JPS6113215Y2 - - Google Patents

Info

Publication number
JPS6113215Y2
JPS6113215Y2 JP6777082U JP6777082U JPS6113215Y2 JP S6113215 Y2 JPS6113215 Y2 JP S6113215Y2 JP 6777082 U JP6777082 U JP 6777082U JP 6777082 U JP6777082 U JP 6777082U JP S6113215 Y2 JPS6113215 Y2 JP S6113215Y2
Authority
JP
Japan
Prior art keywords
drill
margin
present
back taper
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6777082U
Other languages
Japanese (ja)
Other versions
JPS58169909U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP6777082U priority Critical patent/JPS58169909U/en
Publication of JPS58169909U publication Critical patent/JPS58169909U/en
Application granted granted Critical
Publication of JPS6113215Y2 publication Critical patent/JPS6113215Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Drilling Tools (AREA)

Description

【考案の詳細な説明】 本考案は、過共晶アルミニウムシリコン合金や
ガラス繊維強化合成樹脂のような難削材を穿孔す
る場合に用いる。穴あけ用ツイスト型ドリルに関
する。 近年車両の軽量化、および摺動部品の機能向上
を図るため、過共晶アルミニウムシリコン合金や
ガラス繊維強化合成樹脂のような、軽量でかつ機
能的性質にもすぐれた材料の使用が増大してい
る。しかし、これらの材料は、その組織中に初晶
シリコンあるいはガラス繊維という硬質な介在物
を含むので、これら材料のドリルによる穴あけ加
工には、以下のような問題があつた。 すなわち、第1に、ドリルのマージン部が、被
加工材の形成された穴内壁をこする、いわゆるバ
ニシング(burnishing)が生じやすく、その結果
大きなきしみ音の発生や、過大なトルクの発生に
よるドリル破損、あるいは被加工材の穴仕上面の
劣化の原因となること、第2に、加工中に、ドリ
ルがこれらの硬質介在物と接触して受けるドリル
の切削摩耗あるいは擦摩耗が大きいことであつ
た。第1の問題が生ずる背景としては、通常、ド
リルによる穴加工を行なう場合は、加工中に被加
工材の一部が、ドリルの刃先に付着し、新しい刃
先を構成する、いわゆる構成刃先の現象がある。
このドリルの外周部に張出した構成刃先により被
加工材に実際に形成される穴径は、当初のドリル
刃先による穴径より若干拡大して形成されるの
で、ドリルの外周部と被加工材の穴壁とが接触す
ることはなかつた。しかし、過共晶アルミニウム
シリコン合金やガラス繊維強化合成樹脂の穴加工
の場合はその組織中に存在する硬質介在物が堅く
脆いことや、加工硬化しにくいため、構成刃先の
形成が極めて少ないことがわかつた。他方上記材
料は、鋼や鋳鉄にくらべて熱膨張係数が大きいの
で、加工中に生ずる熱膨張量はかえつて大きい。
このような条件が重なつて、過共晶アルミニウム
シリコン合金やガラス繊維強化合成樹脂の穴あけ
加工では、バニシングが発生していたのであつ
た。 また、バニシング対策として、従来よりドリ
ル先端の一部が軸部より太いタイプの小径ドリル
(特開昭55−150905号公報)、適当な間隔をおい
てマージン刃を張り出させたドリル(特公昭56−
31202号公報)等が提案され、穴壁との接触面積
を減少させバニシング防止を図つている。しか
し、これら従来のドリルでは、刃先を何回か再研
削して使用することは困難であり、また、バニシ
ング防止効果が必ずしも十分とは言えない。 本考案は、加工時のバニシングの発生が少な
く、かつ工具寿命の長い難削材穴あけ用ドリルの
提供を目的とするものである。 すなわち、本考案は、過共晶アルミニウムシリ
コン合金やガラス繊維強化合成樹脂等軟質の基地
に硬質晶出物または混合物を含み熱膨張係数がド
リル材に比べて大きい難削材を穿孔する場合に用
いるツイスト型ドリル1において、マージン2の
パツクテーパaを0.3/100〜0.6/100としたこと
を特徴とする難削材穴あけ用ドリル、にある。 本考案にかかるドリルは、マージン先端からの
テーパを通常のドリルの数倍から10倍以上とする
大きな逃げを設けたので、ドリル外周と穴内壁の
接触によるバニシングの発生を防止することがで
きる。その結果、バニシングによるきしみ音の発
生や過大トルクによるドリル破損を防ぐことがで
き、又仕上面性状の悪化も避けられる。さらに、
マージン先端から連続的に大きなテーパを設けた
ので、ドリルの刃先が摩耗しても研削して再使用
することができる。又ドリルの先端以外では、穴
内壁との接触による摩耗が生じないようにしたの
で、研削で除去する研削代が少なく、ドリル寿命
の延長も図ることができる。 本考案にかかるドリルの材料は、通常ドリル材
料として使用されている高速度鋼や超硬合金を使
用することができる。なかでも、構成刃先の生成
が少なく、バニシングを生じやすい超硬合金のド
リルについて、特に本考案は有用である。 本考案のドリルのマージンのバツクテーパaは
0.3/100〜0.6/100とする。ここでバツクテーパ
とは、ドリルの送り運動に際して、ドリル外周が
穴内壁と擦らないように、シヤンクに近づくほど
マージン部の外径を小さくして、マージン先端か
ら軸方向に、連続的に逃げを設けた構成をいう。
又、「マージンのバツクテーパaが0.3/100」と
は、ドリルの主切れ刃とマージンにより構成され
るコーナーからドリルの軸方向に長さ100mmあた
り、マージン部の外径が0.3mm小さくなつている
状態をいう。一般のドリルは、バツクテーパaを
0.04/100〜0.1/100の範囲としたものが使用さ
れているので、本発明ののドリルは極めて大きな
バツクテーパを設けていることとなる。バツクテ
ーパを0.3/100より小さくすると、ドリル外周が
被加工材の穴内壁と接触し、ドリル摩耗、きしみ
音の増加、あるいは加工仕上面の悪化をもたらす
ので好ましくない。他方、0.6/100より大きくす
ると再びきしみ音やドリルに加わるトルクの増大
が生じ、又、研削によるドリル径の減少も大きく
なることからこれも好ましくない。 以下本考案の実施例について説明する。 実施例 1 本例におけるドリルは、第1図に示すごとく、
ドリル1のコーナー31からの垂直線とコーナー
31とマージン2とを結ぶ線とで構成されるバツ
クテーパaを0.6/100としたものである。このド
リルは、超硬合金製のツイスト型ドリル(ドリル
径17mm)である。このドリルを使用して、被加工
材である過共晶アルミニウムシリコン合金(米国
SAE規格390合金相当、T6熱処理済)に対して、
下穴なしで穴深さ32mmの穴あけ加工を5000回行つ
た。なお、被加工材中に存在する初晶Siの粒径は
70〜80μm、被加工材の平均硬さはHv140であつ
た。又、その場合の加工条件は、切削速度51m/
min、送り速度0.3mm/revであつた。 他方、上記と比較のため、バツクテーパを従来
のドリルの範囲内である0.08/100とし、他の条
件は、本発明のドリルと同一としたドリル(以下
従来ドリルという)を使用し、上記と同一被加工
材に対し、同一加工条件で穴をあけ加工を行つ
た。 その結果、本発明ドリルを使用した場合の切削
音は、切削初期73dBA、5000個加工時87dBAと従
来ドリルの加工初期からの94〜96dBA、にくらべ
て7〜20dBA小さかつた。又、ドリルにかかるト
ルクの程度は、モータの負荷電流に示されると考
えられるが、本発明ドリルでは、従来ドリルにく
らべて5〜20%負荷電流が小さくなつた。又、従
来ドリルで時折発生したバニシングによる負荷電
流の異常増加もなく、その結果、本考案ドリルの
破損は、この加工中に全く発生しなかつた。又コ
ーナー31の摩耗幅も従来ドリルを使用した場合
の約1/2に減少していた。 実施例 2 実施例1で示したものと同一の本考案のドリ
ル、及び従来ドリルを使用し、かつ同一加工条件
の下で、被加工材をエポキシ樹脂とガラス繊維と
よりなる複合材料として、穴あけ加工を行つた。 その結果、本発明ドリルを使用した場合は、バ
ニシングも生ぜず、滑らかな仕上げ面を得ること
ができた。しかし、従来ドリルを使用した場合
は、バニシングが生じ、そのため溶融状の細かい
切りくずが穴の仕上げ面に付着してザラザラな表
面になつており、滑らかな仕上げ面を得ることが
できなかつた。 実施例 3 バツクテーパαを0.03/100および0.45/100と
した以外は実施例1で示したものと同一の本考案
にかかるドリルを使用し、実施例1と同様の加工
条件で穴あけ加工試験を行つた。その結果、およ
び加工後の被加工材の仕上げ面の外観状況、ドリ
ルマージン部の軸方向三角摩耗幅を、表に示す。 比較のために、バツクテーパαが0.15/100お
よび0.75/100の比較用ドリルを作成し、同様の
比較試験を行つた。得られた結果を表に併せて示
す。 なお、参考のために、実施例1により得られた
試験結果についても同様に併せて示す。(表中の
バツクテーパ量の右肩に*印を附した)。なお該
試験加工後のドリル摩耗量および仕上げ面の外観
状況についても、同表に併せて示した。 以上より明らかのごとく、バツクテーパの量が
本考案にかかるものの場合は、比較例の場合に比
して、バツクテーパ効果に優れ、摩耗量が少なく
加工後の被加工材の仕上げ面が良好であることが
分る。 【表】
[Detailed Description of the Invention] The present invention is used when drilling difficult-to-cut materials such as hypereutectic aluminum silicon alloys and glass fiber reinforced synthetic resins. Regarding a twist type drill for drilling holes. In recent years, in order to reduce the weight of vehicles and improve the functionality of sliding parts, the use of lightweight materials with excellent functional properties, such as hypereutectic aluminum silicon alloys and glass fiber reinforced synthetic resins, has increased. There is. However, since these materials contain hard inclusions such as primary silicon or glass fiber in their structures, the following problems arise when drilling holes in these materials. Firstly, the margin part of the drill tends to rub against the inner wall of the hole formed in the workpiece, so-called burnishing, which results in the generation of loud squeaks and the generation of excessive torque. This may cause damage or deterioration of the finished hole surface of the workpiece.Secondly, the drill may experience significant cutting wear or abrasion due to contact with these hard inclusions during machining. Ta. The reason why the first problem occurs is that when drilling holes with a drill, a part of the workpiece adheres to the drill edge during drilling and forms a new cutting edge, a so-called built-up edge phenomenon. There is.
The diameter of the hole actually formed in the workpiece by the built-up cutting edge protruding from the outer periphery of the drill is slightly larger than the hole diameter originally created by the drill cutting edge, so There was no contact with the hole wall. However, when drilling holes in hypereutectic aluminum-silicon alloys or glass fiber-reinforced synthetic resins, the formation of built-up edges is extremely rare because the hard inclusions present in the structure are hard and brittle and are difficult to work harden. I understand. On the other hand, since the above materials have a larger coefficient of thermal expansion than steel or cast iron, the amount of thermal expansion that occurs during processing is even larger.
Due to the combination of these conditions, burnishing occurred when drilling holes in hypereutectic aluminum silicon alloys and glass fiber reinforced synthetic resins. In addition, as a countermeasure against burnishing, conventional small-diameter drills with a part of the tip of the drill that is thicker than the shaft (Japanese Patent Application Laid-Open No. 150905), and drills with margin blades extending at appropriate intervals (Japanese Patent Publication No. 150905), 56−
