JPS61133333A - Production of electrode for remelting - Google Patents

Production of electrode for remelting

Info

Publication number
JPS61133333A
JPS61133333A JP59253868A JP25386884A JPS61133333A JP S61133333 A JPS61133333 A JP S61133333A JP 59253868 A JP59253868 A JP 59253868A JP 25386884 A JP25386884 A JP 25386884A JP S61133333 A JPS61133333 A JP S61133333A
Authority
JP
Japan
Prior art keywords
ingot
remelting
furnace
electrode
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59253868A
Other languages
Japanese (ja)
Other versions
JPS647140B2 (en
Inventor
Toshiki Takeiri
竹入 俊樹
Nobuyoshi Kurauchi
倉内 伸好
Masaaki Kato
公明 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP59253868A priority Critical patent/JPS61133333A/en
Publication of JPS61133333A publication Critical patent/JPS61133333A/en
Publication of JPS647140B2 publication Critical patent/JPS647140B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

PURPOSE:To produce an electrode for remelting which obviates the generation of a crack and partial dislodgment in the stage of remelting by subjecting a compounded raw material to primary melting then producing an ingot and subjecting the ingot to hot forging followed by a stress relief heat treatment. CONSTITUTION:The compounded raw material is subjected to the primary melting by a vacuum induction furnace, arc furnace, atm. high-frequency induc tion furnace, etc., and thereafter the ingot thereof is produced in a process for production of the electrode to be used for a remelting furnace such as vac uum arc melting furnace and electroslag melting furnace in a double melting stage in production of the alloy. The ingot is then subjected to a hot forging treatment to change the cast structure of the ingot to the forged structure by which the ductility thereof is increased. The ingot after the forging treatment is then subjected to the stress relief heat treatment to improve further the ductility. The electrode for remelting which prevents the crack corresponding to the thermal stress in the stage of remelting and the consequent dislodgment thereof is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、合金製造上の二重溶解工程において、真空
アーク溶解炉、エレクトロスラグ1ejS炉等の再溶解
炉で用いられる電極の製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an electrode used in a remelting furnace such as a vacuum arc melting furnace or an electroslag 1ejS furnace in a double melting process for producing an alloy. It is something.

〔従来の技術〕[Conventional technology]

合金製造上の15′ps方法としては、近年、偏析の減
少、熱間加工性の改善、非金属介在物の減少等を目的と
して、二tfi解法が採用されている。この二重溶解法
は、まず配合された原料を真空誘導炉、アーク炉、大気
高周波誘導炉等により一次溶解した後インゴットを製造
し、このインゴットを電極として真空アーク溶解炉、エ
レクトロスラグ溢解炉等により再溶解して最終製品のイ
ンゴットを製造するものである。ところで、二重溶解法
において用いられる再溶解用電極は、上記のように一次
f6解後、単に鋳造することによって製造されていた。
In recent years, as a 15'ps method for manufacturing alloys, the two-tfi solution method has been adopted for the purpose of reducing segregation, improving hot workability, and reducing nonmetallic inclusions. This double melting method involves first melting the blended raw materials in a vacuum induction furnace, arc furnace, atmospheric high-frequency induction furnace, etc., then producing an ingot, which is then used as an electrode to melt the raw materials in a vacuum arc melting furnace, electroslag overflow furnace, etc. etc. to produce the final product ingot. By the way, the remelting electrode used in the double melting method has been manufactured by simply casting after the primary f6 melting as described above.

〔この発明が解決しようとする問題点〕高炭素系コバル
ト合金(成分;炭素1%、タングステン4チ、クロム3
0%、コバルト残)を鋳造して電極とした場合には、再
6解工程において電極の一部が脱藩し、このため再溶解
が不可能になるという問題があった。すなわち、再溶解
に用いられる電極においては、浴融部分とそこから若干
離れた固体部分との間に多大な温度差が生じ、この温度
差によってそれらの間に大きな熱応力が発生する。この
場合、電極が延性に富むものであれば問題ないが、前述
した高炭素系コバルト合金からなる電極を単に鋳造した
場合には、電極の延性が極端に小さい。このため、再溶
解時の熱応力によって電極に割れが発生し、その一部が
脱落するという問題が生じていたのである。
[Problems to be solved by this invention] High carbon cobalt alloy (components: 1% carbon, 4% tungsten, 3% chromium)
When an electrode is made by casting 0% cobalt (cobalt residue), there is a problem in that part of the electrode is removed during the re-melting process, making it impossible to re-melt it. That is, in the electrode used for remelting, a large temperature difference occurs between the bath melting portion and the solid portion slightly separated therefrom, and this temperature difference generates a large thermal stress between them. In this case, there is no problem if the electrode is highly ductile, but if the electrode is simply cast from the above-mentioned high carbon cobalt alloy, the ductility of the electrode is extremely low. For this reason, there was a problem in that the electrodes cracked due to thermal stress during remelting, and a portion of the cracks fell off.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上記の問題点を解決する手段として、配合
された原料を一次溶解した後、インゴットを製造し、こ
のインゴットを熱間鍛造した後、歪取り熱処理を行なう
ようにしている。
In this invention, as a means to solve the above-mentioned problems, an ingot is manufactured after first melting the blended raw materials, and after hot forging this ingot, a heat treatment for strain relief is performed.

