JPS6113169A - Position ct apparatus - Google Patents

Position ct apparatus

Info

Publication number
JPS6113169A
JPS6113169A JP13471484A JP13471484A JPS6113169A JP S6113169 A JPS6113169 A JP S6113169A JP 13471484 A JP13471484 A JP 13471484A JP 13471484 A JP13471484 A JP 13471484A JP S6113169 A JPS6113169 A JP S6113169A
Authority
JP
Japan
Prior art keywords
coincidence
counting
data
accidental
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13471484A
Other languages
Japanese (ja)
Other versions
JPH0572553B2 (en
Inventor
Seiichi Yamamoto
誠一 山本
Shoji Amano
昌治 天野
Shigekazu Takahashi
高橋 重和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP13471484A priority Critical patent/JPS6113169A/en
Publication of JPS6113169A publication Critical patent/JPS6113169A/en
Publication of JPH0572553B2 publication Critical patent/JPH0572553B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2985In depth localisation, e.g. using positron emitters; Tomographic imaging (longitudinal and transverse section imaging; apparatus for radiation diagnosis sequentially in different planes, steroscopic radiation diagnosis)

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Nuclear Medicine (AREA)
  • Measurement Of Radiation (AREA)

Abstract

PURPOSE:To enable the accurate correction of counting omission even if an object to be inspected or a collimator changes, by providing a detector, a means for collecting real and accidental simultaneous counting data, a means for obtaining counting omission correction factor and a means for an image re-construction by using real coincidence counting. CONSTITUTION:When gamma-rays are simultaneously incident on detectors 11, 1n, the outputs of the detectors 11, 1n are sent to an AND circuit 3 through shaping circuits 21, 2n. Real and accidental countings are contained in the output of this circuit 3. In the case of real coincidence counting, if the other one is delayed by a delay circuit to be sent to an AND circuit 4, no output is generated from the circuit 4 and, in the case of the accidental one, the coincidence with the other pulse is generated and output is generated. The output of the circuit 4 is the coincidence counting of an OFF-time and, if the coincidence counting of the OFF-time is subtracted from that of an ON-time, real coincidence counting is obtained. By this method, the data relating to the real coincidence counting with respect to each of many detectors 11, 12... is measured by a data collection apparatus 6 and the algorithm treatment in the re-constitution of an image is performed.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、ポジトロンCT装置に関し1.特に、γ線
の数え落しを精度良く補正できるポジトロンCT装置に
関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to a positron CT apparatus.1. In particular, the present invention relates to a positron CT apparatus that can accurately correct for missing counts of γ-rays.

(ロ)従来技術 ポジトロンCT装置は、患者体内に投与する放射性医薬
品としてポジトロン(陽電子)放出性核種を用いるエミ
ツションCT装置である。ポジトロンが消滅するとき2
木のγ線が180°方向に同時放出されるので、これら
を2個の検出器で同時検出すれば、その2個の検出器を
結ぶ直線上にポジトロンが存在していることになる。こ
のような、その上に放射性物質が存在する直線に関する
情報を多数収集して、これらの情報なX@CT装置(コ
ンピュータ断層撮影装置)で用いたと同様な画像再構成
技法を用いてデータ処理すれば、放射性物質の濃度分布
画像が得られる。
(b) Prior Art A positron CT apparatus is an emission CT apparatus that uses a positron-emitting nuclide as a radiopharmaceutical to be administered into a patient's body. When the positron disappears 2
Since the gamma rays of wood are simultaneously emitted in 180° directions, if these are detected simultaneously by two detectors, a positron exists on the straight line connecting the two detectors. We need to collect a large amount of information about straight lines on which radioactive materials exist, and then process the data using image reconstruction techniques similar to those used in X@CT devices (computed tomography devices). For example, a concentration distribution image of radioactive substances can be obtained.

ところで、このポジトロンCT装置では、極く短時間の
時間間隔で2つの事象が生じた場合などにγ線を数え落
すなど、/\−ドウエア上の制約から数え落しが避けら
れない。
By the way, in this positron CT apparatus, it is inevitable to omit counting due to hardware constraints, such as omitting gamma rays when two events occur at an extremely short time interval.

