JPS61133103A - Purification of fine ceramic powder - Google Patents

Purification of fine ceramic powder

Info

Publication number
JPS61133103A
JPS61133103A JP59254206A JP25420684A JPS61133103A JP S61133103 A JPS61133103 A JP S61133103A JP 59254206 A JP59254206 A JP 59254206A JP 25420684 A JP25420684 A JP 25420684A JP S61133103 A JPS61133103 A JP S61133103A
Authority
JP
Japan
Prior art keywords
ceramic powder
slurry
impurities
fine ceramic
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59254206A
Other languages
Japanese (ja)
Inventor
Takayoshi Ito
伊藤 孝良
Koichi Matsumoto
紘一 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59254206A priority Critical patent/JPS61133103A/en
Publication of JPS61133103A publication Critical patent/JPS61133103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To remove impurities in the fine ceramic powder selectively and effectively by prepg. acidic slurry of the fine ceramic powder and filtering with a porous membrane having a specified mean pore size. CONSTITUTION:Fine ceramic powder of SiC, Si3N3, etc., contg. impurities such as iron, aluminum, etc. is dispersed in water, stirred after adding HCl and then allowed to stand. The acidic slurry is filtered through an acid-resistant porous membrane having 0.1-1mum mean pore size, and pure water is added to the slurry at the time when a fixed amt. of filtrate is withdrawn from the system. The concentration-water addition is repeatedly performed. The end point of the concentration-water addition procedure is confirmed by measuring the pH or electroconductivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はセラミック微粉の精製方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for purifying ceramic fine powder.

〔従来の技術〕[Conventional technology]

セラミック、中でも炭化ケイ素や窒化ケイ素は、金属に
比べ耐熱性や高温強度に優れた特性を持ち、過酷な条件
下で使用可能なことから各種機械部品や構造体材料とし
て大きな期待を寄せられているが、原料に由来する不純
物を含んでいる。
Ceramics, especially silicon carbide and silicon nitride, have superior heat resistance and high-temperature strength properties compared to metals, and can be used under harsh conditions, so they hold great promise as materials for various mechanical parts and structures. However, it contains impurities derived from the raw materials.

これらの不純物は物性面に大きく影響するので、可能な
限り除去されることが望ましい。
Since these impurities greatly affect the physical properties, it is desirable to remove them as much as possible.

一般的に炭化ケイ素、窒化ケイ素はケイ砂または四塩化
ケイ素などケイ砂からの誘導体を高温下で還元すること
Kより製造されるが、ケイ砂中に含まれる鉄、アルミニ
ウムなどが不純物として存在している。
Generally, silicon carbide and silicon nitride are produced by reducing silica sand or derivatives from silica sand such as silicon tetrachloride at high temperatures, but iron, aluminum, etc. contained in silica sand are present as impurities. ing.

これらの不純物を除去する方法としては磁性体に吸着さ
せる磁性分離や、微粉を水中に分散させた後酸を加えデ
カンテーションしたり、フィルタープレスでテ別する方
法があるが次のような問題点がある。
Methods for removing these impurities include magnetic separation by adsorption to a magnetic material, dispersion of fine powder in water, addition of acid and decantation, and separation using a filter press, but these methods have the following problems: There is.

磁力を利用する場合には微粉をくまなく磁性体と接触さ
せることが困難であるため鉄分の除去効率が著しく悪い
ばかりでなく、アルミニウムにあっては除去不可能であ
る。
When using magnetic force, it is difficult to bring all the fine powder into contact with the magnetic material, so not only is the removal efficiency of iron extremely poor, but it is also impossible to remove iron from aluminum.

またデカンテーション法では、酸性スラリーの場合はス
ラリー中の固形分が比較的容易に沈降するので不純物を
上澄液として取り出せるものの、不純物を所定量以下に
減じるためには純水を加えては上澄液を取り出す操作を
繰9返し行わなければならず、しかも中性域に近づくに
つれてスラリ−の分散性が向上し固形分が沈降しにくく
なるため上泄液の取り出しが困難となり、不純物の除去
に限界がある。
In addition, in the decantation method, in the case of acidic slurry, the solid content in the slurry settles relatively easily, so impurities can be removed as a supernatant liquid, but in order to reduce the impurities to a predetermined amount, pure water must be added to the supernatant liquid. The operation of removing the clear liquid must be repeated nine times, and as it approaches the neutral range, the dispersibility of the slurry improves and the solid content becomes difficult to settle, making it difficult to remove the supernatant liquid, making it difficult to remove impurities. There are limits to

