JPS61133362A - High-si ferritic spheroidal graphite cast iron and its manufacture - Google Patents

High-si ferritic spheroidal graphite cast iron and its manufacture

Info

Publication number
JPS61133362A
JPS61133362A JP25472984A JP25472984A JPS61133362A JP S61133362 A JPS61133362 A JP S61133362A JP 25472984 A JP25472984 A JP 25472984A JP 25472984 A JP25472984 A JP 25472984A JP S61133362 A JPS61133362 A JP S61133362A
Authority
JP
Japan
Prior art keywords
cast iron
less
content
graphite cast
spheroidal graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25472984A
Other languages
Japanese (ja)
Inventor
Yoshikazu Fukuhara
福原 吉和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP25472984A priority Critical patent/JPS61133362A/en
Publication of JPS61133362A publication Critical patent/JPS61133362A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/10Making spheroidal graphite cast-iron

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Abstract

PURPOSE:To increase the fatigue strength of high-Si ferritic spheroidal graphite cast iron at high temp. and to make the cast iron suitable for use at high temp. by regulating the P content to the required value and varying the Si content in the required range in accordance with the service temp. CONSTITUTION:The composition of high-Si ferritic spheroidal graphite cast iron is composed of, by weight, 2.6-3.6% C, <0.5% Mn, <0.6% Mo, 0.03-0.1% P, 3.8-6% Si, <0.15% graphite spheroidizing element and the balance Fe with inevitable impurities. The Si content is made higher than Si% calculated by substituting the service temp. for the Ac1 transformation point in the equation.

Description

【発明の詳細な説明】 (発明の利用分野) この発明は高Siフェライト球状黒鉛鋳鉄およびその製
造方法に係り、さらに詳しくいえば高温度でフェライト
組織で高温疲労強度が大きく、かつ青熱脆性耐性の大き
い耐酸化性高Si球状黒鉛鋳鉄およびその製造方法に係
る。
Detailed Description of the Invention (Field of Application of the Invention) The present invention relates to a high-Si ferritic spheroidal graphite cast iron and a method for producing the same. The present invention relates to a highly oxidation-resistant high-Si spheroidal graphite cast iron and a method for producing the same.

(従来技術と解決すべき問題点) 自動車や船舶の過給器タービンケーシング、排気マニホ
ールド或いはパルプディフューザ等の耐熱性、耐熱疲労
性が要求される鋳造部品には一般に高Siフェライト球
状黒鉛鋳鉄が使用されている。 しかしながらこの材料
は耐酸化性は良好であるが、耐熱疲労性が悪く、青熱脆
性温度域内あるいはこの温度域を上下するような使用に
は問題が多いことが知られている。
(Prior art and problems to be solved) High-Si ferrite spheroidal graphite cast iron is generally used for cast parts that require heat resistance and heat fatigue resistance, such as supercharger turbine casings, exhaust manifolds, and pulp diffusers for automobiles and ships. has been done. However, although this material has good oxidation resistance, it has poor thermal fatigue resistance, and it is known that there are many problems when used within the blue brittle temperature range or above or below this temperature range.

近年、高5ill鉄のフェライト結晶粒を微細化するこ
とによって静的破断伸び(特に400℃における)が改
善され、これによって青熱脆性耐性も改善されることが
判ってきた。
In recent years, it has been found that static elongation at break (particularly at 400° C.) is improved by refining the ferrite grains of high 5ill iron, which also improves blue brittle resistance.

しかしながら鋳鉄品の結晶粒度の微細化は主として鋳造
品の冷却速度の制御によって行われるため、肉厚に不同
のある鋳造品については冷却速度の制御の実施は困難で
ある。従って実用上はSi含有量をおよそ4%以下とす
ることによって静的破断伸びの低下を抑えているのが現
状である。
However, since the grain size of cast iron products is refined mainly by controlling the cooling rate of the cast product, it is difficult to control the cooling rate of cast products with uneven wall thickness. Therefore, in practice, the current situation is to suppress the decrease in static elongation at break by controlling the Si content to about 4% or less.