そこで、この数え落しを補正することが必要であるが、
最も単純には、あらかじめ被検体とは別個に一定のファ
ントムを用意し、これを測定して実際にどれ位の割合で
数え落しが生じるかを実測し、その割合に基づき被検体
をその後に測定したときの測定値を補正することが考え
られる。すなわち、真の同時計数のみが有用なデータで
あるから、一定のファントムについて真の同時計数率を
実測し、第2図のBで示すような放射性物質の濃度に関
する真の同時計数率のデータを得る。数え落しのない゛
理想状態では濃度に対する真の同時計数率は第2図のA
のようになることが知れられているので、このAの線と
Bの線との差より、計数率の実測値に対する数え落しの
割合の対応表を作っておく。そして被検体の測定時に6
得られる真の計数率の測定値を、この対応表を用いて補
正するのである。なお、ここで、真の同時計数というの
は、1つのポジトロンが消滅するときに生じる2本のγ
線を同時計数することであり、偶発的な同時計数に対す
る言葉として用いている。偶発的な同時計数とは、1つ
のポジトロンが消滅するときに同時に生じるものでない
、関係ない別個の2本のγ線が偶然同時に入射すること
によって、同時計数が起ることを指す。
Therefore, it is necessary to correct this omission, but
In the simplest case, a certain phantom is prepared in advance, separate from the subject, and the phantom is measured to determine the actual percentage of missing counts, and then the subject is measured based on that percentage. It is possible to correct the measured value when In other words, since only true coincidence counts are useful data, we can actually measure the true coincidence rate for a certain phantom and obtain true coincidence rate data regarding the concentration of radioactive substances as shown in B in Figure 2. obtain. In an ideal state with no omissions, the true coincidence rate for concentration is A in Figure 2.
Since it is known that the difference between line A and line B is used, a table of correspondence between the actual measurement value of the counting rate and the proportion of missed counts is created. And when measuring the object, 6
The true count rate measurement value obtained is corrected using this correspondence table. Note that true coincidence here means two γ beams that occur when one positron annihilates.
It refers to simultaneous counting of lines, and is used as a term for accidental simultaneous counting. Accidental coincidence refers to a coincidence that does not occur at the same time when a single positron annihilates, but occurs when two unrelated and separate gamma rays coincidentally inject at the same time.

しかし、実際に行なってみると、被検体やファントムの
大きさ、形状、およびコリメータの形状などによって数
え落しの割合が異なってしまう。
However, in actual practice, the percentage of missed counts varies depending on the size and shape of the subject or phantom, the shape of the collimator, etc.

そのため、ファントム径と被検体径とが異なる場合には
正しく補正できず、またコリメータを交換したときも正
しい補正ができない。
Therefore, if the phantom diameter and the subject diameter are different, correct correction cannot be made, and even if the collimator is replaced, correct correction cannot be made.

(ハ)目的 この発明は、被検体径やコリメータが変わっても正確に
数え落しの補正ができるポジトロンCT装置を提供する
ことを目的とする。
(C) Objective The object of the present invention is to provide a positron CT apparatus that can accurately correct counting errors even if the diameter of the object to be examined or the collimator changes.

(ニ)構成 この発明によるポジトロンCT装置では、リング型に配
列された多数の検出器と、これらの検出器の各々の間で
の真の同時計数データを収集する手段と、これらの検出
器の各々の間での偶発的な同時計数データを収集する手
段とが備えられ、あらかじめファントムを測定すること
によって偶発的な同時計数データおよび偶発的な同時計
数データの各々に対応する数え落し補正係数を得ておき
、被検体測定時に真の同時計数データと偶発的な同時計
数データとを得、その偶発的な同時計数データに対応す
る補正係数を上記の補正係数から求め、この補正係数を
上記の真の同時計数データに適用して数え落し補正を行
ない、この補正後の真の同時計数データを用いて画像再
構成するようにしている。
(D) Structure The positron CT apparatus according to the present invention includes a large number of detectors arranged in a ring shape, a means for collecting true coincidence data between each of these detectors, and a means for collecting true coincidence data between these detectors. and a means for collecting accidental coincidence data between each of them, and by measuring the phantom in advance, a counting omission correction coefficient corresponding to each of the accidental coincidence data and the accidental coincidence data is calculated. Obtain true coincidence data and accidental coincidence data at the time of subject measurement, find the correction coefficient corresponding to the accidental coincidence data from the above correction coefficient, and apply this correction coefficient to the above correction coefficient. The counting omission correction is applied to the true coincidence data, and the corrected true coincidence data is used to reconstruct an image.

