JPS61132587A - Apparatus for producing ribbonlike silicon crystal - Google Patents

Apparatus for producing ribbonlike silicon crystal

Info

Publication number
JPS61132587A
JPS61132587A JP25112084A JP25112084A JPS61132587A JP S61132587 A JPS61132587 A JP S61132587A JP 25112084 A JP25112084 A JP 25112084A JP 25112084 A JP25112084 A JP 25112084A JP S61132587 A JPS61132587 A JP S61132587A
Authority
JP
Japan
Prior art keywords
die
crystal
band
silicon crystal
shaped silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25112084A
Other languages
Japanese (ja)
Other versions
JPH0137358B2 (en
Inventor
Masanaru Abe
阿部 昌匠
Naoaki Maki
真木 直明
Toshiyuki Sawada
沢田 俊幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP25112084A priority Critical patent/JPS61132587A/en
Publication of JPS61132587A publication Critical patent/JPS61132587A/en
Publication of JPH0137358B2 publication Critical patent/JPH0137358B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce the titled crystal having low SiC density easily and economically with a simple apparatus, by inclining a capillary die of a ribbonlike silicon crystal pulling apparatus at + or -theta deg. away from the crystal plane by a specific die-inclination mechanism, and pulling up the crystal. CONSTITUTION:The capillary die 31, 32 forming a carbon slit is dipped in a quartz crucible 2 placed in a crystal growth furnace and containing molten silicon liquid 1. Horizontal shafts 61 and 6 are attached to both sides of the top of the die 31, 32 and are inserted freely into the shaft-supporting rings 71 and 72. The slit is made to be inclinable from the bisector of the short side of the slit at + or -theta deg. away from the plane of produced ribbonlike silicon crystal with a die-inclination mechanism 5 in the state of crystal growth. The SiC particle 3a produced in the die 31, 32 is transferred gradually toward the tip of the die 31, 32. The particle 3a at the tip of the left-side die 31 is included in the left surface of the crystal 4 by inclining the die at +theta deg., and the particle of the right-side is included in the right surface by inclining the die at -theta deg.. A crystal having an SiC density of <=1/cm<2> can be produced by this process.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は帯状シリコン結晶の製造装置に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an apparatus for manufacturing band-shaped silicon crystals.

[発明の技術的背景とその問題点] 従来、第4図に示すように、シリコン融液1を収納した
石英製るつぼ2にスリットを形成するキ   ゛ヤビラ
リ・ダイ(以下単にダイと称する)3(31、32)を
配設し、そのスリットを介して上昇するシリコン融液1
に種結晶(図示せず)を接触させ、所定の温度条件、引
上げ速度でこれを引上駆動機構で引上げることにより帯
状シリコン結晶4が得られる。
[Technical background of the invention and its problems] Conventionally, as shown in FIG. 4, a cavity die (hereinafter simply referred to as a die) 3 is used to form a slit in a quartz crucible 2 containing a silicon melt 1. (31, 32) and rising through the slit 1
By bringing a seed crystal (not shown) into contact with the crystal and pulling it up using a pulling drive mechanism under predetermined temperature conditions and pulling speed, a band-shaped silicon crystal 4 is obtained.

また引上げられた帯状シリコン結晶4は引上駆動機構の
上でレーザ切断機構を用いて所定のサイズに切断される
Further, the pulled silicon crystal band 4 is cut into a predetermined size using a laser cutting mechanism on the pulling drive mechanism.

ところで、従来の装置ではダイ3の材料がカーボンのた
め、シリコン融液1とダイ3のカーボンとの化学反応に
よってSiC粒子がダイ3のスリット内に生成され、生
成されたSiC粒子はダイ3のスリット内部を通過して
ダイ3の先端より帯状シリコン結晶4に取りこまれる。
By the way, in the conventional device, since the material of the die 3 is carbon, SiC particles are generated in the slit of the die 3 by a chemical reaction between the silicon melt 1 and the carbon of the die 3, and the generated SiC particles are absorbed into the die 3. It passes through the slit and is incorporated into the band-shaped silicon crystal 4 from the tip of the die 3.

帯状シリコン結晶4のSiC粒子は帯状シリコン結晶4
を太陽電池基板として使用した場合に太陽電池の変換効
率に対し非常に悪影響を与えており、面内SiCの密度
が1コ// CIR2で効率が約7%、3コ/cI11
2で効率が4%程度である。
The SiC particles of the band-shaped silicon crystal 4 are the band-shaped silicon crystal 4.
When used as a solar cell substrate, it has a very negative effect on the conversion efficiency of the solar cell, and the in-plane SiC density is 1 co//CIR2, the efficiency is about 7%, and the efficiency is 3 co/cI11
2, the efficiency is about 4%.

[発明の目的] 本発明は上記の事情に鑑みてなされたもので、大掛りな
装置を必要とせず、SiC密度が1コ/α2以下の帯状
シリコン結晶を得ることができる帯状シリコン結晶の製
造装置を提供することを目的とする。
[Object of the Invention] The present invention has been made in view of the above circumstances, and provides a method for manufacturing band-shaped silicon crystals that can obtain band-shaped silicon crystals with a SiC density of 1 co/α2 or less without the need for large-scale equipment. The purpose is to provide equipment.

[発明の概要] 本発明はキャピラリ・ダイをダイ先端平面上にあってス
リットをその短辺方向に2等分する線を中心に帯状シリ
コン結晶面に対して±θ度傾けることにより、ダイ先端
に生成されたSiC粒子を帯状シリコン結晶内に取り込
み、ダイ先端のSiC粒子を減少することで前記目的を
達成するものである。
[Summary of the Invention] The present invention is capable of tilting a capillary die by ±θ degrees with respect to a band-shaped silicon crystal plane about a line that is on the plane of the die tip and bisects the slit in the direction of its short side. The above objective is achieved by incorporating the SiC particles generated in the silicon crystal band into the band-shaped silicon crystal and reducing the SiC particles at the tip of the die.

[発明の実施例] 以下この発明の実施例を図面を参照して詳細に説明する
。第1図は本発明の一実施例の要部を示したもので、シ
リコン融液1を収納した石英製るつぼ2は図示しない成
長炉内に設けられ、このるつぼ2中にはカーボンより作
られスリットを形成するキャピラリ・ダイ3 (31,
32)が立設される。このダイ3の先端部両側端にはそ
れぞれ回転軸6 (6r 、 62 )が軸方向を水平
方向にして設けられ、この各回転軸6 (61,62)
はるつぼ1の上端にそれぞれ対応して設けられた環状の
回転軸取付部材7(71,72)に遊挿して取付けられ
る。前記回転軸6 (61,62)及び回転軸取付部材
7(71,72)より構成されるダイ傾斜1構5は、前
記ダイ3を、ダイ先端平面上にあって、スリットをその
短辺方向に2等分する線を中心に、帯状シリコン結晶4
の面に対して±θ度結晶成長状態でかたむけることがで
きる。
[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a main part of an embodiment of the present invention, in which a quartz crucible 2 containing a silicon melt 1 is installed in a growth furnace (not shown), and a quartz crucible 2 containing a silicon melt 1 is installed in a growth furnace (not shown). Capillary die 3 (31,
32) will be erected. Rotating shafts 6 (6r, 62) are provided at both ends of the tip of the die 3, with the axial direction being horizontal, and each of the rotating shafts 6 (61, 62)
The crucible 1 is loosely inserted and attached to the annular rotating shaft attachment members 7 (71, 72) provided correspondingly to the upper ends of the crucible 1, respectively. The die slope 1 structure 5 composed of the rotating shaft 6 (61, 62) and the rotating shaft mounting member 7 (71, 72) has the die 3 on the die tip plane and the slit in the direction of its short side. The band-shaped silicon crystal 4 is centered on the line that bisects the
It can be tilted in a crystal growth state by ±θ degrees with respect to the plane.

即ち、ダイ3のスリットを介して上昇するシリコン融液
1に種結晶を接触させ、この種結晶を引上駆動機構によ
り所定の温度条件、引上げ速度で引上げることにより帯
状シリコン結晶4が得られる。
That is, a seed crystal is brought into contact with the silicon melt 1 rising through the slit of the die 3, and the seed crystal is pulled up by a pulling drive mechanism at a predetermined temperature condition and pulling speed, thereby obtaining a band-shaped silicon crystal 4. .

第2図はダイ31.32の厚さ方向の断面図で、ダイ3
r 、32の内部で生成されたSiC粒子3aがダイ3
1.32の先端に移動し、帯状シリコン結晶4に取りこ
まれるようすを示している。
FIG. 2 is a cross-sectional view of the die 31 and 32 in the thickness direction.
The SiC particles 3a generated inside the die 3
1.32 and is taken into the band-shaped silicon crystal 4.

第3図(a)、(C)はダイ先端平面上にあってスリッ
トをその短辺方向に2等分する線を中心に、帯状シリコ
ン結晶4の面に対し、ダイ4の側面を±θ度傾斜させた
場合のSiC粒子3aの帯状シリコン結晶4への取り込
みを示している。第3図(b)は第3図(a)、(C)
のようにダイ4を傾斜させた後の傾斜0度の結晶成長状
態を示している。この実施例で得られる帯状シリコン結
晶のSiC粒子密度を良好に制御できることを詳しく説
明する。初期状態では第2図に示すように、ダイ3の内
部で生成されたSiC粒子3aはシリコン融液1の移動
にともなって徐々にダイ3の先端に移動し、ダイ3の先
端より帯状シリコン結晶4にとりこまれる。この状態下
ではダイ3の先端にSiC粒子3aは集積し、ある態度
の大きさになると帯状シリコン結晶4に取りこまれる。
3(a) and (C) show the side surface of the die 4 being ±θ with respect to the surface of the band-shaped silicon crystal 4, centered on a line that is on the plane of the die tip and bisects the slit in the direction of its short side. It shows the incorporation of SiC particles 3a into band-shaped silicon crystal 4 when tilted. Figure 3(b) is similar to Figures 3(a) and (C).
This shows the state of crystal growth with a tilt of 0 degrees after the die 4 is tilted as shown in FIG. The fact that the SiC particle density of the band-shaped silicon crystal obtained in this example can be well controlled will be explained in detail. In the initial state, as shown in FIG. 2, the SiC particles 3a generated inside the die 3 gradually move to the tip of the die 3 as the silicon melt 1 moves, and from the tip of the die 3 a band-shaped silicon crystal is formed. It is taken in by 4. Under this condition, the SiC particles 3a accumulate at the tip of the die 3, and when they reach a certain size, they are incorporated into the band-shaped silicon crystal 4.

次に、第3図(a )に示すようにダイ31゜32を−
6度に傾けると、左側のダイ31先端に集積していたS
iC粒子3aが帯状シリコン結晶4の左側面に取りこま
れる。ざらに第3図(C)に示すようにダイ31.32
を+6度に傾けると右側のダイ32の先端に集積してい
たSiC粒子3aが帯状シリコン結晶4の右側面に取り
こまれる。第3図<1))はダイ3t 、32を±θ度
傾は作業を終了し傾きが0度のダイ31.32を示して
おり、ダイ3r 、32の先端にSiC粒子3aは存在
しない。したがって、帯状シリコン結晶4にもSiC粒
子がないことを示している。実際には帯状シリコン結晶
4の長さで、10cI11の間隔でダイ3をθ=27度
傾けることにより、ダイ3の先端のSiC粒子3aを瞬
時に帯状シリコン結晶4に取りみ、その後の成長でSi
C密度がほぼO個/α2の帯状シリコン4を得ることが
できた。
Next, as shown in FIG. 3(a), the dies 31 and 32 are
When tilted at 6 degrees, the S accumulated at the tip of die 31 on the left side
The iC particles 3a are incorporated into the left side surface of the band-shaped silicon crystal 4. As roughly shown in Figure 3(C), die 31.32
When tilted by +6 degrees, the SiC particles 3a accumulated at the tip of the die 32 on the right side are taken into the right side surface of the band-shaped silicon crystal 4. FIG. 3<1)) shows dies 31 and 32 where the dies 3t and 32 have been tilted by ±θ degrees and the inclination is 0 degrees, and no SiC particles 3a are present at the tips of the dies 3r and 32. Therefore, it is shown that there are no SiC particles in the band-shaped silicon crystal 4 as well. In reality, by tilting the die 3 at an interval of 10cI11 by θ=27 degrees with the length of the band-shaped silicon crystal 4, the SiC particles 3a at the tip of the die 3 are instantly incorporated into the band-shaped silicon crystal 4, and the subsequent growth Si
It was possible to obtain a band-shaped silicon 4 having a C density of approximately O pieces/α2.

集積したSiC粒子を取り込んだ帯状シリコン結晶の部
分は95 mm X 95 mmサイズに帯状シリコン
結晶を切断するときに取りのぞけば良い。このようにし
て得られた帯状シリコン結晶(Si C密度0個/α2
)で太陽電池を試作したところ9%の太陽電池光変換効
率を得ることができた。また、従来技術では引上駆動機
構の上部でレーザによって必要サイズに帯状シリコン結
晶を切断している。
The portion of the band-shaped silicon crystal that incorporates the accumulated SiC particles may be removed when cutting the band-shaped silicon crystal into a size of 95 mm x 95 mm. Band-shaped silicon crystals obtained in this way (SiC density 0 pieces/α2
), we were able to obtain a solar cell light conversion efficiency of 9%. Furthermore, in the prior art, the band-shaped silicon crystal is cut into the required size using a laser at the upper part of the pulling drive mechanism.

これに対し本発明では、ダイの18度の傾きにより、帯
状シリコン結晶の厚さが部分的に薄くなるため、引上駆
動機構の上部で帯状シリコン結晶に力をくわえることに
より、帯状シリコン結晶の厚さの薄い所で分離すること
が可能となる。このためレーザ切断時に帯状シリコン結
晶に入っていたクラックや、微小欠陥をおさえることが
できる。
On the other hand, in the present invention, the thickness of the band-shaped silicon crystal is partially thinned due to the 18-degree inclination of the die, so by applying force to the band-shaped silicon crystal at the top of the pulling drive mechanism, the band-shaped silicon crystal is Separation can be performed at thinner areas. Therefore, it is possible to suppress cracks and minute defects that are present in the band-shaped silicon crystal during laser cutting.

ざらに本発明を使用した場合、約15%の引上速度の上
昇が得られた。
Roughly using the present invention, an increase in pulling speed of about 15% was obtained.

なお、傾ける角度θは、ダイ先端の間隔によって変わり
、例えば間隔が500μmの場合にはθは12°〜44
°、800μmの場合には4″′〜15°が好ましい。
Note that the tilting angle θ varies depending on the spacing between the die tips; for example, when the spacing is 500 μm, θ is 12° to 44°.
4″ to 15° in the case of 800 μm.

[発明の効果] 以上述べたように本発明をによれば帯状シリコン結晶面
内のSiC密度を下げることができ、かつ引上速度を上
げることができ、さらに切断機構を除去することができ
る。また本発明は従来技術の欠点を解消したものであっ
て、構造が簡単で装置、が安価であり、特別な制御機構
を必要としない点に大きな特徴がある。
[Effects of the Invention] As described above, according to the present invention, it is possible to lower the SiC density within the band-shaped silicon crystal plane, increase the pulling speed, and eliminate the cutting mechanism. Further, the present invention overcomes the drawbacks of the prior art, and has the major characteristics that the structure is simple, the device is inexpensive, and no special control mechanism is required.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す斜視図、第2図はSi
C粒子が帯状シリコン結晶に取りこまれる様子を示す図
、第3図(a )はダイを−8度傾斜させた場合の帯状
シリコン結晶左側面にSiC粒子が取りこまれる様子を
示す図、第3図(C)はダイを+6度傾斜させた場合の
帯状シリコン結晶右側面にSiC粒子が取りこまれる様
子を示す図、第3図(b)は第3図(a )と第3図(
C)の操作後の帯状シリコン結晶の成長状態を示す図、
第4図は従来の帯状シリコン結晶の製造装置を示す斜視
図である。 1・・・シリコン融液、2・・・石英製るつぼ、31゜
32・・・キャピラリ・ダイ、4・・・帯状シリコン結
晶、3a・・・SiC粒子、5・・・ダイ傾斜機構、6
1゜62・・・回転軸、71.72・・・回転軸取付部
材。 了2 第 2 図
FIG. 1 is a perspective view showing one embodiment of the present invention, and FIG.
Figure 3(a) is a diagram showing how C particles are incorporated into a band-shaped silicon crystal. Figure 3(C) is a diagram showing how SiC particles are incorporated into the right side of the band-shaped silicon crystal when the die is tilted by +6 degrees, and Figure 3(b) is a diagram showing how SiC particles are incorporated into the right side of the band-shaped silicon crystal when the die is tilted by +6 degrees.
A diagram showing the growth state of band-shaped silicon crystals after the operation of C),
FIG. 4 is a perspective view showing a conventional manufacturing apparatus for band-shaped silicon crystals. DESCRIPTION OF SYMBOLS 1... Silicon melt, 2... Quartz crucible, 31° 32... Capillary die, 4... Band-shaped silicon crystal, 3a... SiC particles, 5... Die tilting mechanism, 6
1°62... Rotating shaft, 71.72... Rotating shaft mounting member. 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] シリコン融液を収納したるつぼにスリットを有するキャ
ピラリ・ダイを配設し、前記スリットを介して上昇した
シリコン融液に種結晶を接触させ、この種結晶を引上げ
ることにより帯状シリコン結晶を引上げる帯状シリコン
結晶の製造装置において、前記キャピラリ・ダイを、ダ
イ先端平面上にあって、スリットをその短辺方向に2等
分する線を中心に帯状シリコン結晶面に対して±θ度結
晶成長状態でかたむけることができるダイ傾斜機構を設
けてことを特徴とする帯状シリコン結晶の製造装置。
A capillary die having a slit is provided in a crucible containing a silicon melt, a seed crystal is brought into contact with the silicon melt rising through the slit, and the seed crystal is pulled up to pull up a band-shaped silicon crystal. In an apparatus for producing a band-shaped silicon crystal, the capillary die is placed on the die tip plane and is in a crystal growth state of ±θ degrees with respect to the band-shaped silicon crystal surface centered on a line that bisects the slit in the direction of its short side. A device for producing a band-shaped silicon crystal, characterized in that it is provided with a die tilting mechanism that can tilt the die.
JP25112084A 1984-11-28 1984-11-28 Apparatus for producing ribbonlike silicon crystal Granted JPS61132587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25112084A JPS61132587A (en) 1984-11-28 1984-11-28 Apparatus for producing ribbonlike silicon crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25112084A JPS61132587A (en) 1984-11-28 1984-11-28 Apparatus for producing ribbonlike silicon crystal

Publications (2)

Publication Number Publication Date
JPS61132587A true JPS61132587A (en) 1986-06-20
JPH0137358B2 JPH0137358B2 (en) 1989-08-07

Family

ID=17217956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25112084A Granted JPS61132587A (en) 1984-11-28 1984-11-28 Apparatus for producing ribbonlike silicon crystal

Country Status (1)

Country Link
JP (1) JPS61132587A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139293A (en) * 1991-11-25 1993-06-08 Hitachi Ltd Rain gutter structure for rolling stock
JP2006504613A (en) * 2002-10-30 2006-02-09 エバーグリーン ソーラー, インコーポレイテッド Method and apparatus for growing multiple crystal ribbons from a single crucible

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139293A (en) * 1991-11-25 1993-06-08 Hitachi Ltd Rain gutter structure for rolling stock
JP2006504613A (en) * 2002-10-30 2006-02-09 エバーグリーン ソーラー, インコーポレイテッド Method and apparatus for growing multiple crystal ribbons from a single crucible

Also Published As

Publication number Publication date
JPH0137358B2 (en) 1989-08-07

Similar Documents

Publication Publication Date Title
US2992903A (en) Apparatus for growing thin crystals
JPH05319983A (en) Production of single crystal
KR20120013300A (en) Quartz glass crucible for pulling single-crystal silicon and process for producing single-crystal silicon
WO1996015298A1 (en) Process for producing spherical crystal
JPS61132587A (en) Apparatus for producing ribbonlike silicon crystal
US4957712A (en) Apparatus for manufacturing single silicon crystal
US5215620A (en) Method for pulling a silicon single crystal by imposing a periodic rotation rate on a constant rotation rate
JP2013124216A (en) METHOD FOR GROWING Ga2O3-BASED SINGLE CRYSTAL, AND METHOD FOR PRODUCING Ga2O3-BASED SUBSTRATE
JPH089520B2 (en) Method of manufacturing thin film single crystal
JP2008536793A (en) Thin semiconductor ribbon growth method
EP0419061A2 (en) Method for pulling a silicon single crystal
JP2739556B2 (en) Method for manufacturing piezoelectric crystal
EP1085112A2 (en) Method of fabricating a single crystal
JPS6317291A (en) Method for growing crystal and device therefor
JPH08183694A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
JPH08183696A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
JPS61146788A (en) Method for growing single crystal
JPS5950632B2 (en) Band-shaped silicon crystal growth device
JPH08183695A (en) Crucible for producing fine wire-shaped silicon and fine wire-shaped silicon
JPH01135028A (en) Manufacture of semiconductor device
JPH0631200B2 (en) Single crystal growth method
JPS62265195A (en) Device for growing crystal
JPH0243718B2 (en)
JP2599306B2 (en) Crystal manufacturing method and manufacturing equipment
JPH0569174U (en) Board holder

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees