JPS61132706A - Ajuster for clearance at sealing area of turbine - Google Patents

Ajuster for clearance at sealing area of turbine

Info

Publication number
JPS61132706A
JPS61132706A JP25325884A JP25325884A JPS61132706A JP S61132706 A JPS61132706 A JP S61132706A JP 25325884 A JP25325884 A JP 25325884A JP 25325884 A JP25325884 A JP 25325884A JP S61132706 A JPS61132706 A JP S61132706A
Authority
JP
Japan
Prior art keywords
bellows
turbine
pressure
gap
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25325884A
Other languages
Japanese (ja)
Other versions
JPH0765481B2 (en
Inventor
Toru Murakami
透 村上
Joji Kaneko
丈治 金子
Masataka Kikuchi
菊地 正孝
Toshihiro Fujiwara
藤原 敏洋
Michinobu Fujii
藤井 道信
Toshiyuki Harada
原田 稔之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59253258A priority Critical patent/JPH0765481B2/en
Publication of JPS61132706A publication Critical patent/JPS61132706A/en
Publication of JPH0765481B2 publication Critical patent/JPH0765481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/22Actively adjusting tip-clearance by mechanically actuating the stator or rotor components, e.g. moving shroud sections relative to the rotor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To adjust a clearance at a sealing area simply by fitting sealing fin segments to stationary parts via bellows, and introducing high pressure or low pressure into the bellows. CONSTITUTION:Bellows 11, 11a are interposed and mounted between sealing segments 8, 8a and stationary parts 3, 4 respectively, so as to be movable in radial direction. Insides of bellows 11, 11a are communicated to both high pressure section and low press section of a turbine via a regulator valve 14 and a switching valve 16 respectively so that both high pressure and low pressure way be introduced therein. Thus, a clearance at a sealing area can be adjusted simply.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はタービンのシール部の半径方向間隙の調整装置
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a device for adjusting the radial gap of a seal portion of a turbine.

〔発明の技術的背景およびその問題点〕近年、燃料価格
のarnに対応して、タービン性能の向上が益々重要視
されており、種々の性能向上対策が提案されている。
[Technical background of the invention and its problems] In recent years, in response to the increase in fuel prices, improving turbine performance has become increasingly important, and various performance improvement measures have been proposed.

ところで、上記性能向上対策として最も効果的なものと
しては、タービンの各部に不可避的に存在する静止部と
回転部の間隙を通して漏洩する蒸気量を減らすことであ
る。
By the way, the most effective measure to improve performance is to reduce the amount of steam leaking through the gaps between the stationary part and the rotating part, which inevitably exist in each part of the turbine.

すなわち、第6図は蒸気タービンの組立断面の上半部を
示す図であって、タービン車軸1に固設された動翼2と
ノズル外輪3との間、タービン車軸1とノズル内輪4と
の間、およびタービン車軸1とケーシング5との間には
、それぞれチップフィン、ノズルパツキン、或いはグラ
ンドパツキンと呼ばれる蒸気漏洩防止用のシール装置が
設けられている。ところで、第7図は、上記各部のシー
ル装置の一例として、上記動R2とノズル外輪3との間
のシール装置(チップフィン)を示す断面図であって、
静止部であるノズル外輪3には、動翼2の外周端と対向
する部分に周方向に延びる蟻溝状の取付溝6が形成され
ており、その取付溝6に、前記動翼2の外周面に向かっ
て突出した複数個の周方向に延びるシールフィン7を設
けたセグメント8が係合装着され、上記シールフィン7
と回転体である動翼2の先端部との間に所定微少間隙が
保持uしめられ、蒸気漏洩が最少限になるようにしであ
る。
That is, FIG. 6 is a diagram showing the upper half of the assembled cross section of the steam turbine, and shows the areas between the rotor blades 2 fixedly attached to the turbine axle 1 and the nozzle outer ring 3, and between the turbine axle 1 and the nozzle inner ring 4. A seal device for preventing steam leakage called a tip fin, a nozzle packing, or a gland packing is provided between the turbine axle 1 and the casing 5. By the way, FIG. 7 is a sectional view showing a sealing device (tip fin) between the dynamic R2 and the nozzle outer ring 3 as an example of the sealing device for each of the above parts,
A dovetail-shaped mounting groove 6 extending in the circumferential direction is formed in the nozzle outer ring 3, which is a stationary part, in a portion facing the outer peripheral end of the rotor blade 2. A segment 8 provided with a plurality of circumferentially extending seal fins 7 protruding toward the surface is engaged with and attached to the seal fins 7.
A predetermined minute gap is maintained between the rotor blade 2 and the tip of the rotor blade 2, which is a rotating body, so that steam leakage is minimized.

ところで、この種の非接触型のシール装置において、蒸
気の漏洩防止効果を決定する最大の要因は、シールフィ
ン7の先端と回転体との間隙の大きさであり、この間隙
が小さい程漏洩量は少なくなるが、この間隙を余り小さ
くすると運転中にシールフィンと回転部が接触して、回
転部やシールフィンが破損したり、接触により軸振動が
増加して運転の続行が不可能となったり、接触による発
熱で回転部に曲がりを生じたりする等の問題がある。
By the way, in this type of non-contact type sealing device, the biggest factor that determines the steam leakage prevention effect is the size of the gap between the tip of the seal fin 7 and the rotating body, and the smaller the gap, the greater the leakage amount. However, if this gap is made too small, the seal fin and rotating part may come into contact with each other during operation, damaging the rotating part or seal fin, or the contact may increase shaft vibration, making it impossible to continue operation. There are also problems such as bending of the rotating part due to heat generation due to contact.

このような接触は、タービンの運転状態により間隙値が
変化するためで、そのような変化はケーシングの不均一
な熱変形、圧力による変形、或いはタービン車軸を支承
する軸受の支持特性等の秤々の要因により生ずる。その
ため、通常のタービンの設計や組立に当っては、間隙は
上述のような条件を考え合わせて設定しなければならな
い。
Such contact occurs because the gap value changes depending on the operating state of the turbine, and such changes are caused by various factors such as uneven thermal deformation of the casing, deformation due to pressure, or the support characteristics of the bearing that supports the turbine axle. This is caused by the following factors. Therefore, when designing and assembling a normal turbine, the gap must be set taking into account the above conditions.

ところが、間隙値に変化が生じるのは起動時や停止時、
或は負荷変化時が殆どで、定常運転時には変形量や変化
mが時間とともに一定値に落ちつくために、間隙の変化
mはきわめて小さい。したがって、起動停止、負荷変化
時の間隙状態を考慮して設定した間隙のままで運転され
ている現在の方法では、最も長時間運転される定常時に
は不必要に大きなものとなり、蒸気の漏洩防止効果は不
十分となる。
However, the gap value changes only when starting, stopping,
Alternatively, most of the time occurs when the load changes, and during steady operation, the amount of deformation and the change m settle down to a constant value over time, so the change m in the gap is extremely small. Therefore, with the current method of operation, in which the gap is set in consideration of the gap state during startup, stoppage, and load changes, the gap becomes unnecessarily large during steady-state operation, which is the longest period of operation, and the effectiveness of preventing steam leakage increases. becomes insufficient.

しかして、このような不具合を解消するためには、フィ
ンセグメントと静止部に何らかの駆動機構を設置してお
き、運転状態に応じて、或いはシール部の間隙の実測値
に応じて間隙を変化させる可動型のシールn構を設ける
ことが考えられる。
However, in order to eliminate such problems, it is necessary to install some kind of drive mechanism between the fin segments and the stationary part, and change the gap depending on the operating condition or the measured value of the gap between the seal parts. It is conceivable to provide a movable seal structure.

しかしながら、このような駆動機構として歯車装置や油
圧装置等を使用することは、機構が11雑なため多大な
スペースを要するとともに、高温高圧の蒸気にざらされ
るという環境面からの制約等の蒸気タービン特有の条件
のために、実用化は極めて困難である等の問題がある。
However, using a gear device, hydraulic device, etc. as such a drive mechanism requires a large amount of space due to the complicated mechanism, and there are also environmental constraints such as being exposed to high temperature and high pressure steam. Due to the unique conditions of the turbine, it is extremely difficult to put it into practical use.

〔発明の目的) 本発明はこのような点に鑑み、可動型のシール機構を設
けるとともに、そのシール機構を移動させシール部の間
隙を調整する装置として、蒸気力を使用した駆動装置を
使用し、上述の如き問題がないシール部間隙調整装置を
得ることを目的とする。
[Object of the Invention] In view of these points, the present invention provides a movable sealing mechanism and uses a driving device using steam power as a device for moving the sealing mechanism and adjusting the gap between the sealing parts. It is an object of the present invention to provide a seal gap adjustment device that does not have the above-mentioned problems.