(ホ)実施例 この発明は、本発明者によってなされた多くの実験の結
果、偶発的な同時計数率に関する数え落し割合は被検体
やコリメータなどによらず一定の値となることを発見し
たことに端緒を持っている。このことから、偶発的な同
時計数率に関する数え落し割合が被検体やコリメータな
どによらず一定の値となるのは、その値がそのポジトロ
ンCT装置が固有に持っている数え落し特性に依存して
いるからであると考えられる。そこで、偶発的な同時計
数率に関する数え落し補正係数が得られれば、その補正
係数は、偶発的な同時計数のデータを補正するものとし
てどのような被検体やコリメータの場合でも適用できる
ばかりでなく、真の・同時計数のデータの数え落し補正
用としてもどのような被検体やコリメータの場合でも使
用できることになる。そのため、あらかじめ偶発的な同
時計数率について数え落し補正係数°を求めておき、被
検体の測定により真の同時計数のデータを得た場合、単
に、そのときの偶発的な同時計数のデータがどのような
ものであるかを調べてこれに対応する補正係数を探し出
してこの補正係数を真の同時係数のデータに適用するだ
けで、どのような被検体やコリメータの場合であっても
精度の高い数え落し補正が行なえる。
(E) Example This invention is based on the fact that, as a result of many experiments conducted by the present inventor, it was discovered that the rate of missed counts related to the accidental coincidence rate is a constant value regardless of the subject, collimator, etc. It has its roots in From this, the reason why the count loss rate related to the accidental coincidence rate is a constant value regardless of the subject or collimator is that the value depends on the count loss characteristics inherent to the positron CT device. This is thought to be because Therefore, if a correction coefficient for missed counts related to the accidental coincidence rate can be obtained, that correction coefficient can not only be applied to any subject or collimator to correct the data of accidental coincidences. This means that it can be used for any type of object or collimator, even for correcting true/coincidence counting data. Therefore, if you have calculated the missed-count correction coefficient ° for the accidental coincidence rate in advance and obtained the true coincidence data by measuring the subject, it is simply a matter of how much the accidental coincidence data at that time is. By simply checking whether the correction coefficient is correct, finding the corresponding correction coefficient, and applying this correction coefficient to the data of the true simultaneous coefficient, it is possible to obtain highly accurate data regardless of the object or collimator. You can make corrections for missing counts.

第1図において、多数の検出器11..12、・・・が
リング型峠配列され、iのなかにファントムや被検体が
置かれるようになっており、多数の検出器11.12、
・・・の各々の間での真の同時計数と偶発的な同時計数
とが検出されるようになっている。たとえば、検出器1
1と検出器Inとに同時にγ線が入射したとすると、検
出器11.inの各出力はパルス整形回路21.2nを
経てAND回路3に送られる。このAND回路3の出力
は、ともかく検出器11.1nで同時入射が生じたこと
(これをオンタイムの同時計数という)を示しており、
このなかには真の同時計数と偶発的な同時計数とが含ま
れる。真の同時計数の場合には。
In FIG. 1, a number of detectors 11. .. 12, .
. . . true coincidences and accidental coincidences between each of them are detected. For example, detector 1
If gamma rays are incident on detector 11.1 and detector In at the same time, then detector 11. Each output of in is sent to the AND circuit 3 via a pulse shaping circuit 21.2n. The output of this AND circuit 3 indicates that simultaneous incidence has occurred on the detector 11.1n (this is called on-time coincidence counting).
This includes true coincidences and accidental coincidences. In case of true coincidence.

一方を遅延回路で遅延させてANDN0回路送れば、こ
のANDN0回路らは出力が生じないが、偶発的な場合
には遅らせたとしても他のパルスとの同時性が生じ、A
NDN0回路ら出力が生じる。ANDN0回路出力はオ
フタイムの同時計数と言うことができ、このオフタイム
の同時計数は偶発的な同時計数に対応している。オンタ
イムの同時計数からオフタイムの同時計数を差し引けば
真の同時計数が求められることになる。こうして多数の
検出器11.12、・・・の各々を結ぶ多数の直線の各
々について、真の同時計数に関するデータがデータ収集
装置6で測定され、CPU7で画像再構成のためのアル
ゴリズム処理がなされる。
If one of the pulses is delayed by a delay circuit and sent to the ANDN0 circuit, no output will be generated from these ANDN0 circuits, but in an accidental case, even if it is delayed, simultaneity with other pulses will occur, and the A
Outputs are generated from the NDN0 circuit. The ANDN0 circuit output can be said to be an off-time coincidence, and this off-time coincidence corresponds to an accidental coincidence. The true coincidence count can be found by subtracting the off-time coincidence count from the on-time coincidence count. In this way, data regarding true coincidence is measured by the data acquisition device 6 for each of the many straight lines connecting each of the many detectors 11, 12, . Ru.

