JPS61132827A - Spectrophotometer - Google Patents

Spectrophotometer

Info

Publication number
JPS61132827A
JPS61132827A JP25469284A JP25469284A JPS61132827A JP S61132827 A JPS61132827 A JP S61132827A JP 25469284 A JP25469284 A JP 25469284A JP 25469284 A JP25469284 A JP 25469284A JP S61132827 A JPS61132827 A JP S61132827A
Authority
JP
Japan
Prior art keywords
sensitivity
measurement
output
absorbance
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25469284A
Other languages
Japanese (ja)
Inventor
Kikuo Sasaki
佐々木 菊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP25469284A priority Critical patent/JPS61132827A/en
Publication of JPS61132827A publication Critical patent/JPS61132827A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

PURPOSE:To correct a variation of a base line, and to always keep an optimum signal level by stopping an AGC by fixing a storage sensitivity of a means for executing the AGC except the time of a measurement, and storing a sensitivity of a photometric system at the time of a measurement. CONSTITUTION:In a photometric system consisting of a phtodetector (PM) of a single beam system, a preamplifier (PA), a detector sensitivity controlling circuit (GC) and a signal processing part (SP), an output of the PA is compared with a reference value, a sensitivity of the PM is controlled, and the GC is operated so that an output of the PA keeps a level of an absorbance '0'. Also, a controlling circuit (CT) for executing an AGC is constituted so that an output of the GC is fixed to a level of immediately before a measurement is started, through a sensitivity storing circuit of its inside. In this way, an influence of a luminous intensity variation of the absorbance is corrected by correcting the sensitivity so that a base line is not varied at the time of non-measurement, and the sensitivity can be read directly on recording.

Description

【発明の詳細な説明】 イ、産業上の利用分野 本発明はシングルビーム方式の分光光度計に関する0 口・ 従来の技術 分光光度計はダブルビーム方式とシングルビーム方式と
に大別される。ダブルビーム方式は光源の波長特性、経
時変化2分光光度計自身の波長特性を試料容器とか溶媒
等の分光透過率等の影響を自動的に補正できるが装置構
成が複雑である。シングルビーム方式では上述したよう
な補正は自動的にはできないが、近時メモリとか演算処
理装置が安価に利用できるようになってきたので、対照
試料の測光データを記憶しておくことによシ、分光光度
計自身とか試料容器、溶媒等の分光的特性の影響が補正
できるようになったので、装置構成がダブルビーム方式
に比し簡単と云う点が大きな利点となってきた。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a single beam type spectrophotometer. - Conventional technology Spectrophotometers are broadly classified into double beam type and single beam type. The double beam method can automatically correct the influence of the wavelength characteristics of the light source, the wavelength characteristics of the temporal change 2 spectrophotometer itself, and the spectral transmittance of the sample container, solvent, etc., but the device configuration is complicated. Although the above-mentioned correction cannot be made automatically with the single beam method, it has become possible to use memory and processing devices at low cost in recent years, so it is possible to make corrections by storing the photometric data of the reference sample. Since it has become possible to compensate for the influence of the spectral characteristics of the spectrophotometer itself, the sample container, the solvent, etc., it has become a major advantage that the device configuration is simpler than the double beam method.

しかし、シングルビーム方式ではメモリを利用しても光
源の時間的な変動の補正はできないので、測定中にベー
スラインが変動し、このため測定中に適宜ベースライン
を切換えないと測定出力がスケールオーバーすることが
あシ、信号処理回路にとって信号レベルが最適範囲から
外れると云った問題がある。
However, with the single beam method, even if memory is used, it is not possible to compensate for temporal fluctuations in the light source, so the baseline changes during measurement. Therefore, unless the baseline is changed appropriately during measurement, the measurement output will overscale. However, there is a problem in that the signal level is out of the optimal range for the signal processing circuit.

ハ・ 発明が解決しようとする問題点 本発明はシングルビーム方式でベースライン変動が生ぜ
ず、信号処理部にとって常に最適な信号レベルが保持さ
れるようにしようとするものである。
C. Problems to be Solved by the Invention The present invention attempts to use a single beam method so that baseline fluctuation does not occur and the optimum signal level is always maintained for the signal processing section.

二1問題点解決のための手段 本発明分光光度計はシングルビーム方式で、試料測定時
以外は常時AGC(自動利得制御)を行ってベースライ
ン変動を補正し、他方測定系の感度を常時記憶する手段
を設け、試料測定時にはこの感度記憶を固定してAGC
の動作を停止するようにした。
21 Means for Solving Problems The spectrophotometer of the present invention is a single-beam type, and performs AGC (automatic gain control) at all times except when measuring a sample to correct baseline fluctuations, while constantly storing the sensitivity of the measurement system. A means is provided to fix this sensitivity memory and use AGC when measuring a sample.
The operation was stopped.

ホ・実施例 図は本発明の一実施例を示す。この実施例は原子吸光分
析を行っている場合を示している。HCLは光源のホロ
ーカン−トランプ、Fは試料原子化部の炎で試料測定時
に燃料ガスに試料が混入される。MCは分光器、PMは
光検出素子の光電子増倍管、FAはプリアンプであシ、
その出力が信号処理部spに入力される。GCは検出器
感度制御回路で、プリアンプFAの出力を基準値と比較
し、両者の差で光検出素子PMの感度を調節し、フリア
ンプFAの出力が基準値に保たれるように動作している
。つまりPM、FA、GCよシなるフィードバックルー
プでA G 、Cが行われている。
E. Example The figure shows an example of the present invention. This example shows the case where atomic absorption spectrometry is performed. HCL is the hollow can-tramp light source, and F is the flame of the sample atomization section, which mixes the sample into the fuel gas during sample measurement. MC is a spectrometer, PM is a photomultiplier tube as a photodetecting element, and FA is a preamplifier.
The output is input to the signal processing section sp. GC is a detector sensitivity control circuit that compares the output of the preamplifier FA with a reference value, adjusts the sensitivity of the photodetector PM based on the difference between the two, and operates so that the output of the preamplifier FA is maintained at the reference value. There is. In other words, A G and C are performed in a feedback loop of PM, FA, and GC.

上記した基準値は吸光度0に相当し、AGCの作用で吸
光度0(透過率の測定の場合であれば透過率100%)
のレベルが一定に保たれる0信号処理部spはプリアン
プFAの出力を吸光度値に変換し、これを表示部DPに
出力する。表示部DPでは吸光度の数字表示及び記録紙
への記録を行う。
The above reference value corresponds to absorbance of 0, and due to the action of AGC, absorbance is 0 (in case of transmittance measurement, transmittance is 100%)
The signal processing section sp, whose level is kept constant, converts the output of the preamplifier FA into an absorbance value, and outputs this to the display section DP. The display section DP displays the absorbance numerically and records it on the recording paper.

光検出器/Mから信号処理部までの構成が分光光度計の
測光系である。
The configuration from the photodetector/M to the signal processing section is the photometric system of the spectrophotometer.

制御回路CTは通常上述したAGCを作動させているが
、試料測定時には、検出器感度制御回路GCの出力を試
料測定開始直前の値に固定する。
The control circuit CT normally operates the above-mentioned AGC, but when measuring a sample, the output of the detector sensitivity control circuit GC is fixed to the value immediately before starting the sample measurement.

第2図は検出器感度制御回路OCの内部を示す。FIG. 2 shows the inside of the detector sensitivity control circuit OC.

FXAは誤差アンプで通常はスイッチSWIが接点a側
に接しており、プリアンプPAの出力Vが抵抗R1を通
して反転端子に印加され、非反転端子はスイッチSw2
によシ接点a′を通してアースレベルになっている。つ
まりこのアースレベルがコンパレータKAの比較基準レ
ベルである。KAの出力はDC/DCコンバータDCに
よりて直流負高電圧に変換され光検出器PMのダイノー
ドに印加される。DC/DCコンバータDCの出力は抵
抗R3,R4で分圧されて感度記憶回路SMに入力され
る。感度記憶回路SMは記憶用コンデンサCと記憶固定
用スイッチSw3とバッファアンプBAよシなっている
。通常スイッチSw3は閉じておシ、コンデンサCの充
電電圧即ち記憶内容iDc/DCコンバータDCの出力
変化に追従して変化している。制御回路CTはスイッチ
SWI〜Sw3を制御し、試料測定の指令を受取るとス
イッチaw1.を接点す側に、8w2を接点b′側に切
換え、スイッチSw3を開にする。このため感度記憶回
路SMの記憶内容は8w3が開かれる直前のレベルに固
定される。誤差アンプEAの反少 転端には接点す、スイッチSWIを通してDC/DCコ
ンバータDCの出力を抵抗R3,R4で分割したものが
印加され、非反転端子には上記した固定された記憶がス
イッチSw2を介して印加され、DC/DCコンバータ
の出力は試料測定の状態に切換わる直前の出力を保持せ
しめられる。
FXA is an error amplifier, and normally the switch SWI is in contact with the contact a side, the output V of the preamplifier PA is applied to the inverting terminal through the resistor R1, and the non-inverting terminal is connected to the switch Sw2.
It is connected to the ground level through contact a'. In other words, this ground level is the reference level for comparison of comparator KA. The output of KA is converted into a direct current negative high voltage by a DC/DC converter DC and applied to the dynode of the photodetector PM. The output of the DC/DC converter DC is divided by resistors R3 and R4 and input to the sensitivity storage circuit SM. The sensitivity memory circuit SM includes a memory capacitor C, a memory fixing switch Sw3, and a buffer amplifier BA. Normally, the switch Sw3 is closed, and the charging voltage of the capacitor C, ie, the stored content changes in accordance with the output change of the iDc/DC converter DC. The control circuit CT controls the switches SWI to Sw3, and upon receiving a sample measurement command, switches the switches aw1. switch to the contact side, switch 8w2 to the contact b' side, and open the switch Sw3. Therefore, the memory contents of the sensitivity memory circuit SM are fixed at the level immediately before 8w3 was opened. The output of the DC/DC converter DC divided by resistors R3 and R4 is applied to the non-inverting terminal of the error amplifier EA through the switch SWI, and the above-mentioned fixed memory is applied to the non-inverting terminal of the switch Sw2. The output of the DC/DC converter is maintained at the output immediately before switching to the sample measurement state.

試料測定の指令は手動操作で試料を変える度に制御回路
に入力するようにすることも勿論可能であるが、多数の
試料の自動測定のプログラムを制御回路CTに与えてお
き、制御回路CTによって試料の自動供給を行うと共に
、新しい試料導入の直前にスイッチSwl〜13w3を
試料測定のモードに切換え、その後試料導入を行い、測
定完了後スイッチSWI〜Sw3を通常状態に復帰させ
るようにすることもできる。
Of course, it is possible to enter the command for sample measurement into the control circuit manually each time the sample is changed, but it is also possible to give the program for automatic measurement of a large number of samples to the control circuit CT, and then input it to the control circuit each time the sample is changed. In addition to automatically supplying the sample, it is also possible to switch the switches Swl to 13w3 to the sample measurement mode immediately before introducing a new sample, then introduce the sample, and return the switches SWI to Sw3 to the normal state after the measurement is completed. can.

へ・効果 第3図Aは従来のシングルビーム分光光度計による吸光
分析の記録例で、この例では光源の光度が経時的に低下
し、ベースライZ!(吸光度0)が次第に上っている。
Figure 3A shows an example of absorption analysis recorded by a conventional single-beam spectrophotometer.In this example, the luminous intensity of the light source decreases over time, and the baseline Z! (absorbance 0) is gradually increasing.

時間t1〜t2間及びt3〜t4間が試料測定時であシ
、h、  h/が吸光度で示すが、光源の光度の低下に
伴って見掛けの吸光度が大きくなっている。第3図Bは
本発明分光光度計による吸光度測定の記録で、ベースラ
イン!は非測定時水平に保たれており、試料測定期間t
1〜t2及びt3〜t4では測光系の感度が固定され、
吸光度は夫々h、  h/で与えられる。光源の光度が
経時的に低下しているが、非測定時にベースラインが変
化しないように測光系の素度補正を行っているので、記
録上の吸光度り、  h/は光度変化の影響が補正され
、相互に同じスケールで記録されたものとなっておシ、
記録上から吸光度が直続できる。第3図Aに示すような
従来例では記録の上限がスケールオーバーするおそれが
あるので、自動測定のような場合、測定を無駄にしない
ため感度を低く設定しがちであるが、本発明ではスケー
ルオーバーの心配がないから、光源の変動にか\わらず
予想される試料の吸光度に応じて信号処理部SPの直線
性が最も良い範囲で作動するように感度制御がなされ、
シングルビーム方式の構造簡単と云う利点を活かして、
ダブルビーム方式の効果が得られる。
During sample measurement between times t1 and t2 and between t3 and t4, h and h/ are expressed as absorbance, and the apparent absorbance increases as the luminous intensity of the light source decreases. Figure 3B is a record of absorbance measurement using the spectrophotometer of the present invention, which is the baseline! is kept horizontal when not measuring, and the sample measurement period t
From 1 to t2 and from t3 to t4, the sensitivity of the photometric system is fixed,
The absorbance is given by h and h/, respectively. Although the luminous intensity of the light source is decreasing over time, the photometric system is corrected to prevent the baseline from changing when not measuring, so the recorded absorbance and h/ are corrected for the effects of luminous intensity changes. and recorded on the same scale,
Absorbance can be directly traced from the record. In the conventional example shown in Fig. 3A, there is a risk that the upper limit of recording may exceed the scale, so in automatic measurements, the sensitivity tends to be set low to avoid wasting measurements. Since there is no need to worry about overshooting, the sensitivity is controlled so that the signal processing unit SP operates within the best linear range according to the expected absorbance of the sample, regardless of fluctuations in the light source.
Taking advantage of the simple structure of the single beam system,
The effect of the double beam method can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成を示すブロック図、第
2図は同実施例における利得制御系の回路図、第3図A
は従来例による測定記録、四Bは本発明による測定記録
を例示するグラフで委る。
FIG. 1 is a block diagram showing the configuration of an embodiment of the present invention, FIG. 2 is a circuit diagram of a gain control system in the same embodiment, and FIG. 3A
4B is a graph illustrating a measurement record according to the conventional example, and 4B is a graph illustrating a measurement record according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] シングルビーム方式で、測光系の自動利得制御手段を備
え、測光系の利得を記憶する手段と、試料測定時以外は
上記自動利得制御手段を作動させ、試料測定時には試料
測定開始直前の測光系の利得を上記記憶手段に保持させ
、測光系の利得を上記固定された利得に固定せしめる制
御手段とを設けた分光光度計。
The single beam system is equipped with an automatic gain control means for the photometry system, a means for storing the gain of the photometry system, and the above automatic gain control means is operated except when measuring a sample, and when measuring a sample, it is equipped with a means for storing the gain of the photometry system. A spectrophotometer comprising control means for holding the gain in the storage means and fixing the gain of the photometric system to the fixed gain.
JP25469284A 1984-11-30 1984-11-30 Spectrophotometer Pending JPS61132827A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25469284A JPS61132827A (en) 1984-11-30 1984-11-30 Spectrophotometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25469284A JPS61132827A (en) 1984-11-30 1984-11-30 Spectrophotometer

Publications (1)

Publication Number Publication Date
JPS61132827A true JPS61132827A (en) 1986-06-20

Family

ID=17268535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25469284A Pending JPS61132827A (en) 1984-11-30 1984-11-30 Spectrophotometer

Country Status (1)

Country Link
JP (1) JPS61132827A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050164B2 (en) 2000-11-02 2006-05-23 Hitachi, Ltd. Spectrophotometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7050164B2 (en) 2000-11-02 2006-05-23 Hitachi, Ltd. Spectrophotometer

Similar Documents

Publication Publication Date Title
JP2539358B2 (en) Semiconductor laser deterioration discriminating apparatus in optical recording / reproducing apparatus
JPH0990459A (en) Electronic control camera
JP3331162B2 (en) Circuit device for measuring drive current of display device and method of driving and biasing the display device
JP2000171295A (en) Apd bias circuit
JPS61132827A (en) Spectrophotometer
US4367437A (en) Reference voltage generator
US20220214212A1 (en) Optical measurement apparatus
JPS6250767B2 (en)
US4545681A (en) Method and apparatus for controlling measurement in a spectrophotometer
US4500205A (en) Spectrophotometer
JP4072256B2 (en) Photometric sensor device, control method for photometric sensor device, and computer-readable recording medium
JPS6386589A (en) Output control equipment for semiconductor laser
JPH0690046A (en) Optical monitor circuit
JPH053361A (en) Laser light output controller and its adjusting method
JP2788370B2 (en) Densitometer
TWI251826B (en) Method of determining the decay of laser diode
JPH07113603B2 (en) Atomic absorption spectrometer
JP2909675B2 (en) Laser light amount control circuit for optical recording device
JPH0619082Y2 (en) Optical detector
Fisher et al. The Use of Ensemble Averaging to Increase the Sensitivity of Measurements with Flame Photometers
JPS6131944A (en) Emission spectrum analysis device
JPS6347921Y2 (en)
JPH0611621Y2 (en) Frequency sweep signal oscillator
JPH10134268A (en) Photoelectric smoke sensor
JPS636426A (en) Spectrophotometric instrument