JPS61132898A - Method of solidying and treating radioactive waste - Google Patents

Method of solidying and treating radioactive waste

Info

Publication number
JPS61132898A
JPS61132898A JP25453284A JP25453284A JPS61132898A JP S61132898 A JPS61132898 A JP S61132898A JP 25453284 A JP25453284 A JP 25453284A JP 25453284 A JP25453284 A JP 25453284A JP S61132898 A JPS61132898 A JP S61132898A
Authority
JP
Japan
Prior art keywords
radioactive waste
weight
amount
radioactive
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25453284A
Other languages
Japanese (ja)
Inventor
尚実 豊原
松浦 宏之
川西 宣男
多賀 純一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP25453284A priority Critical patent/JPS61132898A/en
Publication of JPS61132898A publication Critical patent/JPS61132898A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、核燃料再処理m設で発生する硝酸ナトリウム
を含有する中低レベルの放射性濃縮廃液の固化処理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for solidifying a radioactive concentrated waste liquid of medium to low level containing sodium nitrate generated in a nuclear fuel reprocessing facility.

[発明の技術的背1ll 一般に、原子力発電所の運転に伴ない使用済み核燃料が
発生するが、この使用済み核燃料中にはUあるいはPu
のような高速増殖炉の燃料となる有価物質が含まれてお
り、これらの有価物質を使用済み核燃料再処理施設にお
いて回収することが行なわれている。
[Technical background of the invention 1ll Generally, spent nuclear fuel is generated as a result of the operation of a nuclear power plant, and this spent nuclear fuel contains U or Pu.
It contains valuable materials that can be used as fuel for fast breeder reactors such as, and these valuable materials are recovered at spent nuclear fuel reprocessing facilities.

使用済み核燃料からのUあるいはPuの回収は、通常P
urex法と呼ばれる方法により行なわれている。
Recovery of U or Pu from spent nuclear fuel is usually performed using P.
This is performed using a method called the urex method.

この方法は、使用済み核燃料を硝酸で溶解してUあるい
はPuをイオン化させ、この溶液とリン酸トリブチル(
以下TBPという)−nドデカン混合有機溶媒を接触さ
せ回収するものである。
In this method, spent nuclear fuel is dissolved in nitric acid to ionize U or Pu, and this solution and tributyl phosphate (
(hereinafter referred to as TBP)-n dodecane mixed organic solvent is contacted and recovered.

すなわち、Uあるいはpuのイオンは温度、酸濃度、原
子価によりTBPと錯体を作り易くなるので、TBPを
用いて錯体を作らせ、これを硝酸溶液中から有機溶剤中
に移行させ、さらに水と接触させて、原子価や酸濃度調
整によりUあるいはPuを逆抽出して回収するのである
In other words, U or pu ions tend to form complexes with TBP depending on temperature, acid concentration, and valence, so they are made to form complexes using TBP, transferred from a nitric acid solution to an organic solvent, and then mixed with water. By bringing them into contact with each other, U or Pu is back extracted and recovered by adjusting the valence and acid concentration.

以上のプロセスを数段階直列に行なうことにより回収率
を高めることができる。
The recovery rate can be increased by performing the above process in several stages in series.

この再処理工程からは、硝酸や放射線照射によって劣化
したTBPを含有する廃液や建屋の床を除染した場合の
廃液が発生し、これらの廃液の処理については高レベル
の放射性廃液と中ないし低レベルの放射性廃液の場合と
でそれぞれ次のような異なった取り扱いがなされている
This reprocessing process generates waste liquid containing TBP degraded by nitric acid and radiation irradiation, as well as waste liquid from decontaminating building floors. Depending on the level of radioactive waste liquid, they are handled differently as follows.

すなわち、高レベルの放射性廃液は主として使用済み核
燃料の溶解工程と第1段目の抽出工程から出る廃液であ
り(103G+/♂以上の放射能含有率)、周知のよう
に溶融したホウケイ鍍ガラスと混合され、いわゆるガラ
ス固化されている。
In other words, the high-level radioactive waste liquid is mainly the waste liquid from the spent nuclear fuel melting process and the first stage extraction process (radioactivity content of 103G+/♂ or more), and as is well known, it is the waste liquid that comes from the spent nuclear fuel melting process and the first stage extraction process (radioactivity content of 103G+/♂ or more), and as is well known, it is a waste liquid that is generated from the spent nuclear fuel melting process and the first stage extraction process. They are mixed and so-called vitrified.