そこで、まず、ファントムに関して偶発的な同時計数率
を測定する。この場合ファントム径は任意でよい。する
と、第2図のDで示すようなデータが得られる。このデ
ータには数え落しが含まれているため、数え落しのない
理想状態のデータを示すCとは差が生じる。この差が数
え落しに対応するため、この差により偶発的な同時計数
率の実測値に関する数え落しの割合を求め、これを補正
係数とし、この補正係数を偶発的な同時計数率の実測値
の各々につき求める。あるいは、この補正係数の変化に
最も良く近似するような曲線を計算して求めてもよい。
Therefore, first, we measure the accidental coincidence rate for the phantom. In this case, the phantom diameter may be arbitrary. Then, data as shown by D in FIG. 2 is obtained. Since this data includes counting errors, it differs from C, which represents data in an ideal state with no counting errors. Since this difference corresponds to omitted counts, the proportion of omitted counts with respect to the actual measured value of the accidental coincidence rate is calculated from this difference, and this is used as a correction coefficient. Find each one. Alternatively, a curve that best approximates the change in this correction coefficient may be calculated and obtained.

つぎに、被検体の測定を行なう。このとき、真の同時計
数率とともに偶発的な同時計数率をも求める。すなわち
、第1図のANDN0回路ら得られるオフタイムの出力
を計数し、その計数値を記憶する。そして、このオフタ
イムの計数率に対応する上記の補正係数を求め、この補
正係数を真の同時計数率の実測値に掛ける。こうして真
の同時計数率の実測値の正確な数え落し補正が行なわれ
ることになる。
Next, the subject is measured. At this time, both the true coincidence rate and the accidental coincidence rate are determined. That is, the off-time output obtained from the ANDN0 circuit of FIG. 1 is counted and the counted value is stored. Then, the above-mentioned correction coefficient corresponding to this off-time counting rate is determined, and the actual measured value of the true coincidence rate is multiplied by this correction coefficient. In this way, accurate counting correction of the actual measured value of the true coincidence rate is performed.

こうした数え落し補正を受けた真の同時計数率のデータ
をCPU7で画像再構成のためのアルゴリズムで処理す
ることにより、被検体内部の放射性物質の濃度分布画像
が再構成できる。
By processing the data of the true coincidence rate that has been subjected to such counting omission correction using an algorithm for image reconstruction by the CPU 7, an image of the concentration distribution of radioactive substances inside the subject can be reconstructed.

実際に実験してみると、上記のようにして数え落しの補
正を行なうと、補正前に30Kcpsにおいて5%程度
あった数え落しが1oOKcpsまで1%程度とするこ
とができた。また、この数え落し補正の精度は、ファン
トム径やコリメータ形状にほとんど影響されないことも
実験的に確認できた。
In an actual experiment, by correcting the counting loss as described above, the counting loss, which was about 5% at 30Kcps before correction, could be reduced to about 1% up to 1oOKcps. It was also experimentally confirmed that the accuracy of this counting correction is hardly affected by the phantom diameter or collimator shape.

なお、あらかじめ求めた補正係数を用いての数え落し補
正は、被検体測定時に真の同時計数についてのデータを
収集するとともにオフタイムの同時計数データを収集し
、このオフタイムのデータに対応する補正係数を求めて
おいて、この補正係数で画像再°構成時に真の同時計数
データを補正するという具体的な手順をとって行なって
もよいし、他の手順で行なうようにしてもよい。また、
具体的な回路構成についても種々に考え得るものである
In addition, to correct for missed counts using a correction coefficient determined in advance, data on true coincidence is collected at the time of measuring the object, and off-time coincidence data is also collected, and corrections are made corresponding to this off-time data. A specific procedure may be used in which a coefficient is determined and true coincidence data is corrected during image reconstruction using this correction coefficient, or another procedure may be used. Also,
Various specific circuit configurations can be considered.

(へ)効果 この発明によれば、被検体径やコリメータの種類が変わ
っても精度の高い数え落し補正ができ、しかも特別なハ
ードウェアも必要としない。
(f) Effects According to the present invention, accurate counting correction can be performed even if the diameter of the object to be examined or the type of collimator changes, and no special hardware is required.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例のブロック図、第2図は放
射性物質の濃度に対する計数率の関係を示すグラフであ
る。 11.12、ln・・・検出器
FIG. 1 is a block diagram of an embodiment of the present invention, and FIG. 2 is a graph showing the relationship between the counting rate and the concentration of radioactive substances. 11.12, ln...detector

Claims (1)

【特許請求の範囲】[Claims] (1)リング型に配列された多数の検出器と、これらの
検出器の各々の間での真の同時計数データを収集する手
段と、これらの検出器の各々の間での偶発的な同時計数
データを収集する手段と、あらかじめファントムを測定
することによって偶発的な同時計数データおよび偶発的
な同時計数データの各々に対応する数え落し補正係数を
得ておく手段と、被検体を測定することによって真の同
時計数データと偶発的な同時計数データとを得、その偶
発的な同時計数データに対応する補正係数を上記の補正
係数から求め、この補正係数を上記の真の同時計数デー
タに適用して数え落し補正を行なう手段と、この補正後
の真の同時計数データを用いて画像再構成する手段とを
有してなるポジトロンCT装置。
(1) A large number of detectors arranged in a ring, a means for collecting true coincidence data between each of these detectors, and an accidental coincidence between each of these detectors. A means for collecting count data, a means for obtaining accidental coincidence data and a count correction coefficient corresponding to each of the accidental coincidence data by measuring a phantom in advance, and measuring a subject. Obtain true coincidence data and accidental coincidence data by 1. A positron CT apparatus comprising: a means for performing count-off correction; and a means for reconstructing an image using true coincidence data after the correction.
JP13471484A 1984-06-28 1984-06-28 Position ct apparatus Granted JPS6113169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13471484A JPS6113169A (en) 1984-06-28 1984-06-28 Position ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13471484A JPS6113169A (en) 1984-06-28 1984-06-28 Position ct apparatus

Publications (2)

Publication Number Publication Date
JPS6113169A true JPS6113169A (en) 1986-01-21
JPH0572553B2 JPH0572553B2 (en) 1993-10-12

Family

ID=15134876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13471484A Granted JPS6113169A (en) 1984-06-28 1984-06-28 Position ct apparatus

Country Status (1)

Country Link
JP (1) JPS6113169A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196977A (en) * 1989-01-20 1990-08-03 Teremateiiku Kokusai Kenkyusho:Kk Sound source coordinate measuring instrument
JPH02227691A (en) * 1989-02-28 1990-09-10 Shimadzu Corp Positron ct device
WO2009090754A1 (en) 2008-01-18 2009-07-23 Nittobo Acoustic Engineering Co., Ltd. Sound source identifying and measuring apparatus, system and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02196977A (en) * 1989-01-20 1990-08-03 Teremateiiku Kokusai Kenkyusho:Kk Sound source coordinate measuring instrument
JPH02227691A (en) * 1989-02-28 1990-09-10 Shimadzu Corp Positron ct device
WO2009090754A1 (en) 2008-01-18 2009-07-23 Nittobo Acoustic Engineering Co., Ltd. Sound source identifying and measuring apparatus, system and method

Also Published As

Publication number Publication date
JPH0572553B2 (en) 1993-10-12

Similar Documents

Publication Publication Date Title
DE69816626T2 (en) METHOD AND DEVICE FOR PREVENTING 'PILE-UP' WHEN DETECTING ARRIVING ENERGY SIGNALS
Defrise et al. A normalization technique for 3D PET data
US6936822B2 (en) Method and apparatus to prevent signal pile-up
JPH10123254A (en) Method for processing pulse outputted from gamma camera and gamma camera being used therein
Lewellen et al. Investigation of the count rate performance of General Electric Advance positron emission tomograph
CN107976706B (en) A kind of counting loss bearing calibration of PET system and device
CN102472824A (en) Dynamic pet imaging with isotope contamination compensation
US11860320B2 (en) Gamma camera dead time determination in real time using long lived radioisotopes
US8921796B1 (en) Multiple discriminator PET with pileup event detection
JPH0720245A (en) Positron ct
Koral et al. Improving emission-computed-tomography quantification by Compton-scatter rejection through offset windows
JPH11352233A (en) Nuclear medicine diagnostic equipment
US7132663B2 (en) Methods and apparatus for real-time error correction
Merheb et al. Full modelling of the MOSAIC animal PET system based on the GATE Monte Carlo simulation code
JPS6113169A (en) Position ct apparatus
US6198104B1 (en) Randoms correction using artificial trigger pulses in a gamma camera system
JP2008249337A (en) Radioactivity absolute measurement method, method for determining detection efficiency of radiation detector assembly and method for calibrating radiation measuring apparatus
JPS6183983A (en) Correction of positron ct
Daube-Witherspoon et al. Developments in instrumentation for emission computed tomography
WO2004095069A1 (en) Detector element for combined detection of x-radiation and gamma radiation
JPS61159178A (en) Ect device
JPS63115079A (en) Ect device
JP3770914B2 (en) Method of retrospectively determining the center of rotation of a scintillation camera detector from SPECT data obtained during a nuclear medicine examination
Adams et al. Testing the count rate performance of the scintillation camera by exponential attenuation: decaying source; multiple filters
AbuAlRoos Review on Routine Quality Control Procedures in Nuclear Medicine Instrumentation

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees