JPS6113165B2 - - Google Patents

Info

Publication number
JPS6113165B2
JPS6113165B2 JP49061905A JP6190574A JPS6113165B2 JP S6113165 B2 JPS6113165 B2 JP S6113165B2 JP 49061905 A JP49061905 A JP 49061905A JP 6190574 A JP6190574 A JP 6190574A JP S6113165 B2 JPS6113165 B2 JP S6113165B2
Authority
JP
Japan
Prior art keywords
frequency
signal
component
wave
received signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP49061905A
Other languages
Japanese (ja)
Other versions
JPS50153972A (en
Inventor
Kageyoshi Katakura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP49061905A priority Critical patent/JPS6113165B2/ja
Publication of JPS50153972A publication Critical patent/JPS50153972A/ja
Publication of JPS6113165B2 publication Critical patent/JPS6113165B2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Indicating Or Recording The Presence, Absence, Or Direction Of Movement (AREA)
  • Measuring Volume Flow (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は超音波により血液等の流速およびその
進向方向を測定する装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to an apparatus for measuring the flow velocity and direction of flow of blood, etc., using ultrasonic waves.

〔発明の背景〕[Background of the invention]

所定の周期でくり返されるバースト状の正弦波
パルス列により電気音響変換器を駆動して移動物
体にパルス超音波を送波し、反射波に生じるドツ
プラー・シフトの量を検出して物体の移動速度を
測定する方式は一般にパルス・ドツプラー法と呼
ばれており、例えば日本音響学会試、第29巻6号
(1973年)第351〜352頁に示されている。パル
ス・ドツプラー法では送波パルスが物体に到達
し、その反射波が検出されるまでの音波の往復時
間は応じたタイムゲートを受信信号にかけること
により被測定物体からの反射波を抽出し、もつて
速度測定の位置を特定できる。
An electroacoustic transducer is driven by a burst-shaped sine wave pulse train repeated at a predetermined period to transmit pulsed ultrasonic waves to a moving object, and the amount of Doppler shift that occurs in the reflected waves is detected to determine the object's moving speed. The method for measuring is generally called the pulse Doppler method, and is shown in, for example, the Acoustical Society of Japan, Vol. 29, No. 6 (1973), pp. 351-352. In the pulse Doppler method, the round trip time of the sound wave from when the transmitted pulse reaches the object until the reflected wave is detected is determined by applying a time gate to the received signal to extract the reflected wave from the object being measured. The location of the speed measurement can be determined by using the following method.

上記公知例に示された装置では、抽出された受
信信号と単一の補助信号(参照波)との混合によ
りドツプラー・シフトの量を検出している。すな
わち送波信号の搬送波の周波数f0と同一周波数の
参照波と抽出された受信信号とを混合すると、物
体の移動により生ずるドツプラー・シフトの量に
相当する両者の周波数差(ドツプラー周波数)の
低周波成分が現われ、混合波を低域濾波器に通す
ことによりこの低周波成分を抽出してその周波数
によりドップラーシフトの量を検出する。この方
法ではドツプラーシフトの絶対値が検出できる
が、シフトの向き、すなわち物体の進方向の区別
はできない欠点を有する。
In the device shown in the above-mentioned known example, the amount of Doppler shift is detected by mixing the extracted received signal and a single auxiliary signal (reference wave). In other words, when a reference wave with the same frequency as the frequency f 0 of the carrier wave of the transmitted signal is mixed with the extracted received signal, the frequency difference between the two (Doppler frequency) corresponding to the amount of Doppler shift caused by the movement of the object will decrease. A frequency component appears, and by passing the mixed wave through a low-pass filter, this low frequency component is extracted and the amount of Doppler shift is detected based on its frequency. Although this method can detect the absolute value of the Doppler shift, it has the disadvantage that it cannot distinguish the direction of the shift, that is, the direction in which the object is moving.

そこで、物体の移動の向きをも含めて移動速度
を検出しようとする提案が成された。その1例で
は、互いに90゜位相の異なる2つの参照波を準備
し、ωdなるドツプラーシフトを受けた反射波の
受信信号とこれらの参照波をそれぞれ混合し、
各々ローパスフイルターにそれぞれ通してcosω
dtとsinωdtなる混合波形出力を得る。cosωdtの
波形は90゜移相器により90゜の位相遅れを付す。
移相器出力はωd>0でsinωdt、ωd<0で−
sinωdtとなる。そこで移相器出力とsinωdtなる
混合波出力の和と差をとれば、ωd>0のときは
和の方にドツプラー周波数の振動波形が現れ、ω
d<0のときは差の方にドツプラー周波数の振動
波形が現れるので、周波数計測により速度が測定
できるとともに、和と差のいずれに出力波形が現
れたかにより物体の移動の向きが得られる。この
ような改良されたパルスドツプラー法によれば、
混合部が2系統必要であり、さらに移相器が必要
となるため装置が複雑化する。
Therefore, a proposal has been made to detect the speed of movement of an object, including the direction of movement. In one example, two reference waves having a phase difference of 90° from each other are prepared, and each of these reference waves is mixed with a received signal of a reflected wave that has undergone a Doppler shift of ωd.
Pass each through a low-pass filter and cosω
Obtain a mixed waveform output of dt and sinωdt. A 90° phase shifter adds a 90° phase delay to the cosωdt waveform.
The phase shifter output is sinωdt when ωd>0, and - when ωd<0.
sinωdt. Therefore, if we take the sum and difference between the phase shifter output and the mixed wave output called sinωdt, when ωd>0, an oscillation waveform with a Doppler frequency appears on the sum side, and ω
When d<0, a vibration waveform with a Doppler frequency appears on the difference side, so the speed can be measured by frequency measurement, and the direction of movement of the object can be determined depending on whether the output waveform appears on the sum or difference side. According to this improved pulsed Doppler method,
Two systems of mixing sections are required, and a phase shifter is also required, which complicates the device.

なお、上述した単一の参照波を用いるパルス・
ドツプラー法でも検出可能なドツプラーシフト量
の範囲、すなわち速度検出レンジを犠牲にすれば
速度とともに移動の向きを検出できる。これを説
明すると、まず上述したパルス・ドツプラー法に
よれば、送波信号のパルスくり返し周期をT2
すると検出可能なドツプラーシフト量の範囲は本
質的に1/2Tまでとなる。すなわち、送波信号のス ペクトルは搬送波周波数f0の中心周波数成分の左
右にf0±n/T2(n=1、2……)なる副次波成
分を有する。したがつて、例えば、fdなるドツ
プラーシフトを受けた受信信号もf0+fdの中心
周波数成分の左右にf0+fd±n/T2(n=1、
2……)の副次波成分を有する。したがつて、受
信信号と周波数f0の参照波との混合波は周波数が
|(f0+fd)−f0|=|fd|なる成分の他に|
(f0+fd+n/T0)−f0|=|fd±n/T2|(n
=1、2……)なる成分を含む。そこでこれらの
成分から|fd|なる成分のみを抽出するためカ
ツトオフ同波数が1/2Tの低域濾波器を用いてドツ プラーシフトの量の絶対値|fd|を得るのであ
るが、ドツプラーシフト量|fd|が1/2Tを越え ると低域濾波器では|fd|なる成分の代りに|
d−1/T2|の成分を抽出してしまうので正し
いドツプラーシフト量|fd|は得られない。つ
まりパルス・ドツプラー法によるドツプラーシフ
ト量の検出範囲は1/2Tまでとなる。
Note that the pulse signal using the single reference wave mentioned above
By sacrificing the range of Doppler shift amount that can be detected by the Doppler method, that is, the speed detection range, it is possible to detect both the speed and the direction of movement. To explain this, first, according to the above-mentioned pulse Doppler method, if the pulse repetition period of the transmitted signal is T2 , the range of the amount of Doppler shift that can be detected is essentially up to 1/ 2T2 . That is, the spectrum of the transmitted signal has secondary wave components of f 0 ±n/T 2 (n=1, 2, . . . ) on the left and right sides of the center frequency component of carrier frequency f 0 . Therefore, for example, a received signal that has undergone a Doppler shift f d will also have f 0 + f d ±n/T 2 (n=1,
2...) sub-wave components. Therefore, the mixed wave of the received signal and the reference wave of frequency f 0 has a component whose frequency is |(f 0 +f d )−f 0 |=|f d |, as well as |
(f 0 +f d +n/T 0 )−f 0 |=|f d ±n/T 2 |(n
= 1, 2...). Therefore, in order to extract only the component |f d | from these components, a low-pass filter with a cutoff frequency of 1/2T 2 is used to obtain the absolute value of the amount of Doppler shift |f d |. When the amount of Doppler shift |f d | exceeds 1/ 2T2 , the component becomes |f d | instead of | in the low-pass filter.
Since the component of f d −1/T 2 | is extracted, the correct amount of Doppler shift |f d | cannot be obtained. In other words, the detection range of the Doppler shift amount by the pulse Doppler method is up to 1/ 2T2 .

