JPS61132507A - Carbonaceous fine strands - Google Patents

Carbonaceous fine strands

Info

Publication number
JPS61132507A
JPS61132507A JP59253553A JP25355384A JPS61132507A JP S61132507 A JPS61132507 A JP S61132507A JP 59253553 A JP59253553 A JP 59253553A JP 25355384 A JP25355384 A JP 25355384A JP S61132507 A JPS61132507 A JP S61132507A
Authority
JP
Japan
Prior art keywords
carbonaceous
carbon
chain
particles
hydrocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59253553A
Other languages
Japanese (ja)
Inventor
Yukinari Komatsu
小松 行成
Masayuki Nakamura
中村 雅行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP59253553A priority Critical patent/JPS61132507A/en
Publication of JPS61132507A publication Critical patent/JPS61132507A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:Carbonaceous fine strands that are obtained by pyrolyzing hydrocarbons in the presence of a specific organometallic compound so that a plurality of carbon spherical particles are connected in the lengthwise direction, thus showing good wettability with a resin and high conductivity. CONSTITUTION:hydrocarbon such as anthracene, benzene or ethylene and an organometallic compound such as bis (cyclopentadienyl) iron or nickel carbonyl are introduced, when needed, together with a carrier gas such as helium or argon, into the reaction zone where the hydrocarbon is catalytically pyrolyzed at 900-1,300 deg.C. Thus, primary carbon particles of 1-3 micron diameter are connected in the lengthwise direction to give the objective carbon strands of an aspect ratio less than 500. The carbon strands are suitable for use as a reinforcement material for resins and as electrode plates.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は炭素質鎖状体に関し、さらに詳しくは炭素繊維
と炭素粒体(カーボンブラック)の中間の性質を有する
炭素質鎖状体に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a carbonaceous chain, and more particularly to a carbonaceous chain having properties intermediate between carbon fibers and carbon granules (carbon black). It is.

炭素材料は、優れた機械的および物理的物性を有するこ
とから、各種複合材料として近年、急速に伸びつつある
材料である。このものは炭素繊維と炭素粒子(カーボン
ブランク)の2つに大きく分けられるが、本発明の炭素
質鎖状体は、炭素繊維とカーボンブラックの中間に位置
するもので、その特有の性質を生かして各種の複合材料
、その他の用途への展開が期待されるものである。
BACKGROUND OF THE INVENTION Carbon materials have excellent mechanical and physical properties, so they are rapidly gaining popularity as various composite materials in recent years. These materials can be broadly divided into two types: carbon fibers and carbon particles (carbon blanks), but the carbonaceous chain body of the present invention is located between carbon fibers and carbon black, and takes advantage of its unique properties. It is expected that this material will be used in various composite materials and other applications.

(従来の技術およびその問題点) 上記炭素材料の内、炭素繊維については、母材樹脂との
ぬれ性が悪いことから、できるだけ径を細くし、接触面
積を増加することが望まれるが、製造上の限界がある。
(Prior art and its problems) Among the carbon materials mentioned above, carbon fiber has poor wettability with the base resin, so it is desirable to make the diameter as thin as possible and increase the contact area. There is an upper limit.

一方、カーボンブランクについては、粒子径が小さいの
でぬれ性等に問題はないが、1個1個の粒体が分散して
母材樹脂内に存在しているため、機械的、物理的性質が
炭素繊維に比べて劣り、また導電材料として有利な易黒
鉛化性にも乏しいものが多かった。このようなことから
、これらの欠点をカバーする炭素材料の開発が望まれて
いた。
On the other hand, carbon blank has a small particle size, so there is no problem with wettability, but since each particle is dispersed and exists in the base resin, mechanical and physical properties are poor. Many of them were inferior to carbon fibers, and also lacked easy graphitization, which is advantageous as a conductive material. For this reason, it has been desired to develop a carbon material that overcomes these drawbacks.

本発明の目的は、従来の炭素繊維および粒状カーボンの
欠点をなくし、これらの中間の性質を有する易黒鉛化性
の炭素質鎖状体を提供することにある。
An object of the present invention is to eliminate the drawbacks of conventional carbon fibers and granular carbon, and to provide an easily graphitizable carbonaceous chain body having properties intermediate between these.