〔実施例〕〔Example〕

以下、この発明の実施例について説明する。この実施例
は、従来例に示した二重鰺解法において、−次浴解後に
製造されたインゴットに、熱間鍛造処理と歪取り熱処理
の工程を付加したものである。
Examples of the present invention will be described below. In this embodiment, the steps of hot forging treatment and strain relief heat treatment are added to the ingot produced after the secondary bath melting in the double mackerel melting method shown in the conventional example.

この発明の方法においても、まず配合された原。In the method of this invention as well, first the blended ingredients.

料を一次溶解しインゴットを製造する点は従来例と同様
でおるが、この発明の方法は、さらに次のような工程を
有している。すなわち、まず、前記インゴットに熱間鍛
造処理を施す。この熱間鍛造処理は、インゴットの鋳造
組織を鍛造組織に変化させ、インゴットの延性を増加さ
せることを目的とするものである。この場合、鍛錬比と
しては、合金の種類によって決定し、例えば前述した高
炭素系コバルト合金の場合には最低; 1. I B程
度に設定する。
Although the process of first melting the material and producing an ingot is the same as in the conventional example, the method of the present invention further includes the following steps. That is, first, the ingot is subjected to hot forging treatment. The purpose of this hot forging treatment is to change the cast structure of the ingot to a forged structure and increase the ductility of the ingot. In this case, the forging ratio is determined depending on the type of alloy; for example, in the case of the above-mentioned high carbon cobalt alloy, the forging ratio is the minimum; 1. Set to about IB.

次に、この熱間鍛造処理を施したものに、さらに延性を
増加させることを目的として、歪取り熱処理を施す。こ
の場合の熱処理温度は、合金の椎類によって適宜決定す
る。例えば、前述した高炭素系コバルト合金の場合には
1000℃〜1250℃に設定する。
Next, the hot forged product is subjected to strain relief heat treatment for the purpose of further increasing ductility. The heat treatment temperature in this case is appropriately determined depending on the type of alloy. For example, in the case of the above-mentioned high carbon cobalt alloy, the temperature is set at 1000°C to 1250°C.

以上のような工程によって製造された再溶解用電極は、
延性が大きく、例えば前述した高炭素系コバルト合金に
おいては、−次浴解後のインゴットの伸びはO,SS以
下程度であるのに対し、熱間鍛造および歪取り熱処理後
つ伸びは7%程度になる。このため、この再溶解用電極
は、再溶解時に      4電極に生ずる熱応力にも
充分対応でき、したがりて、電極の割れやこれに伴う脱
活を防止することができる。
The remelting electrode manufactured by the above process is
For example, in the high carbon cobalt alloy mentioned above, the elongation of the ingot after hot forging and strain relief heat treatment is about 7%, whereas the elongation of the ingot after hot forging and strain relief heat treatment is about 7%. become. Therefore, this remelting electrode can sufficiently cope with the thermal stress generated in the four electrodes during remelting, and can therefore prevent cracking of the electrodes and the accompanying deactivation.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明の再溶解用電極の製造方
法によれば、配合された原料を一次溶解した後、インゴ
ットを製造し、このインゴットを熱間鍛造した後、歪取
り熱処理を行ない再溶解用電極を製造するようにしたか
ら、この再溶解用電極の延性を大きくすることができ、
したがつ【、再溶解時の熱応力によって再溶解用電極に
割れが発生するのを防止することができ、これに伴う電
極の一部の脱法を防止することができるという効果が得
られる。
As explained above, according to the method for manufacturing a remelting electrode of the present invention, an ingot is manufactured after primary melting of the blended raw materials, and this ingot is hot forged, and then subjected to strain relief heat treatment to be remelted. Since we started manufacturing electrodes for melting, we were able to increase the ductility of this electrode for remelting.
Therefore, it is possible to prevent cracks from occurring in the remelting electrode due to thermal stress during remelting, and it is possible to prevent part of the electrode from coming off due to this.