一方、中ないし低レベルの放射性廃液中には、低濃度の
放射能、硝酸および水酸化ナトリウムが含有されている
。この放射性廃液は凝集沈澱や蒸発濃縮器により減容さ
れ、中低レベル放射性廃液貯蔵タンクに貯蔵されている
。通常使用済核燃料1 tonを処理すると中低レベル
放射性廃液は200〜300m2発生すると言われてお
り、これら中低レベル放射性廃液の安全な処理が望まれ
ている。
On the other hand, medium to low-level radioactive waste liquid contains low concentrations of radioactivity, nitric acid, and sodium hydroxide. This radioactive waste liquid is reduced in volume by coagulation sedimentation or evaporative concentrator, and is stored in medium-low level radioactive waste liquid storage tanks. It is said that when 1 ton of spent nuclear fuel is processed, 200 to 300 m2 of medium-low level radioactive waste liquid is generated, and safe processing of these medium-low level radioactive liquid waste liquids is desired.

この低レベル放射性廃液の処理方法として、現在研究さ
れているものにアスファルト固化法とプラスチック固化
法とがある。
As methods for treating this low-level radioactive waste liquid, currently being researched are the asphalt solidification method and the plastic solidification method.

アスファルト固化法は100〜200℃に加熱されて流
動状態とされたアスファルト中に低レベル放射性廃液あ
るいは低レベル放射性廃液の乾燥粉体を供給し、放射能
をアスファルト中に固定してしまう方法である。
The asphalt solidification method is a method in which low-level radioactive waste liquid or dry powder of low-level radioactive waste liquid is supplied into asphalt that has been heated to a temperature of 100 to 200°C to form a fluid state, and the radioactivity is fixed in the asphalt. .

一方、プラスチック固化法は低レベル放射性廃液を乾燥
し、多くの場合熱硬化性樹脂を用いて固化する方法であ
る。これらいずれの方法も放射性廃液中の水分が蒸発し
てしまうことにより減容性が大ぎくなるという利点があ
る。
On the other hand, the plastic solidification method is a method in which low-level radioactive waste liquid is dried and solidified, often using thermosetting resin. All of these methods have the advantage that the water in the radioactive waste liquid evaporates, resulting in greater volume reduction.

[背景技術の問題点] しかしながら、このようなアスファルト固化法あるいは
プラスチック固化法は、いずれも原子力発電所から発生
する低レベル放射性廃液の固化のために開発された方法
であって、この方法を核燃料再処理施設から発生する廃
液にこのまま適用するには次のような問題があった。
[Problems in the Background Art] However, both the asphalt solidification method and the plastic solidification method were developed for the solidification of low-level radioactive waste fluid generated from nuclear power plants, and this method is not applicable to nuclear fuel. There were the following problems in applying this method to waste liquid generated from reprocessing facilities.

すなわち、これらアスファルト固化法あるいはプラスチ
ック固化法で作られる固化体の機械的、化学的諸性質は
放射性廃棄物固化体として要求される条件をすべて満足
してはいるが、アスファルト固化体やプラスチック固化
体は固化材が有機材料であるため、高温に長い間保持さ
れると劣化するという問題がある。
In other words, although the mechanical and chemical properties of the solidified material produced by these asphalt solidification methods or plastic solidification methods satisfy all the conditions required for solidified radioactive waste, Because the solidifying material is an organic material, there is a problem that it deteriorates if kept at high temperatures for a long time.

一方、固化体としての耐久年数を固化体に含まれる放射
能の種類から見ると、原子力発電所から発生する低レベ
ル放射性廃液の主な核梯は■C0であり、その半減期は
約5年である。
On the other hand, when looking at the durability of a solidified body from the type of radioactivity contained in the solidified body, the main nuclear ladder of low-level radioactive waste generated from nuclear power plants is ■C0, and its half-life is approximately 5 years. It is.

したがって、固化体を50年間管理すれば放射能は1/
1000.100年では1/ 1000000になる。
Therefore, if the solidified material is managed for 50 years, the radioactivity will decrease by 1/2.
In 1000.100 years, it becomes 1/1000000.

これに対して、核燃料再処理施設から発生する放射性廃
液中に含まれる放射能はほとんどが核分裂生成物であり
、非常に長い半減期のものも含まれてくる。例えば、”
 Csの半減期は30年であるため、放射能を1/10
00にするためには300年、1/ 1000000に
するには600年の歳月が必要である。従って、このよ
うな長い歳月においては、地殻変動や火事による固化体
の加熱もないと言い切れず、従って長期間にわたる厳重
な管理が必要となり、実大な経費が必要となる。
In contrast, most of the radioactivity contained in radioactive waste fluid generated from nuclear fuel reprocessing facilities is fission products, including those with extremely long half-lives. for example,"
Since the half-life of Cs is 30 years, the radioactivity can be reduced to 1/10.
It takes 300 years to reduce it to 00, and 600 years to reduce it to 1/1000000. Therefore, over such a long period of time, it cannot be guaranteed that there will be no crustal deformation or heating of the solidified material due to fire, and therefore, strict management over a long period of time is required, which requires a considerable amount of expense.

また、アスファルト固化法およびプラスチック固化法の
一般的な問題として、両方とも廃棄物の前処理としては
乾燥処理が行なわれるだけであり、廃棄物自体が分解す
るプロセスはないので、これ以上の減容が求められる場
合不都合となるという問題がある。
In addition, a general problem with the asphalt solidification method and the plastic solidification method is that both only involve drying as pretreatment of waste, and there is no process to decompose the waste itself, so it is difficult to reduce the volume further. There is a problem that it becomes inconvenient when required.

[発明の目的] 本発明者等は、このようなアスファルト固化法あるいは
プラスチック固化法の欠点を解消すさく鋭意研究をすす
めた結果、核燃料再処理施設等の放射性物質取り扱い施
設で発生する硝酸ナトリウムを含む中低レベル放射性濃
縮廃液を乾燥しガラス化材とともに加熱溶融することに
より、高い減容化率で、機械的、化学的諸性質に優れた
ガラス固化体が得られることを見い出した。
[Purpose of the Invention] As a result of intensive research aimed at eliminating the drawbacks of the asphalt solidification method or plastic solidification method, the present inventors have succeeded in reducing the amount of sodium nitrate generated in facilities that handle radioactive materials such as nuclear fuel reprocessing facilities. We have discovered that by drying the concentrated waste liquid containing medium to low level radioactivity and heating and melting it together with a vitrification material, a vitrified material with a high volume reduction rate and excellent mechanical and chemical properties can be obtained.

すなわち、核燃料再処理施設から発生する中低レベル放
射性廃液中には硝酸ナトリウムおよび微量の亜硝酸ナト
リウムの他に炭酸ナトリウムが含有されている。これら
のナトリウム化合物の融点は順に308℃、308℃、
852℃であり、それぞれこの温度以上でWJazにな
る。これらのナトリウム化合物はそれぞれガラス工業に
おいて利用される素材であり、酸化ケイ素との反応で分
解しガラス化する。
That is, medium- and low-level radioactive waste fluid generated from nuclear fuel reprocessing facilities contains sodium carbonate in addition to sodium nitrate and trace amounts of sodium nitrite. The melting points of these sodium compounds are 308°C, 308°C,
The temperature is 852°C, and the temperature becomes WJaz above this temperature. Each of these sodium compounds is a material used in the glass industry, and is decomposed and vitrified by reaction with silicon oxide.

このガラス固化体は耐久性に優れ、放射能を長期開封じ
込めるのに最適である。
This vitrified material has excellent durability and is ideal for long-term containment of radioactivity.

本発明、は、かかる知見に基づいてなされたもので、核
燃料再処理施設等から発生する放射性廃棄物の固化処理
方法を提供することを目的とする。
The present invention was made based on this knowledge, and an object of the present invention is to provide a method for solidifying radioactive waste generated from nuclear fuel reprocessing facilities and the like.

[発明の概要] 先に述べたように、核燃料再処理施設から発生する中低
レベル放射性廃液中(103CI/IN3以下の放射能
濃度)には硝酸ナトリゲムや亜硝酸ナトリウムの他に炭
酸ナトリウムが含有されているが、これらのナトリウム
化合物は、二酸化ケイ素の存在下でそれぞれ次の(1)
〜(2)式で示されるように反応して、ソーダ・ケイ酸
ガラスとなりガラス化する。
[Summary of the Invention] As mentioned earlier, medium-low level radioactive waste liquid (radioactivity concentration of 103 CI/IN3 or less) generated from nuclear fuel reprocessing facilities contains sodium carbonate in addition to sodium nitrate and sodium nitrite. However, these sodium compounds each have the following (1) in the presence of silicon dioxide:
It reacts as shown in formula (2) to become soda-silicate glass and is vitrified.

2Na N0342Na NO2+022Na NO2
−+Na 20+N2 +(’1/2)02Na 20
+Si 02−+Si 02−Na 20・・・(1) Na 2 CO3−+Na z O+CO2Na 20
+Si Oz−+Si 02 ・Na z O・・・(
2) (1)および(2)の反応は約1200℃で容易に進行
する。
2Na N0342Na NO2+022Na NO2
-+Na 20+N2 +('1/2)02Na 20
+Si02-+Si02-Na20...(1) Na2CO3-+NazO+CO2Na20
+SiOz-+SiO2 ・NazO...(
2) The reactions (1) and (2) proceed easily at about 1200°C.