〔発明の概要〕[Summary of the invention]

本発明は、タービン回転部に対向して配設されたシール
用のフィンセグメントを、タービンの静止部に半径方向
に移動可能とし、その静止部とフィンセグメントとの間
にベローを介挿装着し、そのべ〇−内を、タービンの高
圧部および低圧部のいずれか一方における互いに圧力が
異なる複数位置に選択弁を介して連通せしめるとともに
、他方の適宜位置に切換弁を介して連通せしめたことを
特徴とするものであって、上記選択弁の適宜選択開閉に
よって、ベローに加わる内圧を変更し、タービンの運転
状態に応じてベロー内外圧力差を適正圧力範囲内に保持
して、シール部の間隙を最適値に調整できるようにした
ものである。
The present invention enables a sealing fin segment disposed facing the rotating part of the turbine to be moved in the radial direction to a stationary part of the turbine, and a bellows is inserted between the stationary part and the fin segment. , the interior of the vessel is communicated with multiple positions at different pressures in either one of the high-pressure part and the low-pressure part of the turbine via a selection valve, and communicated with the other appropriate position via a switching valve. The internal pressure applied to the bellows is changed by appropriately selectively opening and closing the above-mentioned selection valve, and the pressure difference between the inside and outside of the bellows is maintained within an appropriate pressure range according to the operating state of the turbine. This allows the gap to be adjusted to the optimum value.

〔発明の実施例〕[Embodiments of the invention]

以下、添付図面を参照して本発明の実施例について説明
する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、符号2はタービン車軸1に設けられた
動翼であって、その動翼2の直上流側にはノズル外輪3
およびノズル内輪4間に固設されたノズルm9が配設さ
れており、上記ノズル外輪3がタービンの静止部10に
装着されている。
In FIG. 1, reference numeral 2 denotes a rotor blade provided on the turbine axle 1, and immediately upstream of the rotor blade 2 is a nozzle outer ring 3.
A nozzle m9 is disposed fixedly between the nozzle inner rings 4, and the nozzle outer ring 3 is mounted on the stationary part 10 of the turbine.

ところで、上記ノズル外輪3には、動翼2の先端外周部
と対向する位置に周方向に延びる蟻溝状の取付溝6が形
成されており、その取付11へ6に前記動翼2の先端外
周面と対向する面に複数個の周方向に延びるシールフィ
ン7を突設した、複数の弧状のフィンセグメント8が、
第2図に示すように、周方向に配列装着されている。上
記各フィンセグメント8は上記取付溝6に対して半径方
向に成程度移動可能に装着されており、取付溝6の内面
と各フィンセグメント8間にはそれぞれ凌数個(図にお
いては2個)のへロー11が介装され、そのベロー11
の外端が取付溝6の内周面に装着され、内端がフィンセ
グメント8の外面に装着されている。
Incidentally, the nozzle outer ring 3 is formed with a dovetail-shaped mounting groove 6 extending in the circumferential direction at a position facing the outer circumferential portion of the tip of the rotor blade 2, and the attachment groove 6 is formed in the nozzle outer ring 3 at a position facing the outer circumference of the tip of the rotor blade 2. A plurality of arc-shaped fin segments 8 each have a plurality of circumferentially extending seal fins 7 protruding from a surface facing the outer peripheral surface.
As shown in FIG. 2, they are arranged and mounted in the circumferential direction. Each of the fin segments 8 is mounted so as to be able to move to a certain degree in the radial direction with respect to the mounting groove 6, and several pieces (two in the figure) are provided between the inner surface of the mounting groove 6 and each fin segment 8. The bellows 11 are interposed, and the bellows 11
The outer end of the fin segment 8 is attached to the inner peripheral surface of the mounting groove 6, and the inner end thereof is attached to the outer surface of the fin segment 8.

各ベロー11は、導管12およびその導管12から分岐
された複数の分岐管13a、13b。
Each bellows 11 includes a conduit 12 and a plurality of branch pipes 13a and 13b branched from the conduit 12.

13cを介してタービンの当該ベロー11の設置位置よ
り高圧の複数個所に連通せしめられている。
13c, the bellows 11 is connected to a plurality of locations of the turbine at higher pressure than the installed position of the bellows 11.

すなわち、上記分岐管13aは例えば当該ベロ−11設
置段の1段前の通路部、13bは2段前の通路部、およ
び13Gは作動流体入口管等にそれぞれ開口せしめられ
、各分岐管13a、13b。
That is, the branch pipe 13a is opened, for example, in a passage part one stage before the tongue 11 installation stage, 13b is opened in a passage part two stages before, and 13G is opened in a working fluid inlet pipe, etc., and each branch pipe 13a, 13b.

13cにはそれぞれ選択弁14a、14b。Selection valves 14a and 14b are provided at 13c, respectively.

14cが設けられている。また、上記ベロー11は、上
記導管12に接続された導管15を介してタービンの低
圧部すなわち当該へロー11が設けられている段落の羽
根出口側に接続されており、その導管15には切換弁1
6が設けられている。
14c is provided. Further, the bellows 11 is connected to the low pressure section of the turbine, that is, the blade outlet side of the stage where the bellows 11 is provided, via a conduit 15 connected to the conduit 12, and the bellows 11 is connected to the blade outlet side of the stage in which the bellows 11 is provided. Valve 1
6 is provided.

一方、ノズル内輪4のタービン車軸1の対向面にも、上
述と同様にフィンセグメント8aが装着され、そのフィ
ンセグメント8aの裏面に設けられたベロー11aも前
記導管12に接続され、分岐管13a、13b、13C
J3よび導管15を介してタービンの複数個所の高圧部
および低圧部に連通せしめられている。
On the other hand, a fin segment 8a is also attached to the surface of the nozzle inner ring 4 facing the turbine axle 1 in the same manner as described above, and a bellows 11a provided on the back surface of the fin segment 8a is also connected to the conduit 12, and a branch pipe 13a, 13b, 13C
It is communicated via J3 and conduit 15 with multiple high pressure parts and low pressure parts of the turbine.

しかして、切換弁16を閉じ、選択弁14a。Then, the switching valve 16 is closed and the selection valve 14a is closed.

14b、14Cのいずれか一つを開けると、べ0−11
.11a内の圧力が高まり、フィンセグメント8,8a
が突出せれめられて、フィンセグメント8と動翼2の外
周部との間隙およびフィンセグメント8aとタービン車
軸1との間隙が狭くなるように調整される。しかも、上
記選択弁14a。
When you open either 14b or 14C, Be 0-11
.. The pressure inside 11a increases and the fin segments 8, 8a
is adjusted so that the gap between the fin segment 8 and the outer periphery of the rotor blade 2 and the gap between the fin segment 8a and the turbine axle 1 are narrowed. Moreover, the selection valve 14a.

14b、14cが設けられている各分岐管13a。Each branch pipe 13a is provided with 14b and 14c.

13b、13Gは、タービン内において順次圧力が高い
部分に開口されているので、開放される選択弁を14a
、14b、14cと順次変更することによって、順次ベ
ロー11.11a内の圧力が高まり、ベロー外圧が一定
の場合には、フィンセグメント8,8a部における前記
間隙を小さくすることかできる。
Since the selection valves 13b and 13G are opened in sequentially high pressure parts in the turbine, the selection valves 14a to be opened are
, 14b, and 14c, the pressure inside the bellows 11.11a increases one after another, and when the external pressure of the bellows is constant, the gap between the fin segments 8 and 8a can be reduced.

一方、上記各選択弁14a、14b、14cを閉じ、切
換弁16を開けば、ベロー11,118の内圧が下がり
、ベロー11.11aが縮まってフィンセグメント8,
8aと回転体との間の間隙を大きくすることができる。
On the other hand, if the selection valves 14a, 14b, 14c are closed and the switching valve 16 is opened, the internal pressure of the bellows 11, 118 decreases, the bellows 11.11a contract, and the fin segments 8,
The gap between 8a and the rotating body can be increased.

ところで、一般にベロー11.11aは、構造上強度材
として設計されていないので内外圧力差が余りに大きい
と破損してしまうし、圧力差が小さすぎると伸縮量が小
さくて目的とする間隙量に設定することはできない。
By the way, in general, bellows 11.11a are not designed as structurally strong materials, so if the pressure difference between the inside and outside is too large, they will break.If the pressure difference is too small, the amount of expansion and contraction will be small, so it is difficult to set the desired gap amount. I can't.

すなわち、第3図はタービンの負荷に対応したベロー1
1.118の設置部の通路部属力くベロー外圧)P、お
よび各分岐管13a、13b。
In other words, FIG. 3 shows bellows 1 corresponding to the turbine load.
1.118 of the passage section of the installation section (external pressure of the bellows) P, and each branch pipe 13a, 13b.

13cの開口部の圧力Pa、Pb、Pcの変化を示す線
図であって、各部の圧力はタービンの負荷に応じてほぼ
直線的に変化する。したがって、例えば第1図における
切換弁16を閉じ、選択弁14aのみを聞いている場合
には、ベロー内外の圧力差は100%負荷時にはXに示
す量であるが、50%負荷時には×1に示す聞となりほ
ぼ100%負荷時の1/2となる。
13c is a diagram showing changes in the pressures Pa, Pb, and Pc at the opening of the turbine 13c, and the pressure at each part changes almost linearly according to the load of the turbine. Therefore, for example, when the switching valve 16 in FIG. 1 is closed and only the selection valve 14a is listened to, the pressure difference between the inside and outside of the bellow is the amount shown by X at 100% load, but becomes x1 at 50% load. This is approximately 1/2 of the time when the load is 100%.

そのため、上記Xを基準に設計されているベローでは、
上記×1の圧力差になった場合にはベローの膨張mが足
りず、フィンセグメント8,8aと回転体との間隙が所
定量まで小さくならない場合がある。
Therefore, in the bellows designed based on the above X,
When the pressure difference is x1, the expansion m of the bellows is insufficient, and the gap between the fin segments 8, 8a and the rotating body may not be reduced to a predetermined amount.

一方、ベロー内外圧力差に対するフィンセグメントと回
転体との間隙の関係は第4図に示すようになる。すなわ
ち、ベロー11を膨張させフィンセグメント8を!1j
J翼側に押し出し、その間の間隙を最小間隙にしようと
する場合には、第4図に示すようにそのときの変位置S
に対してベロー内外圧力差pが必要である。そこで、こ
の圧力差pを第3図上に示すと、図のようになり、50
%負荷時には選択弁14a1mによる圧力差×1では、
最小間隙にするために必要な圧力差pを確保することは
できない。しかして、この場合選択弁1/1aを閉じ選
択弁14bを開けば、ベロー内外圧力差は×2となり、
フィンセグメントと回転体の間隙を最小間隙とすること
ができる。
On the other hand, the relationship between the gap between the fin segment and the rotating body and the pressure difference between the inside and outside of the bellows is shown in FIG. That is, inflate the bellows 11 and fin segment 8! 1j
When pushing out to the J wing side and trying to make the gap between them the minimum gap, the displacement position S at that time is as shown in Figure 4.
A pressure difference p between the inside and outside of the bellows is required. Therefore, when this pressure difference p is shown in Fig. 3, it becomes as shown in the figure, and 50
% load, pressure difference due to selection valve 14a1m x 1,
It is not possible to ensure the pressure difference p required to achieve the minimum gap. In this case, if the selection valve 1/1a is closed and the selection valve 14b is opened, the pressure difference between the inside and outside of the bellow becomes ×2,
The gap between the fin segment and the rotating body can be a minimum gap.

また、ベロー11.11aには不必要に過大な圧力をか
けると破損するおそれがあるので、最小間隙にする場合
にも必要圧力差より余分な圧力はなるべくかけない方が
よい。例えば、100%負荷時に選択弁14Gを開いて
他の弁を閉じた場合には、第3図において×3の圧力差
が生じるが、これではベロー11.118に必要圧力差
pより相当大きな圧力差が生じることになる。したがっ
て、場合によってはべO−1,118が破損する可能性
もある。そこで、本発明においては100%負荷時にお
いては選択弁14aを開くことによって、ベロー11.
11aにpより幾分大きなXの圧力差が生ずるようにし
、これによりシール部の間隙が最小になるようにする。
Furthermore, since there is a risk of damage to the bellows 11.11a if excessive pressure is applied unnecessarily, it is better not to apply pressure in excess of the required pressure difference as much as possible even when minimizing the gap. For example, if the selection valve 14G is opened and the other valves are closed at 100% load, a pressure difference of x3 will occur in Figure 3, but this will cause a pressure considerably greater than the required pressure difference p at the bellows 11.118. There will be a difference. Therefore, depending on the case, there is a possibility that the blade O-1, 118 may be damaged. Therefore, in the present invention, by opening the selection valve 14a at 100% load, the bellows 11.
A pressure difference of X, which is somewhat larger than p, is created at 11a, so that the gap between the seals is minimized.

このように、シール部の最小間隙を実現する際に、負荷
に応じて圧力流体の取入部を制御し、常にベローに適正
な範囲の圧力差しかかからないようにすることができる
In this way, when realizing the minimum gap of the sealing part, the intake part of the pressure fluid can be controlled according to the load, so that the bellows are always kept from being subjected to a pressure difference within an appropriate range.

ところで、上記ベロー11に接続された導管12にはそ
の導管内の圧力(ベロー内圧)を検出する第1の圧力検
出器17が設けられ、タービン内における上記ベロー1
1の近傍部にはベロー11の外圧を検出する第2の圧力
検出器18が設けられており、両正力検出器17.18
で検出された圧力信号がプログラム設定器19に人力す
るようにしである。また、上記プログラム設定器19に
は外部より間隙目標信号20も加えられるようにしてあ
り、上記プログラム設定器19からの出力信号によって
各選択弁14a、14b。
By the way, the conduit 12 connected to the bellows 11 is provided with a first pressure detector 17 for detecting the pressure inside the conduit (bellow internal pressure), and the bellows 1 in the turbine is
A second pressure detector 18 for detecting the external pressure of the bellows 11 is provided near the bellows 11, and both positive force detectors 17 and 18
The detected pressure signal is manually input to the program setting device 19. Further, a gap target signal 20 is also applied to the program setting device 19 from the outside, and each selection valve 14a, 14b is controlled by the output signal from the program setting device 19.

14Gおよび切換弁16が開閉制御されるようにしであ
る。しかして、そのプログラム設定器19にタービンの
運転状況に応じた間隙目標信号20が入力されると、ま
ず切換弁16閑の信号が出されて上記切換弁16が閉じ
られる。一方これと同時に、第2の圧力検出器18から
検出されたベロー外圧に対応してベロー内に最適圧力が
加わるような位置の選択弁、例えば14bに開信号が出
力され、それにより当該弁14bが開き、前述のように
してフィンセグメント8,8aが対応する回転体側に接
近せしめられ、それらの間隙が最適値に保持される。ま
た、このとぎ、べ〇−内圧とベロー外圧が比較され、こ
れがベローのあらかじめ知られている弾性変形特性と照
合され、適正な間隙になっていることが確認される。
14G and the switching valve 16 are controlled to open and close. When the gap target signal 20 corresponding to the operating condition of the turbine is input to the program setting device 19, a signal indicating that the switching valve 16 is open is first output, and the switching valve 16 is closed. Meanwhile, at the same time, an open signal is output to a selection valve, for example 14b, at a position such that an optimum pressure is applied inside the bellows in response to the bellows external pressure detected from the second pressure detector 18, and thereby the valve 14b is is opened, and the fin segments 8, 8a are brought closer to the corresponding rotating body side in the manner described above, and the gap therebetween is maintained at an optimum value. Also, at this point, the internal pressure of the bellows and the external pressure of the bellows are compared, and this is checked against the previously known elastic deformation characteristics of the bellows to confirm that the gap is appropriate.

一方、タービンの起動時、或いは振動大が生じた時、ま
たは上記間隙が所定値以下になったとき、或いは接触に
よる異常音が確認されたとき等には、プログラム設定器
19からの信号によって、^圧側の各選択弁14a、1
4b、14cが閉じられ、低圧側の切換弁16が開かれ
る。したがって、ベロー11.11a内の圧力がタービ
ンの低圧部の圧力と等しくなり、ベロー11.11aが
収縮し、フィンセグメント8.8aが引込み、当該部の
間隙゛が大きくなる。
On the other hand, when the turbine is started, when large vibrations occur, when the above-mentioned gap becomes less than a predetermined value, or when abnormal noise due to contact is confirmed, a signal from the program setting device 19 ^Pressure side selection valves 14a, 1
4b and 14c are closed, and the low pressure side switching valve 16 is opened. Therefore, the pressure in the bellows 11.11a becomes equal to the pressure in the low-pressure part of the turbine, the bellows 11.11a contracts, the fin segment 8.8a retracts, and the gap in that part increases.

ところで、タービンの各部の圧力は前述のようにほぼ負
荷に比例する特性があるため、第2の圧力検出器18は
ベロー11付近に設置する必要はなく、タービン内の蒸
気通路部の代表的な点の圧力を測定し、簡単な比例=1
算によりベロー外圧および各圧力取入部の圧力をかなり
正確に把握することができる。これにより、間隙目標信
号にみ合った圧力取入点は簡単なプログラムにより選定
できる。また、プログラム設定器には、導管圧力とベロ
ー外圧の差が大きくなりすぎてベローが破損する可能性
が生じた時には、すぐに切換弁16を開くように安全回
路を設けておくことが望ましい。
By the way, since the pressure in each part of the turbine has a characteristic that is almost proportional to the load as described above, it is not necessary to install the second pressure detector 18 near the bellows 11, and it is not necessary to install the second pressure detector 18 near the bellows 11. Measure the pressure at a point, simple proportionality = 1
By calculation, the bellows external pressure and the pressure at each pressure intake can be determined fairly accurately. Thereby, a pressure intake point that matches the gap target signal can be selected using a simple program. Further, it is desirable that the program setting device be provided with a safety circuit so as to immediately open the switching valve 16 when the difference between the conduit pressure and the external pressure of the bellows becomes too large and there is a possibility that the bellows will be damaged.

第5図は本発明の他の実施例であって、べ0−11.1
1aが導管12およびそれから分岐された分岐導管21
a、21b、21cによって当該ベローの設置位置より
低圧の複数個所に連通せしめられており、各分岐導管2
1a、21b。
FIG. 5 shows another embodiment of the present invention.
1a is a conduit 12 and a branch conduit 21 branched from it
a, 21b, and 21c are connected to multiple locations with lower pressure than the installation position of the bellows, and each branch conduit 2
1a, 21b.

