B 21Am+ n −++B 22Am+ n+B
z 3 Am+ r+1+B 3 + Am+l 、 
n−1+B32 Am+l+ n十B 33Arrr+
−1+ n+lとして与えられる。
Pixel Am+n in the input image having such a configuration
For each pixel around it, four elements are arranged horizontally and four elements are arranged vertically, for example, operators Bll, BI2, .・When B33 is applied (2 corresponding figure 2 (Oi) output Hm + n
is Hmn=BI IAnT-L+ n-l+BI 2
Arrr-L rr-1-B I 3Am-1, n+1
+B 21Am+ n -++B 22Am+ n+B
z 3 Am+ r+1+B 3 + Am+l,
n-1+B32 Am+l+ n10B 33Arrr+
It is given as -1+n+l.

このように中央の画素をこ対応する位置にある1つの出
力すなわち変換画素信号Hrr++nを求める操作を、
第2図(2)の点線で囲んで記号の記入していない他の
部分を含む入力画像全体に対して順次行なっていくには
、第2図■に示したオペ[/−夕を、上下左右に]ます
ずつ順次移動させて、そのたびにHr+t−+ 、 n
−+、I←)、n+1−・・・・HJT++−1,n−
1を木y)ていくのであるが、このようQこして求めら
れた出力画像は元の入力画像′fなわち第2図(支)と
ゲJSなった空間周波数を持つようになる。
In this way, the operation of obtaining one output, that is, the converted pixel signal Hrr++n at the position corresponding to the central pixel, is as follows:
To sequentially perform operations on the entire input image, including the other parts surrounded by the dotted line in Figure 2 (2) and without symbols, the operations shown in Figure 2 [left and right] one by one, and each time move Hr+t-+, n
-+, I←), n+1-...HJT++-1, n-
1 to tree y), and the output image obtained through Q-filtering in this way has a spatial frequency equal to that of the original input image 'f, that is, Fig. 2 (support).

たとえば前記のような3×3個からなるオペレータをi
′::」とした場合、このオペレータはI 121 し 低域ろ波機能を有するため(こ、入力画像に対して空間
周波数領域上で低域が強調され、低周波画像を作製する
ことができる。
For example, if the operator consisting of 3 x 3 operators as mentioned above is
'::', this operator has an I 121 and low-pass filtering function (this means that the input image is emphasized in the low range in the spatial frequency domain, making it possible to create a low-frequency image. .

X線散乱画像の低域強調領域と散乱線含有率は、X線管
電圧、被検体部位、被検体厚、照射野面積の4つからほ
ぼ決定できる。X線管電圧は高くなると散乱線画像は、
より低域側の低周波画像となし、散乱線含有率も増す。
The low-frequency emphasis region and scattered ray content of an X-ray scattering image can be approximately determined from four factors: X-ray tube voltage, subject site, subject thickness, and irradiation field area. As the X-ray tube voltage increases, the scattered radiation image becomes
The result is a low-frequency image on the lower side, and the scattered radiation content increases.

被検体部位の平均密度が高いほど散乱線画像は、より低
域側の低周波画像となし、散乱線含有率も増す。被検体
厚が厚くなると散乱線画像は、より低域側の低周波画像
となし、散乱線含有率も増す。照射野が広いと散乱線含
有率が増す。これらの散乱線画像における低域強調領域
と散乱線含有率の決定要因は、各X線装置によりX線エ
ネルギーとX線出力効率が違うため、各X線装置ごと(
こ実験的ζこ求めなければならない。
The higher the average density of the subject part, the lower the frequency of the scattered radiation image becomes, and the higher the scattered radiation content. As the thickness of the object increases, the scattered radiation image becomes a lower-frequency image on the lower side, and the scattered radiation content increases. When the irradiation field is wide, the content of scattered radiation increases. The determining factors for the low-frequency enhancement region and scattered radiation content in these scattered radiation images are determined by each X-ray device (
This must be determined experimentally.

上記の4つの要因から実験的に求めた散乱線画像の低域
強調領域と散乱線含有率を基にして、空間フィルタリン
グの2つの要素であるtXk個とオペレータを決定する
Two elements of spatial filtering, tXk, and an operator are determined based on the low-frequency emphasis region of the scattered radiation image and the scattered radiation content rate, which are experimentally determined from the above four factors.

散乱線を含む元の画像(こ上記の空間フィルタリングを
行なうことによし、散乱線画像に相当する低周波画像を
作製し、元の画像から差し引くことによし、散乱線除去
画像が製造できる。
An original image containing scattered radiation (by performing the above spatial filtering, a low frequency image corresponding to the scattered radiation image is created, and by subtracting it from the original image, a scattered radiation removed image can be produced).

(発明の動画〕 以上の説明から明らかなように、この発明(こよれば、
散乱線が低周波であること営利用し、X線グリッドを用
いず撮影しても、散乱線除去画像が得られる。X線グリ
ッドを用いる方法(二較べX線グリッドに吸収される直
接X線の損失を避けろことができ、そのためX線管球負
荷が減り被曝線量が減少でとる。また目f動形XIMグ
リッドを用いなくともリス縞は出現しない。
(Video of invention) As is clear from the above explanation, this invention (according to
Since the scattered radiation is of low frequency, it is commercially available, and even if the image is taken without using an X-ray grid, a scattered radiation removed image can be obtained. Compared to the method using an X-ray grid, the loss of direct X-rays absorbed by the X-ray grid can be avoided, which reduces the X-ray tube load and reduces the exposure dose. Even if it is not used, squirrel stripes will not appear.

エアギャグ(Groedel法)と較べた場合(こは、
拡大率が少なくなし、XMA管焦点焦点る幾何学的ボケ
が小さい画像を得ることが可能となる。
When compared with air gag (Groedel method)
It is possible to obtain an image with a small magnification and a small geometric blur caused by the focus of the XMA tube.

またX線グリッドを用い撮影した場合をこけ、X線グリ
ッドと平行な散乱線はX線グリッドを通過し除去できな
いが、これらの散乱線画像に対しても散乱線画像相当の
低周波画像を製造し差し引くことにより散乱線除去が可
能となる。
In addition, when imaging using an X-ray grid, scattered rays parallel to the X-ray grid pass through the X-ray grid and cannot be removed, but low-frequency images equivalent to scattered ray images can be produced for these scattered ray images. Scattered radiation can be removed by subtracting it.

電気的X線画像システムQこおいてX線グ’J yド法
に替わる実用的であり有効なX線画像の散乱線除法効果
がある。
In the electrical X-ray imaging system Q, there is a practical and effective X-ray image scattering ray removal effect that replaces the X-ray grid method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は電気的X線画像システムの一例を示すブロック
図である。第2図囚、■、0、はたたみ込みろ波を説明
するための図である。
FIG. 1 is a block diagram showing an example of an electrical X-ray imaging system. Figure 2 is a diagram for explaining convolutional filtering.

Claims (1)

【特許請求の範囲】[Claims] X線画像形成システムとしてディジタルラジオグラフィ
、ディジタルフルオログラフィ、コンピュータラジオグ
ラフィ、ディジタルアンギオグラフィなどがあげられる
。これらの電気的X線画像形成システムにおいて、被検
体とX線検出器間に、X線グリッド又はエアギャブ(G
roedel法)を使用せずとも、散乱線が低周波画像
から成り立つことを利用し、X線検出装置とX線像入力
装置と画像処理装置と画像出力装置を使用し、X線原画
像から散乱線画像に相当する低周波画像を作製し、原画
像から低周波画像を差し引くことにより、X線画像の散
乱線除去画像を製造する方法。
Examples of X-ray image forming systems include digital radiography, digital fluorography, computer radiography, and digital angiography. In these electrical X-ray imaging systems, an X-ray grid or air gab (G
roedel method), the fact that scattered rays consist of low-frequency images can be used to detect scattered rays from the original X-ray image by using an X-ray detection device, an X-ray image input device, an image processing device, and an image output device. A method of producing a scattered radiation removed image of an X-ray image by creating a low-frequency image corresponding to a line image and subtracting the low-frequency image from the original image.
JP59257138A 1984-12-04 1984-12-04 Promation of image clear of scattered line in x ray image Pending JPS61133847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59257138A JPS61133847A (en) 1984-12-04 1984-12-04 Promation of image clear of scattered line in x ray image

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257138A JPS61133847A (en) 1984-12-04 1984-12-04 Promation of image clear of scattered line in x ray image

Publications (1)

Publication Number Publication Date
JPS61133847A true JPS61133847A (en) 1986-06-21

Family

ID=17302242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257138A Pending JPS61133847A (en) 1984-12-04 1984-12-04 Promation of image clear of scattered line in x ray image

Country Status (1)