(問題点を解決するための手段) 上記目的を達成するため、本発明の炭素質鎖状体は、1
次粒子の直径が1〜3μの炭素質球状粒子が複数個長手
方向に連結してなる鎖状炭素質粒子であって、該鎖状炭
素粒子の長さと前記球状粒子の直径の比が500以下(
好ましくは10〜500)であることを特徴とする。
(Means for solving the problem) In order to achieve the above object, the carbonaceous chain body of the present invention has 1
A chain carbonaceous particle formed by longitudinally connecting a plurality of carbonaceous spherical particles each having a diameter of 1 to 3μ, the ratio of the length of the chain carbon particle to the diameter of the spherical particle being 500 or less. (
preferably from 10 to 500).

本発明の炭素質鎖状体は、1次元的な鎖状体のみならず
、2次元的および3次元的な鎖状体をも含むものである
The carbonaceous chain bodies of the present invention include not only one-dimensional chain bodies but also two-dimensional and three-dimensional chain bodies.

上記炭素質球状粒子の直径が1μに達しないと粒子間の
結合力が弱(なり、複合体としたときの強度が低下し、
また3μを超えると樹脂の接着性が悪くなる。前記鎖状
粒子の長さと球伏炭素粒子p直径の比が500を超える
と複合材としたときの強度が不足する傾向にある。これ
は鎖状粒子の径方向への応力に対して強度が低下するた
めと考えられる。
If the diameter of the carbonaceous spherical particles does not reach 1μ, the bonding force between the particles will be weak, and the strength of the composite will decrease.
Moreover, if it exceeds 3μ, the adhesiveness of the resin will deteriorate. When the ratio of the length of the chain particles to the diameter of the spherical carbon particles (p) exceeds 500, the strength of the composite material tends to be insufficient. This is considered to be because the strength of the chain particles decreases with respect to stress in the radial direction.

また本発明の炭素質鎖状粒子は、粉末X線回折法(炭素
材料実験技術(1)、55頁、昭和53年6月1日、科
学技術社発行)によって測定したC軸方向の結晶サイズ
Lc=50Å以下で(002)平面間隔(iooz”3
.45Å以上を有することが好ましい。またこの炭素質
鎖状粒子を黒鉛化するために2000℃以上に熱処理し
た場合に、C軸方向の結晶サイズLc=LOOÅ以上で
、かつ(002)平面間隔dooz=3.45Å以下と
なるような高配向性を有することが望ましい。このよう
な高配向性を付与した黒鉛化鎖状粒子は、カーボンブラ
ック等に比較して極めて高い電気伝導性を有することが
認められた。また1次粒子が連結しているために、複合
材として樹脂に充填した場合においても電気伝導性を著
しく向上させることが認められた。
In addition, the carbonaceous chain particles of the present invention have a crystal size in the C-axis direction measured by powder X-ray diffraction method (Carbon Materials Experimental Technology (1), p. 55, published by Science and Technology Company, June 1, 1978). When Lc=50Å or less, the (002) plane spacing (iooz”3
.. It is preferable to have a thickness of 45 Å or more. In addition, when the carbonaceous chain particles are heat-treated at 2000°C or higher to graphitize, the crystal size in the C-axis direction Lc = LOOÅ or more and the (002) plane spacing dooz = 3.45Å or less. It is desirable to have high orientation. Graphitized chain particles with such high orientation were found to have extremely high electrical conductivity compared to carbon black and the like. Furthermore, since the primary particles were connected, it was found that the electrical conductivity was significantly improved even when the resin was filled into a resin as a composite material.

本発明の炭素質鎖状粒子は、炭化水素および特定の有機
金属化合物を、必要に応じてキャリヤガスとともに反応
域に導入し、炭化水素を熱分解、触媒反応させることに
よって製造される。
The carbonaceous chain particles of the present invention are produced by introducing a hydrocarbon and a specific organometallic compound into a reaction zone together with a carrier gas if necessary, and subjecting the hydrocarbon to thermal decomposition and catalytic reaction.

本発明に用いる炭化水素は、特に制限されるものではな
く、アントラセン、ナフタレン等を含む室温で固体上の
炭化水素、ベンゼン、トルエン、ヘキサン、イソオクタ
ン等を含む室温で液体上の炭化水素、またはメタン、プ
ロパン、エチレン、アセチレン等を含む気体上の炭化水
素のいずれでもよい。
The hydrocarbons used in the present invention are not particularly limited, and include hydrocarbons that are solid at room temperature including anthracene, naphthalene, etc., hydrocarbons that are liquid at room temperature including benzene, toluene, hexane, isooctane, etc., or methane. , propane, ethylene, acetylene, and the like.

本発明に用いる有機金属化合物としては、周期律表の第
1Va族、第Va族、第Vla族、第■族に属する金属
の化合物、特にシクロペンタジェニル系金属化合物、カ
ルボニル系金属化合物、ベンゼン−金属化合物、アルキ
ル、アリルまたはアルキニル金属化合物、β−ジケトン
金属錯体、ケト酸エステル金属錯体、これらの置換体、
誘導体等が好ましく用いられる。こられのうち、特にビ
ス(シクロペンタジェニル)鉄、ニッケルまたはコバル
ト等のシクロペンタジェニル化合物、鉄カルボニル、ニ
ッケルカルボニル、コバルトカルボニル、ビス(シクロ
ペンタジェニルカルボニル)鉄、ニッケル、またはコバ
ルト等のカルボニル化合物、ジまたはトリアセチルアセ
トンの鉄、ニッケルまたはコバルト錯体等のβ−ジケト
ン金属錯体、ジまたはトリアセト酢酸エステルの鉄、ニ
ッケルまたはコバルト錯体、もしくはこれらの誘導体等
が好結果を与える。
Examples of the organometallic compound used in the present invention include compounds of metals belonging to Group 1 Va, Group Va, Group Vla, and Group II of the periodic table, particularly cyclopentadienyl metal compounds, carbonyl metal compounds, and benzene. - metal compounds, alkyl, allyl or alkynyl metal compounds, β-diketone metal complexes, keto acid ester metal complexes, substituted products thereof,
Derivatives and the like are preferably used. Among these, cyclopentagenyl compounds such as bis(cyclopentagenyl) iron, nickel or cobalt, iron carbonyl, nickel carbonyl, cobalt carbonyl, bis(cyclopentadienyl carbonyl) iron, nickel, or cobalt, etc. β-diketone metal complexes such as iron, nickel or cobalt complexes of di- or triacetylacetone, iron, nickel or cobalt complexes of di- or triacetoacetic acid esters, or derivatives thereof, etc. give good results.

キャリヤガスとしては、ヘリウム、アルゴン、キセノン
、水素、窒素およびそれらの混合ガスを用いることがで
き、アルゴン等の不活性ガスは置換用として、また水素
等は炭化水素の濃度制御等のために使用される。これら
のキャリヤガスの量は炭化水素の種類、反応管の大きさ
によって異なるが、例えば1000〜5000mj!程
度に設定される。
As a carrier gas, helium, argon, xenon, hydrogen, nitrogen, or a mixture thereof can be used. Inert gases such as argon are used for displacement, and hydrogen etc. are used for controlling the concentration of hydrocarbons, etc. be done. The amount of these carrier gases varies depending on the type of hydrocarbon and the size of the reaction tube, but is, for example, 1000 to 5000 mj! It is set to a certain degree.

前記有機金属化合物の供給方法としては、これらを直接
加熱して気体状態で供給するか、または該有機金属化合
物を炭化水素の液体中に溶解させ、それを加熱して供給
したり、噴出させたりする等の方法が用いられる。
The method for supplying the organometallic compound includes directly heating them and supplying them in a gaseous state, or dissolving the organometallic compound in a hydrocarbon liquid and heating it and supplying it or ejecting it. Methods such as doing this are used.

上記有機金属化合物の供給量(毎分光たりの供給重量%
)は炭化水素との混合物に対して0.01重量%以上、
好ましくは0.5〜20重量%である。
Supply amount of the above organometallic compound (supply weight % per light per minute)
) is 0.01% by weight or more based on the mixture with hydrocarbon,
Preferably it is 0.5 to 20% by weight.

例えば、有機金属化合物がビス(シクロペンタジェニル
)鉄、炭化水素がベンゼンの場合、ビス(シクロペンタ
ジェニル)鉄の使用量は1〜10重量%に設定すると好
結果が得られる。
For example, when the organometallic compound is bis(cyclopentadienyl) iron and the hydrocarbon is benzene, good results can be obtained if the amount of bis(cyclopentadienyl) iron used is set to 1 to 10% by weight.