21cにそれぞれ選択弁22a、22b、22cが設け
られている。
21c is provided with selection valves 22a, 22b, and 22c, respectively.

しかして、順次低圧側の選択弁を聞くことによって、フ
ィンセグメント8,8aを引込み位置に移動ゼしめ、シ
ール部の間隙が順次広くなるように調整できる。この場
合には、多数の選択弁を低圧側すなわら低温側に配設す
ることができるので、コスト的に安価なものとすること
ができる。
By listening to the selection valves on the low pressure side one after another, the fin segments 8, 8a can be moved to the retracted position and adjusted so that the gap between the seals becomes wider one after another. In this case, since a large number of selection valves can be disposed on the low pressure side, that is, on the low temperature side, the cost can be reduced.

〔発明の効果〕〔Effect of the invention〕

本発明は上述のように構成したので、タービンの作動状
態に応じてシール部の間隙をきわめて簡単に調整するこ
とができ、その駆動機構としてモータ等の外部動力を用
いないので、エネルギロスもなく、さらに歯車等の機械
的な駆動部がないので信頼性が高いものとすることがで
きる。しかも本発明においては、互いに異なる圧力点か
ら、フィンセグメント駆動用圧力を選択的に取入れるよ
うにしたので、ベローに加わる圧力をタービンの作動状
態における最適値に選定でき、ベローに過大な力が加わ
ることを防止できるとともにシール部の間隔を最適な値
に保つことができ、タービン性能を向上させることがで
きる。
Since the present invention is configured as described above, the gap between the seal parts can be adjusted extremely easily depending on the operating state of the turbine, and since no external power such as a motor is used as the drive mechanism, there is no energy loss. Furthermore, since there is no mechanical drive unit such as a gear, reliability can be increased. Furthermore, in the present invention, the pressure for driving the fin segments is selectively taken in from different pressure points, so the pressure applied to the bellows can be selected to be the optimal value for the operating condition of the turbine, and excessive force can be avoided on the bellows. It is possible to prevent this from occurring, and also to maintain the interval between the seal portions at an optimum value, thereby improving turbine performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のシール部間隙調整装置の一実施例を承
り“縦断面図、第2図はタービン#Jπ部のシール装置
を示す縦断正面図、第3図はタービンの負荷に対するベ
ロー作動用圧力取入部等の圧力変化線図、第4図はベロ
ーの内外圧力差とベローの変位との関係を示す線図、第
5図は本発明の他の実施例を示す図、第6図はタービン
の一部縦断上半部図、第7図は従来のタービンにおける
シール部の構成を示す縦断面図である。 1・・・タービン車軸、2・・・arA、3・・・ノズ
ル外輪、4・・・ノズル内輪、6・・・取付溝、8,8
a・・・フィンセグメント、11.11a・・・ベロー
、14a。 14b、14c・・・選択弁、16・・・切換弁、19
・・・プログラム設定器。 出願人代理人  猪  股    清 蔓 3 区 第 4 図 P   圧力差 某 5 囚 帛 6 図 茶 7 図
Fig. 1 is a longitudinal sectional view of an embodiment of the seal gap adjustment device of the present invention, Fig. 2 is a longitudinal sectional front view showing the sealing device of the turbine #Jπ section, and Fig. 3 is the bellows operation in response to the load of the turbine. Fig. 4 is a diagram showing the relationship between the pressure difference between the inside and outside of the bellows and the displacement of the bellows, Fig. 5 is a diagram showing another embodiment of the present invention, Fig. 6 7 is a partially vertical upper half view of a turbine, and FIG. 7 is a longitudinal sectional view showing the configuration of a seal portion in a conventional turbine. 1... Turbine axle, 2... arA, 3... Nozzle outer ring. , 4... Nozzle inner ring, 6... Mounting groove, 8, 8
a... Fin segment, 11.11a... Bellows, 14a. 14b, 14c... Selection valve, 16... Switching valve, 19
...Program setting device. Applicant's agent Kiyotsu Inomata 3 Ward No. 4 Figure P Pressure difference certain 5 Prisoner 6 Figure 7

Claims (1)

【特許請求の範囲】 1、タービン回転部に対向して配設されたシール用のフ
ィンセグメントを、タービンの静止部に半径方向に移動
可能とし、その静止部とフィンセグメント間にベローを
介挿装着し、そのベロー内を、タービンの高圧部および
低圧部のいずれか一方における互いに圧力が異なる複数
位置および他方の適宜位置に、それぞれ選択弁或いは切
換弁を介して連通せしめたことを特徴とする、タービン
のシール部間隙調整装置。 2、選択弁は、タービンの運転状態に応じて選択開閉さ
れ、ベロー内外圧力差が適正圧力範囲内になるように保
持されることを特徴とする、特許請求の範囲第1項記載
のタービンのシール部間隙調整装置。
[Claims] 1. A sealing fin segment disposed opposite to the rotating part of the turbine is movable in the radial direction to a stationary part of the turbine, and a bellows is inserted between the stationary part and the fin segment. The inside of the bellows is connected to a plurality of positions having different pressures in one of the high-pressure part and the low-pressure part of the turbine, and to an appropriate position in the other part, respectively, through a selection valve or a switching valve. , turbine seal gap adjustment device. 2. The turbine according to claim 1, wherein the selection valve is selectively opened and closed depending on the operating state of the turbine, and is maintained so that the difference in pressure between the inside and outside of the bellows is within an appropriate pressure range. Seal gap adjustment device.
JP59253258A 1984-11-30 1984-11-30 Turbine seal clearance adjustment device Expired - Lifetime JPH0765481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253258A JPH0765481B2 (en) 1984-11-30 1984-11-30 Turbine seal clearance adjustment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253258A JPH0765481B2 (en) 1984-11-30 1984-11-30 Turbine seal clearance adjustment device

Publications (2)

Publication Number Publication Date
JPS61132706A true JPS61132706A (en) 1986-06-20
JPH0765481B2 JPH0765481B2 (en) 1995-07-19

Family

ID=17248769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253258A Expired - Lifetime JPH0765481B2 (en) 1984-11-30 1984-11-30 Turbine seal clearance adjustment device

Country Status (1)

Country Link
JP (1) JPH0765481B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136106A (en) * 1977-05-02 1978-11-28 Toshiba Corp Leakage preventive arrangement for axial flow machine
JPS5741407A (en) * 1980-08-22 1982-03-08 Hitachi Ltd Sealing mechanism on top of turbine rotor blade
JPS59153903A (en) * 1983-02-10 1984-09-01 ソシエテ、ナシオナル.デテュード・エ・ドウ・コンストリュクシオン・ドウ・モトール・ダヴイアシオン“エス.エヌ.ウ.セ・エム・アー.” Seal ring for turbine rotor of turbine engine and turbine engine device with said ring

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53136106A (en) * 1977-05-02 1978-11-28 Toshiba Corp Leakage preventive arrangement for axial flow machine
JPS5741407A (en) * 1980-08-22 1982-03-08 Hitachi Ltd Sealing mechanism on top of turbine rotor blade
JPS59153903A (en) * 1983-02-10 1984-09-01 ソシエテ、ナシオナル.デテュード・エ・ドウ・コンストリュクシオン・ドウ・モトール・ダヴイアシオン“エス.エヌ.ウ.セ・エム・アー.” Seal ring for turbine rotor of turbine engine and turbine engine device with said ring

Also Published As

Publication number Publication date
JPH0765481B2 (en) 1995-07-19

Similar Documents

Publication Publication Date Title
US6719296B2 (en) Seal for a rotating member
EP2180160B1 (en) Turbo charger
US3999883A (en) Variable turbomachine stator
RU2522722C2 (en) Gland box and steam turbine with such gland box
EP1018613B1 (en) A seal
US9011089B2 (en) Expansion seal
US9353637B2 (en) Turbine exhaust housing
JP2007309139A (en) Turbocharger
JP2010096110A (en) Turbocharger
JPS61152906A (en) Seal part gap regulating device for turbine
US3908361A (en) Seal between relatively moving components of a fluid flow machine
EP2818668B1 (en) Turbine exhaust seal
JP4371610B2 (en) Steam turbine sealing equipment
JPS61250304A (en) Axial flow turbine
US5017088A (en) Gas turbine engine compressor casing with internal diameter control
CN101328815B (en) Free ring contact type gapless sealing technology
JPS61132706A (en) Ajuster for clearance at sealing area of turbine
JPS62142808A (en) Clearance control device for gas turbine
US5577885A (en) Condensing turbine having at least two seals for sealing off the turbine casing
EP2770167B1 (en) Turbine exhaust seal
JPS61132707A (en) Adjuster for clearance at sealing area of turbine
JPH0739805B2 (en) Turbine seal clearance adjustment device
US4265472A (en) Pipe elbow connection
JP2010090715A (en) Turbocharger
JPS6275001A (en) Seal clearance adjusting device for turbine