本発明者の研究によれば300〜500℃における高S
i鋳鉄の青熱脆性の大小はこの温度域における静的破断
伸びによって判断することができる。而してP含有量を
制御すれば400℃破断神びを安定して8%以上とする
ことができることを見出し、これを利用して300〜5
00℃温度域における青熱脆性を抑制した高靭性耐酸化
性フェライト球状黒鉛鋳鉄を提示した(特願昭59−1
96259号)、この球状黒鉛鋳鉄の主要な化学組成は
2.6〜3.6%C,3〜3.8%Stで、Pは0.0
3以上でp+ri0.06%以下(化学組成は重量%で
示しである。以下同じ)であった。
According to the research of the present inventor, high S at 300-500℃
The degree of blue brittleness of cast iron can be determined by the static elongation at break in this temperature range. We found that by controlling the P content, we could stably increase the 400℃ rupture value to 8% or more, and using this, we
We have proposed a high-toughness, oxidation-resistant ferritic spheroidal graphite cast iron that suppresses blue brittleness in the 00°C temperature range (Japanese Patent Application No. 59-1
No. 96259), the main chemical composition of this spheroidal graphite cast iron is 2.6 to 3.6% C, 3 to 3.8% St, and P is 0.0.
3 or more and p+ri 0.06% or less (chemical composition is shown in weight %. The same applies hereinafter).

しかしながらその後の研究によってPの添加がSi3.
8%以上の高3iフエライト鋳鉄の青熱脆性の防止にも
著しい効果があることが判った。
However, subsequent research has shown that the addition of P to Si3.
It has been found that it is also significantly effective in preventing blue brittleness in high 3i ferrite cast iron of 8% or more.

ところで例えば排気ガス温度が950℃にも達するガソ
リン自動車の場合、従来の高3iフエライト鋳鉄では使
用温度が材料のA c 1変態点800〜850℃を大
幅に超えてしまってオーステナイト組織となるため高温
疲労強度が低下し、或い     、)は使用温度から
の空冷と加熱との繰返しによる変態のため熱膨張係数の
差によってクランクを発生するおそれがあり、このよう
な用途には使用不適当である。
By the way, for example, in the case of a gasoline-powered vehicle whose exhaust gas temperature reaches as high as 950°C, the operating temperature of conventional high 3i ferrite cast iron significantly exceeds the material's A c 1 transformation point of 800 to 850°C, resulting in an austenitic structure. Fatigue strength decreases, or due to transformation due to repeated air cooling and heating from the operating temperature, there is a risk of cranking due to the difference in thermal expansion coefficient, making it unsuitable for use in such applications. .

(発明が解決しようとする問題点) このように使用温度が高くなってきているのに対応して
、比較的安価な材料として約830〜950℃の高温度
でも使用が可能で、青熱脆性に強く、かつ高温疲労強度
の大きな球状黒鉛鋳鉄に対する要望が強くなっている。
(Problem to be solved by the invention) In response to the increasing usage temperature, there is a material that can be used even at high temperatures of approximately 830 to 950°C as a relatively inexpensive material, and has blue brittleness. There is a growing demand for spheroidal graphite cast iron that is strong against heat and has high high temperature fatigue strength.

この発明はこのような要望に応える球状黒鉛鋳鉄および
その製造方法を提供することを目的とする。
The object of the present invention is to provide spheroidal graphite cast iron and a method for manufacturing the same that meet these demands.