フィルタープレス法では連続処理がむずかしく、人手が
かかるなど作業性に問題があるばかりでなく、炉材の目
づまりが生じやすく、濾過速度が緩慢になるという欠点
がδる。
The filter press method not only has problems with workability, such as difficult and labor-intensive continuous processing, but also has drawbacks such as clogging of the furnace material and slow filtration rate.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はセラミック微粉中に含まれる不純物を効率的に
除去し、高純度のセラミック微粉を製造することを目的
とする。
An object of the present invention is to efficiently remove impurities contained in fine ceramic powder and to produce fine ceramic powder of high purity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは炭化ケイ素及び窒化ケイ素微粉中に含まれ
る不純物を効率的に除去する方法に関し鋭意検討した結
果、これらの微粉を水中に5〜40%の濃度で分散させ
、次いで不純物を塩として水中に溶解するに充分な量の
酸を加えて酸性スラリーとなした後、平均孔径が0.1
〜1μmの多孔膜に供給し、濃縮−加水操作を繰り返し
行うことによりテ過速匿を低下させることなく選択的に
不純物の除去が可能であることを見い出し本発明に至っ
た。
The inventors of the present invention conducted intensive studies on a method for efficiently removing impurities contained in silicon carbide and silicon nitride fine powders, and found that these fine powders were dispersed in water at a concentration of 5 to 40%, and then the impurities were converted into salts. After adding enough acid to dissolve in water to form an acidic slurry, the average pore size is 0.1.
The inventors have discovered that impurities can be selectively removed without deteriorating the over-containing property by supplying it to a porous membrane of ~1 μm and repeating the concentration-hydration operation, leading to the present invention.

本発明において便用される多孔膜の平均孔径は0.1〜
1μm1好ましくは0.3〜0.5μ乳であることが必
要である。平均孔径が0.1μmより小さい多孔膜では
不純物の除去目的は達せられるが、不純物を比較的多く
含むスラIJ−4−濾過した場合、時間の経過と共に膜
の目づまり現象が生じ、濾過速度が著しく低下する。
The average pore diameter of the porous membrane used in the present invention is 0.1 to
It is necessary that the amount of milk is 1 μm, preferably 0.3 to 0.5 μm. Porous membranes with an average pore size smaller than 0.1 μm can achieve the purpose of removing impurities, but when filtering with a slug IJ-4 that contains relatively many impurities, the membrane becomes clogged over time and the filtration rate decreases. Significantly decreased.

また平均孔径が1μmより大きい多孔膜では、−過量始
時や濾過圧力などの操作条件が変化した場合、及び不純
物の量によってスラリー粒子の分散状態が変わる咋めと
考えられるが比較的不純物の少いスラリーを濾過した場
合に固形分の一部が透過してしまうため安定的に不純物
のみを除去することができない。なお本発明に示す平均
孔径は標準ラテックス球の阻止率により決定される。
In addition, in porous membranes with an average pore size larger than 1 μm, it is thought that the dispersion state of slurry particles changes depending on the start of overfeeding, filtration pressure, and other operating conditions, and the amount of impurities. When a slurry is filtered, a portion of the solid content permeates through the filter, making it impossible to remove only impurities in a stable manner. Note that the average pore diameter shown in the present invention is determined by the rejection rate of standard latex spheres.

本発明に使用される酸は不純物と反応して水に可溶な塩
を生成しうるものであれば良く、通常塩酸が用いられる
The acid used in the present invention may be any acid that can react with impurities to produce a water-soluble salt, and hydrochloric acid is usually used.

多孔膜の材質はポリエチレン、ポリプロピレン、ポリ7
フ化ビニリゾ7など耐酸性のものであれば任意に選択す
ることができ、特に限定されるものではない。
The material of the porous membrane is polyethylene, polypropylene, poly7
Any acid-resistant material such as vinylizo fluoride 7 can be selected, and is not particularly limited.

本発明の方法は平均孔径0.1〜1μ雇の多孔膜を使用
し、濃縮−加水操作を繰り返し行い酸性スラリーを中性
スラリーとすることに=9不純物を除去するものである
が、1回の濃縮度は不純物の除去効率を大きく左右する
重要な因子である。一般に膜分離において濾過速度は被
濾過物質の製置に大きく支配されるが、本スラリー41
−F遇する場合の濾過速度は固形分濃度による変化が小
さい。
The method of the present invention uses a porous membrane with an average pore diameter of 0.1 to 1 μm, and repeats the concentration and water addition operations to convert acidic slurry into neutral slurry and remove impurities. The concentration of is an important factor that greatly influences the impurity removal efficiency. In general, the filtration rate in membrane separation is largely controlled by the preparation of the substance to be filtered, but this slurry 41
The filtration rate in the case of −F does not change much depending on the solid content concentration.

したがって、本発明では1回で45〜50チ濃度まで濃
縮を行うことがより効率的である。濃縮−加水操作の終
点はpHあるいは電導度の測定により確認される。
Therefore, in the present invention, it is more efficient to concentrate to a concentration of 45 to 50 in one go. The end point of the concentration-hydration operation is confirmed by measuring pH or conductivity.