Claims (1)

【特許請求の範囲】[Claims] 真空アーク溶解炉、エレクトロスラグ溶解炉等の再溶解
炉で用いられる電極の製造方法であつて、配合された原
料を一次溶解した後、インゴットを製造し、このインゴ
ットを熱間鍛造した後、歪取り熱処理を行なうことを特
徴とする再溶解用電極の製造方法。
A method for manufacturing electrodes used in remelting furnaces such as vacuum arc melting furnaces and electroslag melting furnaces, in which an ingot is manufactured after primary melting of blended raw materials, and after hot forging this ingot, straining is performed. A method for producing an electrode for remelting, which comprises performing a heat treatment.
JP59253868A 1984-11-30 1984-11-30 Production of electrode for remelting Granted JPS61133333A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253868A JPS61133333A (en) 1984-11-30 1984-11-30 Production of electrode for remelting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253868A JPS61133333A (en) 1984-11-30 1984-11-30 Production of electrode for remelting

Publications (2)

Publication Number Publication Date
JPS61133333A true JPS61133333A (en) 1986-06-20
JPS647140B2 JPS647140B2 (en) 1989-02-07

Family

ID=17257246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253868A Granted JPS61133333A (en) 1984-11-30 1984-11-30 Production of electrode for remelting

Country Status (1)

Country Link
JP (1) JPS61133333A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277751A (en) * 1990-03-27 1991-12-09 Mitsubishi Materials Corp Production of electrode for remelting
JPH09241767A (en) * 1996-03-08 1997-09-16 Hitachi Metals Ltd Consumable electrode type remelting method for superalloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10835355B2 (en) 2006-04-20 2020-11-17 Sonendo, Inc. Apparatus and methods for treating root canals of teeth
US10631962B2 (en) 2012-04-13 2020-04-28 Sonendo, Inc. Apparatus and methods for cleaning teeth and gingival pockets
US10363120B2 (en) 2012-12-20 2019-07-30 Sonendo, Inc. Apparatus and methods for cleaning teeth and root canals
KR102232498B1 (en) * 2019-02-27 2021-03-29 한국광기술원 Photoacoustic Simulus Apparatus for Oral Cavity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ELECTROSLAG CONSUMABLE ELECTRODE REMELTING AND CASTING TECHNOLOGY=1967 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03277751A (en) * 1990-03-27 1991-12-09 Mitsubishi Materials Corp Production of electrode for remelting
JPH09241767A (en) * 1996-03-08 1997-09-16 Hitachi Metals Ltd Consumable electrode type remelting method for superalloy

Also Published As

Publication number Publication date
JPS647140B2 (en) 1989-02-07

Similar Documents

Publication Publication Date Title
RU2716967C2 (en) Alloy melting and refining method
RU2272083C2 (en) The method of production of the ingots of the large diameter out of alloys on the basis of nickel
EP3985139A1 (en) Low-chromium corrosion-resistant high-strength polycrystalline high-temperature alloy and preparation method therefor
US11124861B2 (en) Processes for producing low nitrogen essentially nitride-free chromium and chromium plus niobium-containing nickel-based alloys and the resulting chromium and nickel-based alloys
CN109112408A (en) The manufacturing method of the heat-resisting steel forgings of big specification P92
CN110484775B (en) Process method for reducing metallurgical defects of GH4169 nickel-based alloy ingot
CN111020245B (en) Preparation method of nickel-copper corrosion-resistant alloy
CN114934205B (en) Smelting method for nickel-based superalloy with high purity
CN108262365B (en) Processing method for smelting TC4 alloy in electron beam cold hearth furnace and processing method for medium plate blank
CN111455219A (en) Electron beam cold hearth smelting method for nickel-based alloy
JPS61133333A (en) Production of electrode for remelting
CN105861848A (en) Method for preparing Fe-Mn alloy in electroslag remelting mode
CN113355587A (en) High-speed steel and method for comprehensively improving as-cast structure by microalloying magnesium and rare earth thereof and increasing solidification pressure
CN104646955B (en) A kind of preparation method of 20CrNi4 material perforating head
JP3606404B2 (en) Consumable electrode type remelting method of super heat-resistant alloy
JPS5819732B2 (en) Kid's day job
RU2274671C1 (en) Method of production of the carbon-free casting high-temperature alloys
JPH03277751A (en) Production of electrode for remelting
Bhowal et al. Full scale gatorizing of fine grain inconel 718
RU2811632C1 (en) METHOD OF VACUUM ARC FINAL REMELTING OF Ti-6Al-2Sn-4Zr-6Mo TITANIUM ALLOY INGOTS
US3288589A (en) Process for the production of exceptionally-clean steel
CN108642400A (en) A kind of high-performance carbide mold materials and preparation method thereof
CN108950412A (en) A kind of heat proof material and preparation method thereof for electric furnace accessory
CN115927950B (en) Carbon-nitrogen-containing high-chromium ferrite stainless steel and manufacturing method thereof
RU2716326C1 (en) Method of obtaining high-alloy heat resistant alloys on nickel base with titanium and aluminium content in narrow range