炭化水素および有機金属化合物の導入温度帯域は、50
0℃以下、好ましくは100〜500℃が適当である。
The temperature range for introducing hydrocarbons and organometallic compounds is 50
A suitable temperature is 0°C or lower, preferably 100 to 500°C.

また反応加熱温度帯域は900〜1300℃が適当であ
る。なお、有機金属化合物と炭化水素は予め混合した後
反応帯域に供給してもよい。
Further, the appropriate reaction heating temperature range is 900 to 1300°C. Note that the organometallic compound and the hydrocarbon may be mixed in advance and then supplied to the reaction zone.

以下、本発明の炭素質鎖状体の製法および特徴を図面お
よび図面代用写真により詳細に説明する。
Hereinafter, the manufacturing method and characteristics of the carbonaceous chain body of the present invention will be explained in detail with reference to drawings and photographs substituted for drawings.

第1図は、本発明の炭素質鎖状体を製造するための実験
装置である。この装置は、電気炉1内に挿入された炉芯
管2と、該炉芯管2の入口側に設けられたシール栓16
を貫通して設けられた不活性ガス等の導入パイプ4およ
び炭化水素の導入パイプ3と、該炉芯管2の出口側に設
けられたシール栓13に挿入されたガス排出管14と、
該炉芯管の下部に設けられた炭素質鎖状体の受は皿12
と、前記炭化水素の導入パイプ3に設けられた定量ポン
プ5、バルブ7および8と、該炭化水素の導入パイプ4
に炭化水素を供給するための密閉容89、該密閉容器に
収容された炭化水素6および不活性ガス供給パイプ10
とから主として構成される。
FIG. 1 shows an experimental apparatus for producing the carbonaceous chain body of the present invention. This device includes a furnace core tube 2 inserted into an electric furnace 1 and a seal plug 16 provided on the inlet side of the furnace core tube 2.
an inert gas etc. introduction pipe 4 and a hydrocarbon introduction pipe 3 provided through the furnace core tube 2; a gas discharge pipe 14 inserted into a seal plug 13 provided on the outlet side of the furnace core tube 2;
A receiver for the carbonaceous chain body provided at the lower part of the furnace core tube is a plate 12.
, a metering pump 5, valves 7 and 8 provided on the hydrocarbon introduction pipe 3, and the hydrocarbon introduction pipe 4.
a sealed container 89 for supplying hydrocarbons to the container, hydrocarbons 6 and an inert gas supply pipe 10 contained in the sealed container;
It mainly consists of.

上記装置において、炉芯管2の温度を500〜1300
℃程度になるように設定した後、導入パイプ4から水素
ガスまたは不活性ガス(窒素、アルゴン等)を導入して
炉芯管内を置換する。炭化水素6の密閉容器9に導入パ
イプ10から不活性ガスを供給し、バルブ7.8を開き
、定量ポンプ5を作動させて、導入パイプ3から炭化水
素を供給すると同時に、導入パイプ4からキャリヤガス
を供給して炭化水素と金属化合物を同時に反応温度域に
供給する。所定時間反応させた後、生成した炭素質鎖状
体は、炉芯管下部の受は皿12に捕集され、反応が終了
して炉を冷却した後、外部に取り出される。
In the above device, the temperature of the furnace core tube 2 is set to 500 to 1300.
After setting the temperature to about .degree. C., hydrogen gas or inert gas (nitrogen, argon, etc.) is introduced from the introduction pipe 4 to replace the inside of the furnace core tube. Inert gas is supplied from the introduction pipe 10 to the sealed container 9 of the hydrocarbon 6, the valve 7.8 is opened, and the metering pump 5 is operated to supply the hydrocarbon from the introduction pipe 3 and at the same time, the carrier is introduced from the introduction pipe 4. Gas is supplied to simultaneously supply hydrocarbons and metal compounds to the reaction temperature range. After reacting for a predetermined period of time, the produced carbonaceous chains are collected in a tray 12 at the bottom of the furnace core tube, and after the reaction is completed and the furnace is cooled, it is taken out to the outside.