31202), etc., have been proposed to reduce the contact area with the hole wall and prevent burnishing. However, with these conventional drills, it is difficult to re-grind the cutting edge several times before use, and the burnishing prevention effect is not necessarily sufficient. The object of the present invention is to provide a drill for drilling difficult-to-cut materials that causes less burnishing during machining and has a long tool life. That is, the present invention is used when drilling difficult-to-cut materials such as hypereutectic aluminum silicon alloys and glass fiber reinforced synthetic resins that contain hard crystallized substances or mixtures in a soft base and have a coefficient of thermal expansion larger than that of the drill material. The twist type drill 1 is a drill for drilling difficult-to-cut materials, characterized in that the pack taper a of the margin 2 is 0.3/100 to 0.6/100. The drill according to the present invention has a large relief with a taper from the margin tip that is several times to more than 10 times that of a normal drill, so it is possible to prevent burnishing due to contact between the outer periphery of the drill and the inner wall of the hole. As a result, generation of squeaks due to burnishing and damage to the drill due to excessive torque can be prevented, and deterioration of the finished surface quality can also be avoided. moreover,
Since a large taper is provided continuously from the margin tip, even if the drill cutting edge becomes worn, it can be ground and reused. In addition, since wear due to contact with the inner wall of the hole is prevented from occurring in areas other than the tip of the drill, there is less grinding allowance to be removed by grinding, and the life of the drill can be extended. As the material of the drill according to the present invention, high-speed steel and cemented carbide, which are commonly used as drill materials, can be used. Among these, the present invention is particularly useful for drills made of cemented carbide, which have few built-up edges and are prone to burnishing. The back taper a of the margin of the drill of this invention is
Set to 0.3/100 to 0.6/100. Back taper means that the outside diameter of the margin is made smaller as it approaches the shank, and a relief is provided continuously in the axial direction from the tip of the margin so that the outer circumference of the drill does not rub against the inner wall of the hole during feed movement of the drill. Refers to the configuration.
Also, "back taper a of the margin is 0.3/100" means that the outer diameter of the margin part is 0.3 mm smaller per 100 mm length in the axial direction of the drill from the corner formed by the main cutting edge of the drill and the margin. Refers to the condition. General drills have back taper a.
Since a back taper in the range of 0.04/100 to 0.1/100 is used, the drill of the present invention has an extremely large back taper. If the back taper is smaller than 0.3/100, the outer periphery of the drill comes into contact with the inner wall of the hole in the workpiece, which is undesirable because it causes drill wear, increases squeaks, or deteriorates the finished surface. On the other hand, if it is larger than 0.6/100, squeaks will occur again and the torque applied to the drill will increase, and the drill diameter will also be reduced significantly due to grinding, which is also undesirable. Examples of the present invention will be described below. Example 1 The drill in this example is as shown in Fig. 1.
The back taper a, which is made up of a vertical line from the corner 31 of the drill 1 and a line connecting the corner 31 and the margin 2, is set to 0.6/100. This drill is a twist type drill (drill diameter 17 mm) made of cemented carbide. This drill can be used to drill the workpiece material, a hypereutectic aluminum silicon alloy (U.S.
Equivalent to SAE standard 390 alloy, T6 heat treated)
Drilled 32mm deep holes 5000 times without a pilot hole. Furthermore, the grain size of the primary Si crystals present in the workpiece is
The average hardness of the workpiece was 70 to 80 μm and Hv140. In addition, the machining conditions in that case are a cutting speed of 51 m/
The feed rate was 0.3 mm/rev. On the other hand, for comparison with the above, a drill with the back taper set to 0.08/100, which is within the range of conventional drills, and other conditions the same as the drill of the present invention (hereinafter referred to as conventional drill), was used, and the same conditions as above were used. Holes were drilled into the workpiece under the same processing conditions. As a result, the cutting sound when using the drill of the present invention was 73 dBA at the initial cutting stage and 87 dBA at the time of processing 5,000 pieces, which was 7 to 20 dBA smaller than the 94 to 96 dBA produced by the conventional drill from the initial stage of processing. Further, the degree of torque applied to the drill is considered to be indicated by the load current of the motor, and in the drill of the present invention, the load current was 5 to 20% smaller than that of the conventional drill. Further, there was no abnormal increase in load current due to burnishing, which sometimes occurs with conventional drills, and as a result, no breakage of the drill of the present invention occurred during this machining. Also, the wear width of the corner 31 was reduced to about 1/2 of that when using a conventional drill. Example 2 Using the same drill of the present invention and a conventional drill as shown in Example 1, and under the same processing conditions, drilling was performed on a workpiece material made of a composite material made of epoxy resin and glass fiber. I did the processing. As a result, when the drill of the present invention was used, burnishing did not occur and a smooth finished surface could be obtained. However, when conventional drills are used, burnishing occurs, and as a result, fine molten chips adhere to the finished surface of the hole, creating a rough surface, making it impossible to obtain a smooth finished surface. Example 3 A drilling test was conducted under the same processing conditions as Example 1 using the same drill according to the present invention as shown in Example 1 except that the back taper α was set to 0.03/100 and 0.45/100. Ivy. The results, the appearance of the finished surface of the workpiece after machining, and the axial triangular wear width of the drill margin are shown in the table. For comparison, comparative drills with back taper α of 0.15/100 and 0.75/100 were prepared and similar comparative tests were conducted. The obtained results are also shown in the table. For reference, the test results obtained in Example 1 are also shown in the same manner. (The * mark is added to the right shoulder of the back taper amount in the table). The amount of drill wear after the test processing and the appearance of the finished surface are also shown in the same table. As is clear from the above, when the amount of back taper is according to the present invention, the back taper effect is superior, the amount of wear is small, and the finished surface of the workpiece after machining is good compared to the comparative example. I understand. 【table】

【図面の簡単な説明】[Brief description of the drawings]

「図」は本発明のドリルの刃先の拡大図であ
る。 1……ツイスト型ドリル、2……マージン、3
……主切れ刃、31……コーナー、a……マージ
ンのテーパ。
"Figure" is an enlarged view of the cutting edge of the drill of the present invention. 1...Twist drill, 2...Margin, 3
...Main cutting edge, 31...Corner, a...Margin taper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 過共晶アルミニウムシリコン合金やガラス繊維
強化合成樹脂等の難削材等を穿孔する場合に用い
るツイスト型ドリル1において、マージン2のバ
ツクテーパαを0.3/100〜0.6/100としたことを
特徴とする難削材穴あけ用ドリル。
The twist drill 1 used for drilling difficult-to-cut materials such as hypereutectic aluminum silicon alloys and glass fiber reinforced synthetic resins is characterized in that the back taper α of the margin 2 is 0.3/100 to 0.6/100. Drill for drilling holes in difficult-to-cut materials.
JP6777082U 1982-05-10 1982-05-10 Drill for drilling difficult-to-cut materials Granted JPS58169909U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6777082U JPS58169909U (en) 1982-05-10 1982-05-10 Drill for drilling difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6777082U JPS58169909U (en) 1982-05-10 1982-05-10 Drill for drilling difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JPS58169909U JPS58169909U (en) 1983-11-12
JPS6113215Y2 true JPS6113215Y2 (en) 1986-04-24

Family

ID=30077580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6777082U Granted JPS58169909U (en) 1982-05-10 1982-05-10 Drill for drilling difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JPS58169909U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5846683B2 (en) * 2011-09-30 2016-01-20 住友電工ハードメタル株式会社 Drill for processing FRP and metal

Also Published As

Publication number Publication date
JPS58169909U (en) 1983-11-12

Similar Documents

Publication Publication Date Title
US5052153A (en) Cutting tool with polycrystalline diamond segment and abrasive grit
US5322394A (en) Highly stiff end mill
JP2926836B2 (en) Nitrogen-containing cermet alloy
JP3269812B2 (en) Stepped rotary cutting tool
JPH08155713A (en) Twist drill
JP2005111651A (en) Tip, milling cutter, and machining method using the same
JPS6113215Y2 (en)
JP5975340B2 (en) drill
JPH0929531A (en) Finishing end mill
JPS6048211A (en) End mill with edge portion reinforced with coating
JPH01135408A (en) End mill made of cermet
US5197233A (en) Cutting tool with polycrystalline diamond segment and abrasive grit
JPH1080815A (en) Ball end mill
JP2001328016A (en) Twist drill
JPH11216608A (en) Ball end mill
JP3318020B2 (en) Ball end mill
JP4428681B2 (en) Single crystal diamond tool
JPH079349A (en) Compound abrasive grain tool
JPH0351057Y2 (en)
JPS6246491Y2 (en)
JPH0325856Y2 (en)
JPH10113819A (en) Rotary cutting tool
JPH08323526A (en) Rotary cutting tool
JPH031134Y2 (en)
JPS5914107Y2 (en) Abrasive reamer