またガラス化材として二酸化ケイ素とともにホウ酸、水
酸化アルミニウム、炭酸カルシウムを併用するとガラス
化反応を円滑に進行させることができる。
Further, when boric acid, aluminum hydroxide, and calcium carbonate are used in combination with silicon dioxide as a vitrification agent, the vitrification reaction can proceed smoothly.

すなわち、ガラス化材として二酸化ケイ素のみを使用し
ていると生成したガラスの粘性が高くなって均質なガラ
スができにくくなり、かつ溶融温度も次第に高くなるが
、ホウ酸を使用するとガラスの粘性が低下し、溶融温度
も低下するようになる。
In other words, if only silicon dioxide is used as a vitrifying agent, the viscosity of the resulting glass will increase, making it difficult to form a homogeneous glass, and the melting temperature will gradually increase, but using boric acid will increase the viscosity of the glass. The temperature decreases, and the melting temperature also begins to decrease.

また本発明により形成されるガラスは減容性を高くする
ためにソーダ分が多くなっており、したがって耐水性が
低くなっているが、ホウ酸および水酸化アルミニウムは
ガラスの耐水性を向上させる作用をする。
In addition, the glass formed according to the present invention has a high soda content in order to improve volume reduction properties, and therefore has low water resistance, but boric acid and aluminum hydroxide have the effect of improving the water resistance of the glass. do.

以上のように、核燃料再処理施設から発生する中低レベ
ルの放射性廃液に含まれる大部分の化学成分はそのまま
ガラスの原料となるので、放射性廃液を乾燥して放射性
粉体とし、これら粉体に二酸化ケイ素の粉末を加えて′
B潟で溶融すれば、粉体中のナトリウム化合物は容易゛
に分解して酸化ナトリウムとなり二酸化ケイ素と反応し
てガラス化する。
As mentioned above, most of the chemical components contained in medium- and low-level radioactive waste fluid generated from nuclear fuel reprocessing facilities can be used as raw materials for glass, so radioactive waste fluid is dried to form radioactive powder, and these powders are Add silicon dioxide powder
When melted in Lagoon B, the sodium compounds in the powder are easily decomposed into sodium oxide, which reacts with silicon dioxide and becomes vitrified.

ここで注目すべきことは、本発明においては硝酸ナトリ
ウム自体が分解されることによりチッソやw1素を放出
し生成物が大幅に減量されることである。しかも、放射
性濃縮廃液中の放射能は、そのガラス体中に閉じ込めら
れ、極めて安全性の高い固化体が得られるのである。
What should be noted here is that in the present invention, sodium nitrate itself is decomposed to release nitrogen and w1 elements, resulting in a significant reduction in the amount of the product. Furthermore, the radioactivity in the radioactive concentrated waste liquid is confined within the glass body, resulting in an extremely safe solidified product.

ところで、このソーダ・ケイ酸ガラスは酸化ナトリウム
が20重量%以上含まれると極端に耐水性が悪くなり、
その溶融物は水ガラスという名で知られている。菰だ、
酸化ナトリウムが50118%以上になるとガラス状態
を保てなくなることも知られている。
By the way, if this soda-silicate glass contains more than 20% by weight of sodium oxide, its water resistance becomes extremely poor.
The melt is known as water glass. It's a shrimp.
It is also known that when the sodium oxide content exceeds 50118%, the glass state cannot be maintained.

そこで本発明は第三元素としてホウ素、その他の成分と
してアルミニウム化合物、カルシウム化合物を加えるこ
とにより、ホウケイ酸ソーダガラスとなし、形成するガ
ラス体の耐水性、溶融性等の諸性質を向上させたもので
ある。
Therefore, the present invention creates a sodium borosilicate glass by adding boron as a third element and an aluminum compound and a calcium compound as other components, and improves various properties such as water resistance and meltability of the glass body formed. It is.

すなわら本発明の放射性廃棄物の固化処理方法は、核燃
料再処理施設で発生した硝酸ナトリウムを含有する固体
あるいは液体の中低レベル放射性廃棄物を、二酸化ケイ
素、ホウ素化合物、アルミニウム化合物およびアルカリ
土類金属化合物とともに加熱溶融し、放射化合物を取り
込んだNa2Oを少なくとも1511iffi%以上含
むガラス固体廃棄物とすることを特徴とする。
In other words, the radioactive waste solidification treatment method of the present invention converts solid or liquid medium- to low-level radioactive waste containing sodium nitrate generated at a nuclear fuel reprocessing facility into silicon dioxide, boron compounds, aluminum compounds, and alkaline earth. It is characterized in that it is heated and melted together with similar metal compounds to produce glass solid waste containing at least 1511 iffi% of Na2O incorporating radioactive compounds.

本発明で使用される放射性廃棄物は、放射性廃液を濃縮
乾燥して粉体としたものでも、あるいは濃縮廃液のまま
用いてもよい。しかし濃縮廃液の場合には溶融に必要な
熱を水の蒸発に使うためにガラス作成時間が長くなり、
また溶融物の飛散がおこる等の不都合が生じる。従って
放射性廃棄物は乾燥粉体の形で用いることが好ましい。
The radioactive waste used in the present invention may be obtained by concentrating and drying a radioactive waste liquid to form a powder, or may be used as a concentrated waste liquid. However, in the case of concentrated waste liquid, the heat required for melting is used to evaporate the water, which increases the time required to make glass.
Further, problems such as scattering of the melt occur. Therefore, it is preferable to use the radioactive waste in the form of a dry powder.

本発明で用いられる二酸化ケイ素の配合量は、全配合品
の25〜65重量%、特に35〜45重量%が適当であ
る。25重量%未満であると固化体の耐水性が悪くなり
、逆に65g1量%を越えると減容性が悪くなるととも
に溶融温度も高くなる。
The amount of silicon dioxide used in the present invention is suitably 25 to 65% by weight, particularly 35 to 45% by weight of the total compounded product. If it is less than 25% by weight, the water resistance of the solidified product will be poor, and if it exceeds 65g1% by weight, the volume reduction properties will be poor and the melting temperature will also be high.

本発明で用いられるホウ素化合物としては、ホウ酸、ホ
ウ砂、あるいは脱水ホウ砂等が例示されるが、このうち
特にホウ酸が好ましい。ホウ酸以外のホウ素化合物、特
に原子数比でホウ素の1/2モルのナトリウムをガラス
固化体内に持ち込むホウ砂や脱水ホウ砂は好ましくない
Examples of the boron compound used in the present invention include boric acid, borax, and dehydrated borax, among which boric acid is particularly preferred. Boron compounds other than boric acid, especially borax and dehydrated borax, which introduce 1/2 mole of sodium to boron in atomic ratio into the vitrified body are not preferred.

ホウ素化合物の配合量は、ガラス固化体の溶融性を上げ
さらに耐水性を良くするために、ホウ酸換算で1〜20
重量%が適当である。
The blending amount of the boron compound is 1 to 20% in terms of boric acid in order to increase the meltability of the vitrified material and improve the water resistance.
Weight % is appropriate.

本発明で用いられるアルミニウム化合物としては水酸化
アルミニウム、アルミナ(AJ!z Os )、あるい
はカオリン(Aぶ203・2Si Oz・2H20)な
どが例示されるが、このうち特に水酸化アルミニウムが
好ましい。アルミニウム化合物の配合量は、ガラス固化
体の耐水性を向上させ、  。
Examples of the aluminum compound used in the present invention include aluminum hydroxide, alumina (AJ!zOs), and kaolin (Abu203.2SiOz.2H20), among which aluminum hydroxide is particularly preferred. The amount of aluminum compound added improves the water resistance of the vitrified material.

さらに失透を防止するため、水酸化アルミニウム換算で
全配合量の1〜5重量%が適当である。5重量%以上の
添加はガラスの溶融性を著しく低下させるため、好まし
くない。
Furthermore, in order to prevent devitrification, it is appropriate to add 1 to 5% by weight of the total blending amount in terms of aluminum hydroxide. Addition of 5% by weight or more is not preferable because it significantly reduces the meltability of the glass.

本発明で用いられるアルカリ土類金属化合物としては、
炭酸カルシウムのようなカルシウム化合物、ドロマイト
(Ca CO3−vo CO3)などが例示されるが、
このうち特に炭酸カルシウムが好ましい。
The alkaline earth metal compounds used in the present invention include:
Examples include calcium compounds such as calcium carbonate, dolomite (Ca CO3-vo CO3), etc.
Among these, calcium carbonate is particularly preferred.

カルシウム化合物の配合量は、炭酸カルシウム換算で全
配合量の1〜15重量%が適当である。
The appropriate amount of the calcium compound is 1 to 15% by weight of the total amount in terms of calcium carbonate.

なお、核燃料再処理施設から発生する中低レベル放射性
廃液の乾燥粉体中には主成分の硝酸ナトリウムの他に配
管の金属部分の腐蝕により生じた鉄の酸化物や水酸化物
より成るクラッドが含有されているが、本発明によれば
、このクラッド分も、安定な酸化物(Fe 203を主
成分とする金属酸化物)になり、ガラス体中に取り込ま
れることが実験によ’I) ii!認された。
In addition to the main component, sodium nitrate, the dry powder of medium- and low-level radioactive waste generated from nuclear fuel reprocessing facilities contains crud consisting of iron oxides and hydroxides produced by corrosion of metal parts of piping. However, according to the present invention, it has been experimentally shown that this cladding component also becomes a stable oxide (a metal oxide whose main component is Fe203) and is incorporated into the glass body. ii! It has been certified.

本発明における放射性乾燥粉体の添加量は、所期の耐水
性、減容性および溶融性が得られるように適宜設定され
る。
The amount of radioactive dry powder added in the present invention is appropriately set so as to obtain desired water resistance, volume reduction properties, and meltability.

すなわち、放射性廃液乾燥粉体の添加量−の調節により
、高レベル廃液のガラス固化体に匹敵する耐水性を備え
るよう設計することが可能である。
That is, by adjusting the amount of radioactive waste liquid dry powder added, it is possible to design a product with water resistance comparable to that of a vitrified body of high-level waste liquid.

本発明により得られるホウケイ酸ソーダガラスは工業的
に生産されているパイレックスガラス(コーニング グ
ラスワークス社製)のようなホウケイ酸ソーダガラスと
は組成的にかなり異なっており、次のような特徴を有す
る。
The sodium borosilicate glass obtained by the present invention is quite different in composition from industrially produced sodium borosilicate glass such as Pyrex glass (manufactured by Corning Glassworks), and has the following characteristics. .

すなわち、主なガラス副原料であるところの酸化ナトリ
ウムを放射性廃液中のナトリウム化合物の分解によって
得ており、その農は少なくとも15fflffi%以上
になり他のガラスに比べて多いこと、放射能を含有する
ため少しでもin性を良くする必要性からホウ素成分と
酸化カルシウムに代表されるアルカリ土類金属を含有さ
せ、かつ酸化ホウ素成分と酸化アルカリ土類金属成分と
ソーダ成分の合計量が二酸化ケイ素のmと比べて非常に
大きいこと、溶融性を維持し、かつガラス体の耐水性を
上げるためにアルミニウム化合物を添加していること等
の特徴を有している。
In other words, sodium oxide, which is the main glass auxiliary raw material, is obtained by decomposing sodium compounds in radioactive waste liquid, and its content is at least 15 fflffi%, which is higher than other glasses, and it contains radioactivity. Therefore, it is necessary to improve the intensities as much as possible by containing a boron component and an alkaline earth metal represented by calcium oxide, and the total amount of the boron oxide component, alkaline earth metal oxide component, and soda component is m of silicon dioxide. It has characteristics such as being very large compared to the glass body, and adding an aluminum compound to maintain meltability and increase the water resistance of the glass body.

ざらに、高レベル放射能濃縮廃液処理に用いられるガラ
スに比べて、酸化ホウ素成分、ソーダ成分、および酸化
アルカリ土類金属成分の量が多いため、溶融温度が低(
、粘性も小さく溶融性が良いという特徴を有している。
In general, compared to glass used for high-level radioactivity concentrated waste liquid treatment, it has a lower melting temperature (
It has the characteristics of low viscosity and good meltability.

[発明の実施例] 以下本発明の実施例について説明する。[Embodiments of the invention] Examples of the present invention will be described below.

実施例1 、核燃料再処理施設で発生した放射性廃液の乾燥粉体く
硝酸ナトリウム12%、炭酸ナトリウム28%)を、第
1表の配合で、二酸化ケイ素、ホウ酸、水酸化アルミニ
ウム、炭酸カルシウムと混合し、約1200℃で加熱溶
融した。なお、以下の表中の数字は重量%を示している
Example 1 Dry powder of radioactive waste fluid generated at a nuclear fuel reprocessing facility (12% sodium nitrate, 28% sodium carbonate) was mixed with silicon dioxide, boric acid, aluminum hydroxide, and calcium carbonate in the proportions shown in Table 1. The mixture was mixed and heated and melted at about 1200°C. Note that the numbers in the table below indicate weight %.

このようにして得られたガラスの組成は第2表の通りで
あった。
The composition of the glass thus obtained was as shown in Table 2.

(以下余白) 実施例2 硝酸ナトリウムフ2重山%、炭酸ナトリウム28重量%
を混合して各燃料再処理施設で発生する含硝酸廃液の模
擬乾燥粉体を調整し、次にこの模擬乾燥粉体に、二酸化
ケイ素50i1 ffi%、ホウ酸13重量%、水酸化
アルミニウム111に%および炭酸カルシウム7唄ω%
を混合後、1200℃で加熱してガラス固体を作成し、
その物性を調べた。
(Left below) Example 2 Sodium nitrate 28% by weight, sodium carbonate 28% by weight
A simulated dry powder of nitrate-containing acid waste liquid generated at each fuel reprocessing facility was prepared by mixing the following: Next, this simulated dry powder was mixed with 50i1 ffi% of silicon dioxide, 13% by weight of boric acid, and 111% of aluminum hydroxide. % and calcium carbonate 7 songs ω%
After mixing, heat at 1200℃ to create a glass solid,
We investigated its physical properties.

その結果を第3表に示す。The results are shown in Table 3.

(以下余白) [発明の効果] 以上説明したように本発明によれば、耐水性、耐熱性を
有し、しかも経年変化による劣化が少なく、化学的、機
械的強度に優れた放射性ガラス固体廃棄物を製造するこ
とができる。
(The following is a blank space) [Effects of the Invention] As explained above, according to the present invention, radioactive glass solid waste has water resistance, heat resistance, little deterioration due to aging, and excellent chemical and mechanical strength. can manufacture things.

代理人弁理士   須 山 佐 − 育1頁の続きRepresentative Patent Attorney Suyama Sa Continued from page 1 of education

Claims (9)

【特許請求の範囲】[Claims] (1)硝酸ナトリウムを含有する固体あるいは液体の中
低レベル放射性廃棄物を、二酸化ケイ素、ホウ素化合物
、アルミニウム化合物およびアルカリ土類金属化合物と
ともに加熱溶融し、放射化合物を取込んだNa_2Oを
少なくとも15重量%以上含むガラス固体廃棄物とする
ことを特徴とする放射性廃棄物の固化処理方法。
(1) Solid or liquid medium-low level radioactive waste containing sodium nitrate is heated and melted together with silicon dioxide, boron compounds, aluminum compounds and alkaline earth metal compounds, and at least 15 weight of Na_2O containing radioactive compounds is added. % or more of glass solid waste.
(2)硝酸ナトリウムを含有する固体の放射性廃棄物は
、核燃料再処理施設で発生した硝酸ナトリウムを含有す
る放射性濃縮廃液を蒸発して得られる放射性乾燥粉体で
ある特許請求の範囲第1項記載の放射性廃棄物の固化処
理方法。
(2) The solid radioactive waste containing sodium nitrate is radioactive dry powder obtained by evaporating radioactive concentrated waste liquid containing sodium nitrate generated at a nuclear fuel reprocessing facility. radioactive waste solidification treatment method.
(3)ホウ素化合物は、ホウ酸である特許請求の範囲第
1項または第2項記載の放射性廃棄物の固化処理方法。
(3) The method for solidifying radioactive waste according to claim 1 or 2, wherein the boron compound is boric acid.
(4)アルミニウム化合物は、水酸化アルミニウムであ
る特許請求の範囲第1項ないし第3項のいずれか1項記
載の放射性廃棄物の固化処理方法。
(4) The method for solidifying radioactive waste according to any one of claims 1 to 3, wherein the aluminum compound is aluminum hydroxide.
(5)アルカリ土類金属化合物は、炭酸カルシウムであ
る特許請求の範囲第1項ないし第4項のいずれか1項記
載の放射性廃棄物の固化処理方法。
(5) The method for solidifying radioactive waste according to any one of claims 1 to 4, wherein the alkaline earth metal compound is calcium carbonate.
(6)二酸化ケイ素の配合量は、全配合量の25〜65
重量%である特許請求の範囲第1項ないし第5項のいず
れか1項記載の放射性廃棄物の固化処理方法。
(6) The blended amount of silicon dioxide is 25 to 65 of the total blended amount.
% by weight. The method for solidifying radioactive waste according to any one of claims 1 to 5.
(7)ホウ素化合物の配合量は、ホウ酸換算で全配合量
の1〜20重量%である特許請求の範囲第1項ないし第
6項のいずれか1項記載の放射性廃棄物の固化処理方法
(7) The method for solidifying radioactive waste according to any one of claims 1 to 6, wherein the amount of the boron compound is 1 to 20% by weight of the total amount in terms of boric acid. .
(8)アルミニウム化合物の配合量は、水酸化アルミニ
ウム換算で全配合量の1〜5重量%である特許請求の範
囲第1項ないし第7項のいずれか1項記載の放射性廃棄
物の固化処理方法。
(8) Solidification treatment of radioactive waste according to any one of claims 1 to 7, wherein the amount of the aluminum compound is 1 to 5% by weight of the total amount in terms of aluminum hydroxide. Method.
(9)アルカリ土類金属化合物の配合量は、炭酸カルシ
ウム換算で全配合量の1〜15重量%である特許請求の
範囲第1項ないし第8項のいずれか1項記載の放射性廃
棄物の固化処理方法。
(9) The radioactive waste according to any one of claims 1 to 8, wherein the amount of the alkaline earth metal compound is 1 to 15% by weight of the total amount in terms of calcium carbonate. Solidification treatment method.
JP25453284A 1984-11-30 1984-11-30 Method of solidying and treating radioactive waste Pending JPS61132898A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25453284A JPS61132898A (en) 1984-11-30 1984-11-30 Method of solidying and treating radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25453284A JPS61132898A (en) 1984-11-30 1984-11-30 Method of solidying and treating radioactive waste

Publications (1)

Publication Number Publication Date
JPS61132898A true JPS61132898A (en) 1986-06-20

Family

ID=17266348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25453284A Pending JPS61132898A (en) 1984-11-30 1984-11-30 Method of solidying and treating radioactive waste

Country Status (1)

Country Link
JP (1) JPS61132898A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012514206A (en) * 2008-12-30 2012-06-21 アレヴァ・エヌセー Method for treating liquid effluent of nitric acid aqueous solution by calcination and vitrification
JP2012514205A (en) * 2008-12-30 2012-06-21 アレヴァ・エヌセー Method for treating liquid effluent of nitric acid aqueous solution by calcination and vitrification
KR101512285B1 (en) * 2007-09-20 2015-04-15 에너지솔루션, 엘엘씨 Mitigation of secondary phase formation during waste vitrification

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512285B1 (en) * 2007-09-20 2015-04-15 에너지솔루션, 엘엘씨 Mitigation of secondary phase formation during waste vitrification
JP2012514206A (en) * 2008-12-30 2012-06-21 アレヴァ・エヌセー Method for treating liquid effluent of nitric acid aqueous solution by calcination and vitrification
JP2012514205A (en) * 2008-12-30 2012-06-21 アレヴァ・エヌセー Method for treating liquid effluent of nitric acid aqueous solution by calcination and vitrification

Similar Documents

Publication Publication Date Title
US7855313B2 (en) Low-temperature solidification of radioactive and hazardous wastes
Donald et al. A glass-encapsulated calcium phosphate wasteform for the immobilization of actinide-, fluoride-, and chloride-containing radioactive wastes from the pyrochemical reprocessing of plutonium metal
Chen et al. Experimental evidence on formation of ulexite in sulfoaluminate cement paste mixed with high concentration borate solution and its retarding effects
Nasir et al. Thermal analysis and immobilisation of spent ion exchange resin in borosilicate glass
Yang et al. Effect of Fe2O3 on the Immobilization of High‐Level Waste with Magnesium Potassium Phosphate Ceramic
JPS61132898A (en) Method of solidying and treating radioactive waste
JP7114816B2 (en) Additives for the vitrification of liquid, radioactive, cesium radionuclide-containing wastes with high retention efficiency of radionuclides over the entire vitrification temperature range, methods for their preparation and their use
Gupta et al. Synthesis, characterization, and analytical application of zirconium (IV) selenoiodate, a new cation exchanger
JPS63171644A (en) Inorganic ion exchanging substance
Pilania et al. Matrices for radioactive waste immobilization: A review
JPH04118596A (en) Separation method for cesium from aqueous solution containing nitric acid
US6329563B1 (en) Vitrification of ion exchange resins
JP3864203B2 (en) Solidification method for radioactive waste
JPS599598A (en) Method of making bulk sludge
Inoue Studies on the synthetic inorganic ion exchangers—I: Synthesis of stannic phosphate and some of its properties
JPS6179200A (en) Solidifying treating method of radioactive waste
Stefanovsky et al. Simulation of radioactive decay by barium substitution for cesium in sodium aluminum-iron phosphate glass
JPS6113196A (en) Glass solidifying treating method of radioactive waste sodium compound
RU2160937C1 (en) Monolithic block for immobilizing liquid radioactive wastes
Mercer et al. SURVEY OF METHODS FOR THE TREATMENT AND DISPOSAL OF GLASS MELTER CONDENSATES CONTAINING SULFURIC ACID.
Hamodi et al. Immobilization of spent ion exchange resin arising from nuclear power plants: an introduction
JPH0685869B2 (en) Separation method of cesium in nitric acid-containing aqueous solution
JPS6244697A (en) Method of solidifying high-level radioactive waste liquor
JPS62124499A (en) Method of solidifying and processing radioactive waste
CN112961983A (en) Solution and method for extracting radionuclide from high-level vitreous body