このようにして得られた炭素質鎖状体は、直径1〜3μ
の炭素質球状粒子が複数個長手方向に連結したもので、
その連結粒子の長さと球状粒子の直径の比は10〜50
0の範囲内であった。
The carbonaceous chain body thus obtained has a diameter of 1 to 3 μm.
A plurality of carbonaceous spherical particles connected in the longitudinal direction,
The ratio of the length of the connected particles to the diameter of the spherical particles is 10 to 50.
It was within the range of 0.

(発明の効果) 本発明の炭素質鎖状体は、樹脂とのぬれ性が良好で、複
合材とした時に優れた補強効果を与え、また連結粒子を
有するために電気伝導性にも優れたものである。このた
め本発明の炭素質鎮状粒子は、樹脂の補強材のみならず
、電極板等の電気材料にも広範囲に使用し得るものであ
る。
(Effects of the invention) The carbonaceous chain body of the present invention has good wettability with resin, provides an excellent reinforcing effect when made into a composite material, and has excellent electrical conductivity because it has connected particles. It is something. Therefore, the carbonaceous particles of the present invention can be widely used not only as reinforcing materials for resins but also as electrical materials such as electrode plates.

(実施例) 実施例1 第1図に示す管状炉に内径60mの両端をゴム栓で密閉
したアルミナ質炉芯管2を設置し、その片方のゴム栓1
6に内径6鶴のアルミナ質のパイプ4を通し、そのパイ
プ4の出口が炉芯管設定温度(1100℃)に昇温した
際に、450℃の位置になるようにセントした。一方、
パイプ4の入口側は軟質チューブを介して定量ポンプ5
と連結し、さらにパイプを介して密閉容器9内に挿入し
た。ベンゼンにビスシクロペンタジェニル鉄を10重量
%溶解した原料液6を密閉容器内に入れ、前記定量ポン
プ5により炉芯管2に供給できるようにした。また前記
ゴム栓16にパイプ4から炉内置換用不活性ガスおよび
繊維成長の補助としての水素ガスを導入できるようにセ
ットした。炉温1100℃において原料液1cc/mi
nを水素ガス1200cc/+ninでキャリヤしつつ
、約10分間供給した。その後炉を冷却し、受は皿12
に捕集された炭素質線状体を取り出した。収量は約4.
5gであった。
(Example) Example 1 An alumina furnace core tube 2 with an inner diameter of 60 m and both ends sealed with rubber plugs was installed in the tube furnace shown in Fig. 1, and one of the rubber plugs 1 was installed.
An alumina pipe 4 having an inner diameter of 6 mm was passed through the tube 6, and the outlet of the pipe 4 was placed at a position of 450° C. when the temperature rose to the set temperature of the furnace core tube (1100° C.). on the other hand,
The inlet side of the pipe 4 is connected to a metering pump 5 via a soft tube.
and further inserted into the closed container 9 via a pipe. A raw material solution 6 in which 10% by weight of biscyclopentadienyl iron was dissolved in benzene was placed in a closed container so that it could be supplied to the furnace core tube 2 by the metering pump 5. Further, the rubber stopper 16 was set so that an inert gas for replacing the inside of the furnace and hydrogen gas as an aid for fiber growth could be introduced from the pipe 4. Raw material liquid 1cc/mi at furnace temperature 1100℃
While carrying n with 1200 cc/+nin of hydrogen gas, it was supplied for about 10 minutes. After that, the furnace is cooled and the receiver is placed in the tray 12.
The carbonaceous filaments collected were taken out. The yield is about 4.
It was 5g.

得られた炭素質鎖状体を電子顕微鏡で観察したところ、
粒径が2〜2.5μで、鎖状体長/粒子径は約300以
下であった。第2図にこの走査型電子顕微鏡写真を示す
。またこのものを前述の粉末X線回折法によって調べた
ところ、Lc=33人、dooz=3.4g人であツタ
When the obtained carbonaceous chain was observed with an electron microscope, it was found that
The particle size was 2 to 2.5 microns, and the chain length/particle size was about 300 or less. Figure 2 shows this scanning electron micrograph. Further, when this material was examined by the powder X-ray diffraction method described above, Lc = 33 people, dooz = 3.4g, and ivy.

実施例2 実施例1で得た炭素質鎖状体を2700℃×30分間、
アルゴンガス雰囲気下で熱処理した後、粉末X線回折を
行ったところ、Lc=250人、dooz−3,40人
であった。
Example 2 The carbonaceous chain body obtained in Example 1 was heated at 2700°C for 30 minutes.
After heat treatment in an argon gas atmosphere, powder X-ray diffraction was performed, and it was found that Lc = 250 people and dooz - 3.40 people.

実施例3 実施例1で得た炭素質鎖状体をエポキシ樹脂に25重量
%混入し、圧縮成型物を得た。この体積抵抗率は3Ω口
であった。
Example 3 25% by weight of the carbonaceous chain obtained in Example 1 was mixed into an epoxy resin to obtain a compression molded product. This volume resistivity was 3Ω.

比較例1 市販のアセチレンブラックを実施例3と同様にしてエポ
キシ樹脂に40重量%混入して成型したもの体積抵抗率
は10Ω備であった。
Comparative Example 1 Commercially available acetylene black was mixed into an epoxy resin in an amount of 40% by weight and molded in the same manner as in Example 3. The volume resistivity was 10Ω.

実施例3および比較例1で得た樹脂成型物の曲げ強度を
それぞれASTM  0790に従って測定した。こら
れの結果を次に示す。
The bending strength of the resin molded products obtained in Example 3 and Comparative Example 1 was measured according to ASTM 0790. The results are shown below.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の炭素質鎖状体を製造するための実験
装置の説明図、第2図は、本発明で得られた炭素質鎖状
体の走査型電子顕微鏡写真を示す図である。 1・・・電気炉、2・・・炉芯管、3.4・・・導入パ
イプ、5・・・定量ポンプ、6・・・電量、7.8・・
・バルブ、9・・・密閉容器、12・・・受は皿、13
.16・・・シール栓、14・・・排出パイプ、15・
・・生成炭素質鎖状体。 代理人 弁理士 川 北 武 長 手続補正書く方式) 昭和60年 3月29日 1、事件の表示 昭和59年特 許 願 第253553号2、発明の名
称 炭素質鎖状体 3、補正をする者 事件との関係 特許出願人 住 所 大阪府大阪市北区営島浜1丁目2番6号名 称
 (003)旭化成工業株式会社代表者 宮 崎  輝 4、代理人〒103 住 所 東京都中央区日本橋茅場町−丁目11番8号(
発送日 昭和60年3月26日) 6、補正の対象 明細書の図面の簡単な説明の欄。 7、補正の内容 (1)明細書第12頁2〜3行目の「走査型電子顕微鏡
写真を示す図」をr連結した粒子構造の顕微鏡写真1に
改める。 以上
FIG. 1 is an explanatory diagram of an experimental apparatus for producing the carbonaceous chain body of the present invention, and FIG. 2 is a diagram showing a scanning electron micrograph of the carbonaceous chain body obtained by the present invention. be. 1... Electric furnace, 2... Furnace core tube, 3.4... Introducing pipe, 5... Metering pump, 6... Electric power, 7.8...
・Valve, 9... Airtight container, 12... Receiver is a plate, 13
.. 16... Seal plug, 14... Discharge pipe, 15.
...Produced carbonaceous chains. Agent: Takeshi Kawakita (Long procedural amendment writing method) March 29, 1985 1, Indication of the case 1982 Patent Application No. 253553 2, Title of the invention Carbonaceous chain body 3, Person making the amendment Relationship to the incident Patent applicant address 1-2-6 Eijimahama, Kita-ku, Osaka-shi, Osaka Name (003) Asahi Kasei Corporation Representative Teru Miyazaki 4, agent 103 Address Nihonbashi, Chuo-ku, Tokyo Kayabacho-chome 11-8 (
(Shipping date: March 26, 1985) 6. Subject of amendment: Brief description of drawings in the specification. 7. Contents of the amendment (1) "Diagram showing a scanning electron micrograph" on page 12, lines 2 to 3 of the specification has been changed to micrograph 1 of the r-connected grain structure. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)1次粒子の直径が1〜3μの炭素質球状粒子が複
数個長手方向に連結してなる鎖状炭素質粒子であって、
該鎖状炭素粒子の長さと前記球状粒子の直径の比が50
0以下であることを特徴とする炭素質鎖状体。
(1) A chain carbonaceous particle formed by connecting a plurality of carbonaceous spherical particles with a primary particle diameter of 1 to 3μ in the longitudinal direction,
The ratio of the length of the chain carbon particles to the diameter of the spherical particles is 50
A carbonaceous chain body characterized by having a carbonaceous chain of 0 or less.
(2)前記炭素質球状粒子は、黒鉛または黒鉛に容易に
転化する炭素の層が長手軸に平行に年輪状に配列して形
成されていることを特徴とする特許請求の範囲第1項記
載の炭素質鎖状体。
(2) The carbonaceous spherical particles are formed by arranging layers of graphite or carbon that is easily converted into graphite in an annual ring shape parallel to the longitudinal axis. carbonaceous chains.
JP59253553A 1984-11-30 1984-11-30 Carbonaceous fine strands Pending JPS61132507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59253553A JPS61132507A (en) 1984-11-30 1984-11-30 Carbonaceous fine strands

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59253553A JPS61132507A (en) 1984-11-30 1984-11-30 Carbonaceous fine strands

Publications (1)

Publication Number Publication Date
JPS61132507A true JPS61132507A (en) 1986-06-20

Family

ID=17252965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59253553A Pending JPS61132507A (en) 1984-11-30 1984-11-30 Carbonaceous fine strands

Country Status (1)

Country Link
JP (1) JPS61132507A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871581A (en) * 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
US5183685A (en) * 1987-07-13 1993-02-02 Semiconductor Energy Laboratory Co., Ltd. Diamond film deposition by ECR CVD using a catalyst gas
JPH0547405U (en) * 1991-11-15 1993-06-25 本田技研工業株式会社 Vehicle fuel cooling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4871581A (en) * 1987-07-13 1989-10-03 Semiconductor Energy Laboratory Co., Ltd. Carbon deposition by ECR CVD using a catalytic gas
US5183685A (en) * 1987-07-13 1993-02-02 Semiconductor Energy Laboratory Co., Ltd. Diamond film deposition by ECR CVD using a catalyst gas
US5330802A (en) * 1987-07-13 1994-07-19 Semiconductor Energy Laboratory Co., Ltd. Plasma CVD of carbonaceous films on substrate having reduced metal on its surface
JPH0547405U (en) * 1991-11-15 1993-06-25 本田技研工業株式会社 Vehicle fuel cooling system

Similar Documents

Publication Publication Date Title
CA2561917C (en) Ultrathin carbon fibers with various structures
Kim et al. Hydrogen-catalyzed, pilot-scale production of small-diameter boron nitride nanotubes and their macroscopic assemblies
Golberg et al. Boron nitride nanotubes and nanosheets
Kumar et al. Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production
CN1321232C (en) Fine carbon fiber mixture and composition thereof
KR101456904B1 (en) Carbon material and method for producing the same
JP2641712B2 (en) Composite materials containing novel carbon fibrils
TWI383952B (en) Single-layered carbon nanotube, carbon fiber aggregation containing the same and manufacturing method thereof
US8007755B2 (en) Carbon fibrous structure
US20020092613A1 (en) Method of utilizing sol-gel processing in the production of a macroscopic two or three dimensionally ordered array of single wall nanotubes (SWNTs).
Bazargan et al. A review: synthesis of carbon-based nano and micro materials by high temperature and high pressure
JP2012510948A (en) Method for synthesizing carbon nanotubes on long particulate micrometer materials
EP2599902A1 (en) Vapor grown carbon fiber aggregate
Kharissova et al. Carbon–carbon allotropic hybrids and composites: synthesis, properties, and applications
JP4565384B2 (en) Method for producing carbon nanofibers with excellent dispersibility in resin
Qin et al. Influencing factors and growth kinetics analysis of carbon nanotube growth on the surface of continuous fibers
JPS61132600A (en) Whisker-shaped carbonaceous material
RU2346090C2 (en) Ultra-thin carbon fibers with different structures
US5106606A (en) Fluorinated graphite fibers and method of manufacturing them
Han Anisotropic Hexagonal Boron Nitride Nanomaterials-Synthesis and Applications
JPS61132507A (en) Carbonaceous fine strands
JPS61225319A (en) Carbonaceous fiber
CN112533868B (en) Method for producing carbon nanotubes
Chen et al. Helical fluorinated carbon nanotubes/iron (iii) fluoride hybrid with multilevel transportation channels and rich active sites for lithium/fluorinated carbon primary battery
AU2003294129A1 (en) Nanostructures