〔実施例〕〔Example〕

実施例1 鉄分を1.6%含む炭化ケイ素微粉10.4Kfを40
tの水に分散させ、次いで35%塩酸1.4Kpを添加
し強く攪拌しながら1夜放置した。このものを温度28
〜30℃にコントロールしながら下記に示す4@謂の膜
に入口圧力1−aKf/aAG%出ロ圧力o 、s K
ty/cdGの条件でろ液を元に戻しながら48時間連
続的にそれぞれ供給し、−過測度の測定とF液の濁りの
観察を行った。
Example 1 40% silicon carbide fine powder containing 1.6% iron
Then, 1.4 Kp of 35% hydrochloric acid was added and left overnight with strong stirring. This thing has a temperature of 28
While controlling the temperature to ~30°C, the inlet pressure 1-aKf/aAG% outlet pressure o, sK is applied to the membrane shown below.
The filtrate was continuously supplied for 48 hours while being returned to its original state under the conditions of ty/cdG, and the -transmittance was measured and the turbidity of the F solution was observed.

■ 公称分画分子量(以下CMWと示す)sooooの
ポリアクリロニトリル系中空糸凰限外濾過膜(中空糸内
径1.3藺φ膜面積0.1d) ■ 平均孔径20.1μmのフッ素樹脂系中空糸型多孔
膜(中空糸内径1.1 tmφ、膜面積0.1ゴ)■ 
平均孔径0.3μmのフッ素樹脂系中空糸凰多孔膜(中
空糸内径1.1mφ、膜面積o、xi)■ 平均孔径1
.1μ雇のフッ素貢脂系中空糸型多孔膜(中空糸内径1
.1!IJφ、膜面積0.in?)第1表に次の式によ
り定義される濾過速度の保持率と目視によるF液の濁り
の有無を示した。
■ Polyacrylonitrile hollow fiber ultrafiltration membrane with a nominal molecular weight cut off (hereinafter referred to as CMW) soooo (hollow fiber inner diameter 1.3 mm, φ membrane area 0.1 d) ■ Fluororesin hollow fiber with an average pore diameter of 20.1 μm Type porous membrane (hollow fiber inner diameter 1.1 tmφ, membrane area 0.1 mm)■
Fluororesin hollow fiber porous membrane with an average pore diameter of 0.3 μm (hollow fiber inner diameter 1.1 mφ, membrane area o, xi) ■ Average pore diameter 1
.. Fluorine-containing lipid-based hollow fiber porous membrane of 1 μm (hollow fiber inner diameter 1
.. 1! IJφ, membrane area 0. In? ) Table 1 shows the retention rate of filtration rate defined by the following formula and the presence or absence of turbidity of liquid F by visual observation.

第1表 実施例2 鉄分の含有量が0.3 %である以外実施例1と全く同
様の操作を行った結果を第2表に示す。
Table 1 Example 2 Table 2 shows the results of carrying out the same operations as in Example 1 except that the iron content was 0.3%.

第  2  表 実施例3 鉄分1.2%を含む炭化ケイ素微粉s、2Kgを2OL
の水に分散させ、次いで35チ塩酸を560?添加し強
く攪拌しながら1夜放置した後、平均孔径が0.3μm
のフッ素樹脂系中空糸型多孔膜(中空糸内径1.1wφ
、膜面積0.1/)に入口圧力1.5 KqladG 
、出口圧力0.5 Kf/dGの条件で温度を25〜2
8℃にコントロールしながら供給した。スラリーのpH
は1.2であった。
Table 2 Example 3 2 OL of 2 kg of silicon carbide fine powder s containing 1.2% iron
of water, then 35% hydrochloric acid to 560% of water. After adding and leaving overnight with strong stirring, the average pore size was 0.3 μm.
Fluororesin hollow fiber porous membrane (hollow fiber inner diameter 1.1wφ
, membrane area 0.1/) and inlet pressure 1.5 KqladG
, the temperature was set to 25 to 2 with outlet pressure of 0.5 Kf/dG.
It was supplied under control at 8°C. Slurry pH
was 1.2.

次に炉液t−101,系外に抜き出した時点で106の
純水を加える操作tl−20回繰り返した。この間F液
は全く清澄であり、かつ濾過速度は製編前が415 t
/Hr −rd 、  2倍濃度に濃縮した時が361
!、/Hr−ゴであり20回目まで変化はみられなかっ
た。なお、20回の繰り返し繰作を終えた後のpHは5
−4であり、スラリーの一部をサンプリングし加熱乾燥
後鉄分を分析し友結果は510 ppmであった。
Next, when the furnace liquid t-101 was extracted from the system, the operation of adding pure water of 106 was repeated tl-20 times. During this time, the F solution was completely clear, and the filtration rate was 415 t before knitting.
/Hr -rd, 361 when concentrated to twice the concentration
! , /Hr-go, and no change was observed until the 20th test. In addition, the pH after completing 20 repetitions is 5.
-4, and a part of the slurry was sampled and analyzed for iron content after heating and drying, and the iron content was 510 ppm.

〔発明の効果〕〔Effect of the invention〕

以上述べた如く、本発明の方法によれは炭化ケイ素や窒
化ケイ素微粉中の不純物を選択的かつ効率的に除去する
ことが可能であり、しかも単純な操作により除去できる
ので、セラミック微粉の精製手段として有効である。
As described above, the method of the present invention can selectively and efficiently remove impurities in silicon carbide or silicon nitride fine powder, and can be removed by a simple operation, so it can be used as a means for purifying ceramic fine powder. It is valid as

Claims (1)

【特許請求の範囲】[Claims] (1)セラミック微粉を酸性状態で水中に分散させ酸性
スラリーとなした後、該酸性スラリーを平均孔径が0.
1〜1μmの多孔膜で濾過し、スラリー中の不純物を選
択的に除去することを特徴とするセラミック微粉の精製
方法
(1) After dispersing ceramic fine powder in water in an acidic state to form an acidic slurry, the acidic slurry is mixed with an average pore size of 0.
A method for purifying fine ceramic powder, characterized by selectively removing impurities in a slurry by filtering through a porous membrane of 1 to 1 μm.
JP59254206A 1984-12-03 1984-12-03 Purification of fine ceramic powder Pending JPS61133103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59254206A JPS61133103A (en) 1984-12-03 1984-12-03 Purification of fine ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59254206A JPS61133103A (en) 1984-12-03 1984-12-03 Purification of fine ceramic powder

Publications (1)

Publication Number Publication Date
JPS61133103A true JPS61133103A (en) 1986-06-20

Family

ID=17261727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59254206A Pending JPS61133103A (en) 1984-12-03 1984-12-03 Purification of fine ceramic powder

Country Status (1)

Country Link
JP (1) JPS61133103A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035746A1 (en) * 1997-02-14 1998-08-20 Warner-Jenkinson Company, Inc. Method and apparatus for purifying water-insoluble compounds

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998035746A1 (en) * 1997-02-14 1998-08-20 Warner-Jenkinson Company, Inc. Method and apparatus for purifying water-insoluble compounds
GB2337214A (en) * 1997-02-14 1999-11-17 Warner Jenkinson Co Inc Method and apparatus for purifying water-insoluble compounds
GB2337214B (en) * 1997-02-14 2000-09-20 Warner Jenkinson Co Inc Method for purifying water-insoluble compounds

Similar Documents

Publication Publication Date Title
CN106044951B (en) Method and device for recycling industrial acidic wastewater
NZ211755A (en) Ultrafiltration membrane and preparative method
Eom et al. Low-cost clay-based membranes for oily wastewater treatment
Monash et al. Various fabrication methods of porous ceramic supports for membrane applications
CN101318808B (en) Porous ceramic supporting body for high-strength inorganic separation film
Khemakhem et al. Development of an asymmetric ultrafiltration membrane based on phosphates industry sub-products
Bessa et al. Air-sintered silicon (Si)-bonded silicon carbide (SiC) hollow fiber membranes for oil/water separation
CN102041155A (en) Silicon wafer cutting waste liquor recycling method
Rekik et al. Development of an asymmetric ultrafiltration membrane from naturally occurring kaolin clays: Application for the cuttlefish effluents treatment
Das et al. Permeability behavior and wastewater filtration performance of mullite bonded porous SiC ceramic membrane prepared using coal fly ash as sintering additive
Elomari et al. Preparation and characterization of low-cost zirconia/clay membrane for removal of acid orange 74 dye
JPS61133103A (en) Purification of fine ceramic powder
Chen et al. Preparation and mechanism analysis of high performance ceramic membrane by spray coating
Huang et al. Alumina separation layer with uniform pore size applied on a support with broad pore size distribution
US3923654A (en) Ultrafiltration membrane
US10857505B2 (en) Ceramic hollow fiber membranes with improved mechanical properties
US20180015426A1 (en) SiC-NITRIDE OR SiC-OXYNITRIDE COMPOSITE MEMBRANE FILTERS
JP2002136969A (en) Method for removing particulate matter from aqueous suspension
JPH0366705A (en) Method for purifying polymer
JPH01294521A (en) Production of aqueous colloid dispersion of rare earth element compound and product
CN211497427U (en) Alcohols recovery unit
CN113830922A (en) Large-particle titanium gypsum, preparation method and application
WO2013166789A1 (en) Cadmium removing process in zinc-containing solution purification and purification method of zinc-containing solution
CN109722272A (en) A kind of solvent purification methods and device
JP2810234B2 (en) Desiliconization method of inorganic aqueous solution