Country Link
JP (1) JPS61133847A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180056A (en) * 1990-11-15 1992-06-26 Fuji Photo Film Co Ltd Method for processing radiograph
JP4612754B2 (en) * 2000-02-04 2011-01-12 キヤノン株式会社 Image acquisition apparatus and image acquisition method
JP2015100543A (en) * 2013-11-26 2015-06-04 富士フイルム株式会社 Radiation image processing apparatus, method and program
JP2016032623A (en) * 2014-03-10 2016-03-10 富士フイルム株式会社 Radiation image processing apparatus, method and program
JP2016198665A (en) * 2013-03-28 2016-12-01 富士フイルム株式会社 Radiation image processing device and method and program
JP2017056257A (en) * 2016-12-27 2017-03-23 富士フイルム株式会社 Radiation image processing device, method and program
JP2017099967A (en) * 2017-03-02 2017-06-08 富士フイルム株式会社 Radiation image photographing device, radiation image photographing method, and radiation image photographing program
JP2017100022A (en) * 2017-03-08 2017-06-08 富士フイルム株式会社 Radiation image processing device, method and program
US10762384B2 (en) 2015-04-15 2020-09-01 Konica Minolta, Inc. Radiation image capture system and body system estimation method with scatter reduction

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04180056A (en) * 1990-11-15 1992-06-26 Fuji Photo Film Co Ltd Method for processing radiograph
JP4612754B2 (en) * 2000-02-04 2011-01-12 キヤノン株式会社 Image acquisition apparatus and image acquisition method
JP2016198665A (en) * 2013-03-28 2016-12-01 富士フイルム株式会社 Radiation image processing device and method and program
JP2015100543A (en) * 2013-11-26 2015-06-04 富士フイルム株式会社 Radiation image processing apparatus, method and program
JP2016032623A (en) * 2014-03-10 2016-03-10 富士フイルム株式会社 Radiation image processing apparatus, method and program
US10045746B2 (en) 2014-03-10 2018-08-14 Fujifilm Corporation Radiation image processing apparatus, method, and medium
US10762384B2 (en) 2015-04-15 2020-09-01 Konica Minolta, Inc. Radiation image capture system and body system estimation method with scatter reduction
JP2017056257A (en) * 2016-12-27 2017-03-23 富士フイルム株式会社 Radiation image processing device, method and program
JP2017099967A (en) * 2017-03-02 2017-06-08 富士フイルム株式会社 Radiation image photographing device, radiation image photographing method, and radiation image photographing program
JP2017100022A (en) * 2017-03-08 2017-06-08 富士フイルム株式会社 Radiation image processing device, method and program

Similar Documents

Publication Publication Date Title
US6333990B1 (en) Fourier spectrum method to remove grid line artifacts without changing the diagnostic quality in X-ray images
CA1214286A (en) Multiple measurement noise reducing system using artifact edge identification and selective signal processing
JP4828776B2 (en) Method and apparatus for digital image defect correction and noise filtering
JP3976337B2 (en) Image processing for noise reduction
US9311695B2 (en) Image processing method and radiographic apparatus using the same
US9996910B2 (en) Radiographic image processing device, method, and recording medium
US20060251212A1 (en) Spot-size effect reduction
JP6284898B2 (en) Noise suppression processing apparatus and method, and program
JP2001052155A (en) Method and device for processing medical image comprising clinical area and non-clinical area
US4677681A (en) Method for eliminating the diffused radiation in a radiology image
US6356652B1 (en) Visualization of diagnostically irrelevant zones in a radiographic image
JP6678541B2 (en) Image processing apparatus, method and program
JPS61133847A (en) Promation of image clear of scattered line in x ray image
JP6987352B2 (en) Medical image processing equipment and medical image processing method
EP2823465B1 (en) Stereo x-ray tube based suppression of outside body high contrast objects
CN107203983B (en) Method and system for reducing grid line artifacts in X-ray images
US20110280463A1 (en) Image processing method and radiographic apparatus using the same
JP2014176565A (en) Image processor, radiographic apparatus, image processing method, computer program and recording medium
JP2001148787A (en) Image processing unit
JP2000316126A (en) X-ray photographing device
JP2002125961A (en) Diagnostic imaging supporting unit
JP2000083946A (en) Method and device for correction projection and radiation tomography apparatus
KR101669584B1 (en) Apparatus for radiography, method for processing radiography and designing radiation grid
Kume et al. Investigation of basic imaging properties in digital radiography. 11. Multiple slit‐beam imaging technique with image intensifier–TV digital system
JP6570594B2 (en) Image processing apparatus, radiation imaging apparatus, image processing method, computer program, and storage medium