(問題点を解決するための手段) 第1の発明は C2,6〜3.6%、 Mn0.5%以下、Mo0.6
%以下 、 P   0.03〜0.1%、 Si3.8〜6.0%でかつ A C1変態点(’l:)−49,4×Si  (%)
+ 657.1 の弐のA C1変態点温度に使用温度を入れて求めたS
i%より多いSi%、 黒鉛球状化処理元素 0.15%以下、残部は不可避元
素及び実質的にFe よりなることを特徴とする青熱脆性耐性および高温疲労
強度の大きな耐熱性高Siフェライト球状黒鉛鋳鉄に係
り、第2の発明は 高Siフェライト球状黒鉛鋳鉄の製造方法において1、
高周波誘導電気炉によって C2,6〜3.6%、 Mn  0.5%以下、Mo0
.6%以下 、 P   0.03〜0.1%、 Si3.8〜6.0%でかつ A c 1変態点(℃)〜49.4×Si  (%)+
 657.1 の式のA c 1変態点温度に使用温度を入れて求めた
Si%以上のSiを含有し、 黒鉛球状化処理元素 0.15%以下、残部は不可避元
素及び実質的にFe よりなる化学成分組成に溶製することを特徴とする青熱
脆性耐性の大きな高SLフェライト球状黒鉛鋳鉄の製造
方法に係る。
(Means for solving the problem) The first invention has C2.6 to 3.6%, Mn 0.5% or less, and Mo 0.6.
% or less, P 0.03-0.1%, Si 3.8-6.0%, and A C1 transformation point ('l:)-49,4×Si (%)
+ 657.1 2 A S calculated by adding the operating temperature to the C1 transformation point temperature
Heat resistant high Si ferrite spherical shape with high blue brittle resistance and high temperature fatigue strength, characterized by Si% more than i%, graphite spheroidization treatment element 0.15% or less, and the remainder consisting of unavoidable elements and substantially Fe. Regarding graphite cast iron, the second invention is a method for manufacturing high-Si ferritic spheroidal graphite cast iron, comprising: 1.
C2.6~3.6%, Mn 0.5% or less, Mo0 by high frequency induction electric furnace
.. 6% or less, P 0.03-0.1%, Si 3.8-6.0%, and A c 1 transformation point (℃) ~ 49.4 x Si (%) +
657.1 Contains Si% or more determined by adding the operating temperature to the A c 1 transformation point temperature of the formula, 0.15% or less of graphite spheroidizing elements, and the remainder is unavoidable elements and substantially Fe. The present invention relates to a method for manufacturing high SL ferritic spheroidal graphite cast iron with high resistance to blue brittleness, which is characterized by melting it to a chemical composition as follows.

ところで、本発明者がSi含有量とAc1変態点との関
係を調べた結果第2図に示すように直線的関係にあるこ
とが判った。したがって使用温度よりも材料のA c 
1変態点を高(するためにはA c 1変態点(℃)婁
49.4×Si (%)+657.1 の式において変態点温度に使用温度を入れて得られるS
i%以上の81含有量とすれば所望の高温使用の用途に
応することができることになる。
By the way, as a result of the inventor's investigation of the relationship between Si content and Ac1 transformation point, it was found that there is a linear relationship as shown in FIG. Therefore, the A c of the material is higher than the operating temperature.
In order to raise the 1 transformation point, A c 1 transformation point (℃) 49.4 x Si (%) + 657.1 In the formula, S is obtained by substituting the operating temperature into the transformation point temperature.
If the 81 content is i% or more, it can be used for desired high temperature applications.

例えば前記排気温度950℃で使用するためにはSi含
有量を該式から求めた5、9%以上とすれば良い、然し
ながうこのようにSi含有量を高くすると400℃にお
ける脆化は著しくなる。
For example, in order to use the exhaust gas at 950°C, the Si content should be 5.9% or more calculated from the formula.However, if the Si content is increased like this, embrittlement at 400°C will be reduced. It becomes noticeable.

第1図は本発明者の研究結果得られた高31鋳鉄のP含
有量と400℃静的破断伸びとの関係を示している。S
i含有量を高くしても脆化を抑えて静的破断伸び8%を
確保するためにはP含有量の範囲は先願のSi3.8%
以下の場合に比して多少狭くなるが、0.03〜0.1
%Pとすればよいことがこの図から判る。
FIG. 1 shows the relationship between the P content of high-31 cast iron and the static elongation at break at 400°C, which was obtained as a result of research by the present inventor. S
In order to suppress embrittlement and secure a static elongation at break of 8% even with a high i content, the P content range is Si3.8% as in the previous application.
Although it is slightly narrower than the following cases, it is 0.03 to 0.1
It can be seen from this figure that it is sufficient to set the value to %P.

本鋳鉄の溶解は市販の高純度銑鉄またはダクタイル銑の
如き銑鉄に戻し屑と、必要ならば鋼屑を配合し、これに
所要のフェロアロイを加え、高周波誘導電気炉で溶解し
、最後に黒鉛球状化剤を加えて鋳造することは通例と同
じである。
This cast iron is melted by mixing commercially available high-purity pig iron or ductile pig iron with recycled scraps and, if necessary, steel scraps, adding the required ferroalloy to this, melting in a high-frequency induction electric furnace, and finally forming graphite spherules. Adding a curing agent and casting is the same as usual.

本鋳鉄は低周波誘導電気炉でも溶解することができるが
、得られた鋳鉄は高周波誘導電気炉溶解に比して400
℃静的破断伸びのばらつきが大きく、フェライト粒度の
管理を行わなければ5%以上の伸びを保証することは難
しい。
This cast iron can also be melted in a low-frequency induction electric furnace, but the cast iron obtained is 400% melted in a high-frequency induction electric furnace.
There is a large variation in static elongation at break at °C, and it is difficult to guarantee an elongation of 5% or more unless the ferrite grain size is controlled.

第3図は高周波誘導電気炉溶解と低周波誘導電気炉溶解
に分けてP含有量と静的破断伸びとの関係の一例を示し
ている0図から高周波誘導電気炉熔解の方がばらつきが
小さく、而もフェライト粒度に関係が無いので一層信頼
性が高いことが理解されよう、したがって本発明では高
周波誘導電気炉による溶解を採用する。炉のライニング
は塩基φ 性でも酸性でも良い。
Figure 3 shows an example of the relationship between P content and static elongation at break for high-frequency induction electric furnace melting and low-frequency induction electric furnace melting. It will be understood that the reliability is even higher because it is not related to the ferrite particle size.Therefore, in the present invention, melting using a high frequency induction electric furnace is adopted. The furnace lining may be basic or acidic.

鋳造品は鋳放しで基地はフェライト組織になっているの
で歪取り焼鈍を施して使用すると良い。
The cast product is as-cast and the base has a ferrite structure, so it is best to use it after stress relief annealing.

次に本方法で溶製する鋳鉄の化学成分組成について説明
する。
Next, the chemical composition of cast iron produced by this method will be explained.

Cは2.6%以下では亜共晶組成となり、凝固開始温度
が高くなって鋳造性を低下させるので好ましくない、他
方C量が多くなると黒鉛が巨大化し昌くなり、靭性を害
し、鋳造後のドロス発生の原因ともなって好ましくない
ので上限は3.6%とする。
If C is less than 2.6%, it becomes a hypoeutectic composition, which increases the solidification start temperature and reduces castability, which is undesirable.On the other hand, if the amount of C increases, the graphite becomes bulky and bulky, impairing toughness and making it difficult to form after casting. The upper limit is set at 3.6% because it is undesirable as it causes the generation of dross.

Siは耐酸化性に最も効果の有る元素である。Si is the most effective element for oxidation resistance.

その上Si含有量とA c 1変態点とは直線的関係に
あり、該変態点を使用温度以上とすることは強度を維持
するのに重要である。第2図からSi含有量を3.8〜
6.0%とすればA c 1変態点を約845〜950
℃とすることができ、材料の使用可能な温度をそれだけ
高めることができることになる。
Moreover, there is a linear relationship between the Si content and the A c 1 transformation point, and it is important to keep the transformation point above the service temperature in order to maintain strength. From Figure 2, the Si content is 3.8~
If it is 6.0%, the A c 1 transformation point is about 845-950
℃, which means that the usable temperature of the material can be increased accordingly.

M、oは青熱脆性の緩和あるいはクリープラブチャ強度
の改善に対して効果があると言われているが、本発明に
おいては青熱脆性はP含有量の管理によって解決してい
るのでMoは後者の目的で使用される。その量は本発明
の研究によれば0.6%以下で充分である。MOが多(
なると鋳物肉厚部のMo炭化物が多くなり、これを減少
させるため高温、長時間の熱処理が必要になって経済的
に不利になる。
It is said that M and o are effective in alleviating blue brittleness or improving creep bond strength, but in the present invention, blue brittleness is solved by controlling the P content, so Mo is used for the latter purpose. According to the research of the present invention, an amount of 0.6% or less is sufficient. There are many MOs (
In this case, the amount of Mo carbide in the thick part of the casting increases, and in order to reduce this, high-temperature and long-term heat treatment is required, which is economically disadvantageous.

Mnは0.5%以上になるとパーライトが生成し易くな
り、その低減に長時間の熱処理を必要になって不利であ
る。その上、静的破断伸びの低下を招くので0.5%を
上限とする。
When Mn exceeds 0.5%, pearlite tends to form, which is disadvantageous because long-term heat treatment is required to reduce it. Furthermore, it causes a decrease in static elongation at break, so the upper limit is set at 0.5%.

Sは粒界に偏析し易く、かつ黒鉛の球状化を阻害する上
、その量が多くなると静的破断伸びの低下を招くので通
例のように0.03%以下とする。
S tends to segregate at grain boundaries and inhibits the spheroidization of graphite, and when its amount increases, it causes a decrease in static elongation at break, so it is usually kept at 0.03% or less.

黒鉛球状化処理剤としては通例のMgや希土類元素を含
む処理剤を使用し、その含有量は0.15%以下とする
As the graphite spheroidization treatment agent, a usual treatment agent containing Mg and rare earth elements is used, and the content thereof is 0.15% or less.

Cr炭化物は静的破断伸びを低下させるので少ない方が
よく、不純物として含まれる程度とし、好ましくは0.
02%以下とするのがよい。
Since Cr carbide reduces static elongation at break, it is better to have less Cr carbide, and it should be contained as an impurity, preferably 0.
It is preferable to set it to 0.02% or less.

(試験例) 次に試験例について述べる。(Test example) Next, a test example will be described.

球状黒鉛鋳鉄用鋳物銑(JIS−G2202・3種1号
A相当品)または戻し屑、鋼屑、フェロアロイを使用し
て高周波誘導電気炉で溶解し、Fe−31−Mg系球状
化処理剤を添加し、フェロホスホルでP含有量を0.0
3〜0.10%に調整した。
Foundry pig iron for spheroidal graphite cast iron (JIS-G2202, Type 3, No. 1 A equivalent), returned scraps, steel scraps, and ferroalloy are melted in a high-frequency induction electric furnace, and a Fe-31-Mg-based spheroidizing agent is applied. and P content to 0.0 with ferrophosphor.
It was adjusted to 3 to 0.10%.

溶製した供試材の化学成分組成は第1表に、400℃に
おける機械的性質は第2表に示す通りである。
The chemical composition of the melted test material is shown in Table 1, and the mechanical properties at 400°C are shown in Table 2.

第2表 注、熱処理=750℃X2hr、炉冷 * 胤2のみ低周波誘導電気炉溶解 第1表、第2表から次のことが判る。Table 2 Note: Heat treatment = 750°C x 2hr, furnace cooling *Only Seed 2 melted in low frequency induction electric furnace The following can be seen from Tables 1 and 2.

(a)Nalと嵐2はSt量、P量が大よそ同じである
が、溶解炉の相違によって400℃静的破断伸びが大き
く相違し、高周波誘導電気炉溶解の方が高い値を示して
いる。
(a) Nal and Arashi 2 have roughly the same St and P contents, but the static elongation at break at 400℃ differs greatly depending on the difference in the melting furnace, with high-frequency induction electric furnace melting showing a higher value. There is.

山)胤3は高周波電気炉溶解で、−かつSt量も嵐4に
比して低いにもかかわらず、400’e静的破断伸びが
ぬ4よりも低い値を示しているのはP含有     、
量が少ないためと考えられる。
Although Tane 3 was melted in a high-frequency electric furnace and the St content was lower than Arashi 4, the reason why the static elongation at 400'e was lower than that of Arashi 4 was due to P content. ,
This is probably due to the small amount.

(C)11h5は高純度銑を溶解してフェロホスホルを
添加してP含有量を調整したものであるが、400℃静
的破断伸びが良好な値を示している。
(C) 11h5 is made by melting high-purity pig iron and adding ferrophosphor to adjust the P content, and it shows a good static elongation at break at 400°C.

(発明の効果) 本第1の発明は通例の高Si球状黒鉛鋳鉄においてP含
有量を所要の範囲に調整しであるほか、Si含有量を所
定の範囲で使用温度に応じて求めた値としており、Si
含有量が高くなっても青熱脆性温度域の静的破断伸びが
8%以上と高く、かつ使用温度でフェライト組織なので
高温疲労強度が大きく、高温用途に好適な高Siフェラ
イト球状黒鉛鋳鉄である。
(Effects of the Invention) The first invention not only adjusts the P content to a required range in a conventional high-Si spheroidal graphite cast iron, but also adjusts the Si content to a value determined according to the operating temperature within a predetermined range. Ori, Si
Even when the content is high, the static elongation at break in the blue brittle temperature range is as high as 8% or more, and since it has a ferritic structure at the operating temperature, it has high high-temperature fatigue strength, making it a high-Si ferritic spheroidal graphite cast iron suitable for high-temperature applications. .

また第2の発明は通例の高Si球状黒鉛鋳鉄の製造方法
においてP含有量を所要の範囲に調整すると共に、Si
含有量を所定の範囲内で使用温度に応じて求めた値以上
とするほか、高周波誘導電気炉で溶製するだけで、Si
含有量を高めても青熱脆性温度域の静的破断伸びが8%
以上で、かつばらつきも少なく、そのうえ高温疲労強度
が大きく、耐熱性の良好な高Siフェライト球状黒鉛鋳
鉄を得ることができて該鋳鉄の用途を拡大することがで
き、その実用上の効果はきわ′めて大きい。
Further, the second invention is a method for manufacturing high-Si spheroidal graphite cast iron, in which the P content is adjusted to a required range, and the Si
In addition to keeping the content within a specified range and exceeding the value determined according to the operating temperature, Si
Even if the content is increased, the static elongation at break in the blue brittle temperature range is 8%.
With the above, it is possible to obtain high-Si ferritic spheroidal graphite cast iron that has less variation, high temperature fatigue strength, and good heat resistance, and the uses of this cast iron can be expanded, and its practical effects are extremely high. 'It's really big.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る鋳鉄の400℃静的破断伸びとP
含有量との関係を示すダイアグラム、第2図は同じ<S
i含有量とAc変態点との関係を示すダイアグラム、第
3図は熔解炉別400℃静的破断伸びと2合有量との関
係の一例を示すダイアグラムである。
Figure 1 shows the 400°C static elongation at break and P of cast iron according to the present invention.
Diagram showing the relationship with content, Figure 2 is the same <S
A diagram showing the relationship between the i content and the Ac transformation point, and FIG. 3 is a diagram showing an example of the relationship between the static elongation at break at 400° C. and the 2-coupling amount for each melting furnace.

Claims (1)

【特許請求の範囲】 1、C2.6〜3.6%、Mn0.5%以下、Mo0.
6%以下、 P0.03〜0.1%、 Si3.8〜6.0%でかつ Ac_1変態点(℃)=49.4×Si(%)+657
.1 の式のAc_1変態点温度に使用温度を入れて求めたS
i%より多いSi%、 黒鉛球状化処理元素0.15%以下、 残部は不可避元素及び実質的にFe よりなることを特徴とする青熱脆性耐性および高温疲労
強度の大きな耐熱性高Siフェライト球状黒鉛鋳鉄 2、高Siフェライト球状黒鉛鋳鉄の製造方法において
、高周波誘導電気炉によって C2.6〜3.6%、Mn0.5%以下、 Mo0.6%以下、 P0.03〜0.1%、 Si3.8〜6.0%でかつ Ac_1変態点(℃)=49.4×Si(%)+657
.1 の式のAc_1変態点温度に使用温度を入れて求めたS
i%以上のSiを含有し、 黒鉛球状化処理元素0.15%以下、 残部は不可避元素及び実質的にFe よりなる化学成分組成に溶製することを特徴とする青熱
脆性耐性の大きな高Siフェライト球状黒鉛鋳鉄の製造
方法
[Claims] 1. C2.6-3.6%, Mn 0.5% or less, Mo0.
6% or less, P0.03-0.1%, Si3.8-6.0%, and Ac_1 transformation point (℃) = 49.4 x Si (%) + 657
.. S obtained by inserting the operating temperature into the Ac_1 transformation point temperature of the formula 1
Heat resistant high Si ferrite spherical shape with high blue heat brittle resistance and high temperature fatigue strength, characterized by Si% greater than i%, graphite spheroidization treatment element 0.15% or less, and the remainder consisting of unavoidable elements and substantially Fe. Graphite cast iron 2, a method for producing high Si ferritic spheroidal graphite cast iron, in which C2.6 to 3.6%, Mn 0.5% or less, Mo 0.6% or less, P 0.03 to 0.1%, Si3.8-6.0% and Ac_1 transformation point (℃) = 49.4 x Si (%) + 657
.. S obtained by inserting the operating temperature into the Ac_1 transformation point temperature of the formula 1
It has a high resistance to blue brittleness and is characterized by containing more than i% of Si, 0.15% or less of graphite spheroidizing elements, and the remainder consisting of unavoidable elements and substantially Fe. Manufacturing method of Si ferrite spheroidal graphite cast iron
JP25472984A 1984-12-01 1984-12-01 High-si ferritic spheroidal graphite cast iron and its manufacture Pending JPS61133362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25472984A JPS61133362A (en) 1984-12-01 1984-12-01 High-si ferritic spheroidal graphite cast iron and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25472984A JPS61133362A (en) 1984-12-01 1984-12-01 High-si ferritic spheroidal graphite cast iron and its manufacture

Publications (1)

Publication Number Publication Date
JPS61133362A true JPS61133362A (en) 1986-06-20

Family

ID=17269040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25472984A Pending JPS61133362A (en) 1984-12-01 1984-12-01 High-si ferritic spheroidal graphite cast iron and its manufacture

Country Status (1)

Country Link
JP (1) JPS61133362A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528808A (en) * 2005-02-01 2008-07-31 ダニエリ、コラス、ベスローテン、フェンノートシャップ Support assembly for supporting a heat storage grid refractory brick in a hot stove, hot stove equipped with the support assembly, and method for generating hot air using the hot stove
CN107686936A (en) * 2017-08-23 2018-02-13 广东中天创展球铁有限公司 A kind of gooseneck material kettle cast iron and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124817A (en) * 1974-03-20 1975-10-01
JPS57116749A (en) * 1981-01-14 1982-07-20 Mitsubishi Heavy Ind Ltd Nodular graphite cast iron for grate
JPS58171553A (en) * 1982-04-01 1983-10-08 Mazda Motor Corp Spheroidal graphite cast iron with superior oxidation resistance at high temperature and superior thermal fatigue resistance
JPS5970746A (en) * 1982-10-18 1984-04-21 Mitsubishi Motors Corp Alloy for seal ring

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50124817A (en) * 1974-03-20 1975-10-01
JPS57116749A (en) * 1981-01-14 1982-07-20 Mitsubishi Heavy Ind Ltd Nodular graphite cast iron for grate
JPS58171553A (en) * 1982-04-01 1983-10-08 Mazda Motor Corp Spheroidal graphite cast iron with superior oxidation resistance at high temperature and superior thermal fatigue resistance
JPS5970746A (en) * 1982-10-18 1984-04-21 Mitsubishi Motors Corp Alloy for seal ring

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008528808A (en) * 2005-02-01 2008-07-31 ダニエリ、コラス、ベスローテン、フェンノートシャップ Support assembly for supporting a heat storage grid refractory brick in a hot stove, hot stove equipped with the support assembly, and method for generating hot air using the hot stove
CN107686936A (en) * 2017-08-23 2018-02-13 广东中天创展球铁有限公司 A kind of gooseneck material kettle cast iron and preparation method thereof

Similar Documents

Publication Publication Date Title
USRE37520E1 (en) Gray cast iron system for scroll machines
CN110079737B (en) Twin crystal strengthened aluminum-containing austenitic heat-resistant stainless steel and preparation method and application thereof
US5858127A (en) Metal alloys and brake drums made from such alloys
GB2147007A (en) Spheroidal graphite ferrite cast iron
JPS626634B2 (en)
JP2652449B2 (en) Cast iron and its modification method
JP4768919B2 (en) Ring shape parts for gas turbine blade rings and seal ring retaining rings made of high strength low thermal expansion cast steel and high strength low thermal expansion cast steel
JPS60121254A (en) Composite cylinder liner
JPS61133362A (en) High-si ferritic spheroidal graphite cast iron and its manufacture
CN106086616A (en) A kind of diesel motor cylinder and the material of cylinder cap and manufacturing process thereof
JP3597211B2 (en) Spheroidal graphite cast iron with excellent high-temperature strength
JPS6036755A (en) Composite cylinder liner
JP3332189B2 (en) Ferritic heat-resistant cast steel with excellent castability
JPS5985842A (en) Heat-resistant spheroidal graphite cast iron
JPH07268522A (en) Electrode material for spark plug excellent in high temperature strength
JPH0472039A (en) High purity heat resistant steel
CN114561507B (en) Method for regulating and controlling ferrite grain size of spheroidal graphite cast iron
JP2703252B2 (en) Method for producing steel with excellent toughness in weld joints
EP1546416A1 (en) Cast exhaust system
JPH1088274A (en) High strength heat resistant steel and its production
JP3737040B2 (en) High carbon spheroidal graphite cast iron and heat-resistant cast iron casting comprising the same
JPS6173859A (en) Ferritic spheroidal graphite cast iron having high toughness and oxidation resistance
JP2757118B2 (en) Fe-Ni-Mn based alloy excellent in hot workability and method for producing the same
JPS59215464A (en) High-strength high-expansion bolt
JPH11236653A (en) Heat resistant cast steel excellent in high temperature strength and thermal fatigue resistance