さて、参照波の周波数をf0にかえて(f0
1/4T)とすると、ドツプラーシフトを受けた受波 信号とこの参照波との混合波の低周波成分は、周
波数が|(f0+fd)−(f0−1/4T)|=|fd
1/4T |なる成分と|(f0±fd±n/T2)−(f0−1/4T
) |=|fd+n/T2+1/4T|(n=1、2……) なる成分とになる。この場合には、カツトオフ周
波数が1/2Tの低域濾波器を介した出力の周波数は |fd+1/4T|となるので、この出力周波数が例 えばゼロならドツプラーシフトfdの値は−1/4T 出力周波数が1/4Tなるfdの値はゼロ、出力周波 数が1/2Tならfdは+1/4Tであることが分
かる。fd が1/4Tを越えると低域濾波器により|fd+1/
4T |の成分の代りに|fd−1/T+1/4T|の成
分が抽 出されるので、正しいfdの値は得られない。つ
まり参照波の周波数を(fd−1/4T)にすること により、ドツプラーシフトの向きすなわち移動の
向きをも検出できるかわりに、シフト量の検出可
能な範囲は1/4Tに半減してしまう。
Now, change the frequency of the reference wave to f 0 (f 0
1/4T 2 ), the low frequency component of the mixed wave of the Doppler-shifted received signal and this reference wave has a frequency of |(f 0 + f d ) - (f 0 - 1/4T 2 ) |=|f d +
The component becomes 1/4T 2 | (f 0 ±f d ±n/T 2 )−(f 0 −1/4T
2
) |=|f d +n/T 2 +1/4T 2 |(n=1, 2...). In this case, the frequency of the output through the low-pass filter with a cutoff frequency of 1/2T 2 is |f d + 1/4T 2 |, so if this output frequency is, for example, zero, the value of the Doppler shift f d It can be seen that the value of f d when the output frequency is 1/4T 2 is zero, and when the output frequency is 1/2T 2 , f d is +1/4T 2 . When f d exceeds 1/4T 2 , the low-pass filter reduces |f d +1/
Since the component |f d −1/T 2 +1/4T 2 | is extracted instead of the component of 4T 2 |, the correct value of f d cannot be obtained. In other words, by setting the frequency of the reference wave to (f d -1/4T 2 ), the direction of the Doppler shift, that is, the direction of movement, can also be detected, but the detectable range of the shift amount is halved to 1/4T 2 Resulting in.

〔発明の目的〕[Purpose of the invention]

そこで、本発明は、装置構成が簡単で、しかも
測定可能な速度の範囲を半減することなく移動の
向きをも含めた速度測定が可能な流速測定装置を
提供することを目的とする。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a flow velocity measuring device that has a simple device configuration and is capable of measuring velocity including the direction of movement without halving the measurable velocity range.

〔発明の概要〕[Summary of the invention]

本発明の特徴は所定の通過帯域を有する帯域通
過手段(フイルター)を備え、タイムゲートによ
り抽出された受信信号をこのフイルターにかけた
後で補助信号(参照波)と混合して両者の周波数
差成分を検出する点にある。
A feature of the present invention is that it is equipped with a bandpass means (filter) having a predetermined passband, and after passing the received signal extracted by a time gate through this filter, it is mixed with an auxiliary signal (reference wave) to produce a frequency difference component between the two. The point is to detect.

上記フイルターの通過帯域は、送波信号のスペ
クトルの一成分に相当する帯域(帯域巾は送波信
号のくり返し周期T2に対し、T2 -1)とするのが好
ましい。
The passband of the filter is preferably a band corresponding to one component of the spectrum of the transmitted signal (bandwidth is T 2 -1 with respect to the repetition period T 2 of the transmitted signal).

〔発明の実施例〕[Embodiments of the invention]

以下本発明の実施例を図面により詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図が本発明による装置の超音波を送出する
部分(以下送波部と呼ぶ)の構成図である。第1
図において1が信号発生器であり通常2〜5MHz
の正弦波(周波数をf0とする)を発生する。2が
ダイオード等による通常のゲート回路であり、計
数回路および論理回路よりなるパルス発生器3に
より作られる信号発生器の出力4に同期したパル
ス列5によりゲートを開閉することにより6に示
す正弦波パルス列を発生する。ここでパルス幅
T1は観測部位の距離分解能に対し、信号4の周
期の整数倍に測定し数μsの時間長とする。また
信号6のT2は不要信号が混入する距離および測
定可能な最高速度に対応し、前述した如くドツプ
ラー周波数移動量で1/2T2までの速度が従来距
離CsT2/2(Cs:音速)毎の不要信号混入(後
に詳述)で計測可能となる。このような信号6を
増幅器7で充分増幅したのちPZT等で構成された
電気音響変換器8を使用し体内へ送波する。この
ように送波された超音波が血球等で反射された第
2図に示す受波部のPZT等による圧電受波器9に
より検出される。この受信信号は第3図10に示
すように音波伝播時間τの遅延で受信される。こ
こでτA、τBはそれぞれ血球A、Bまでの伝播時
間に対応する。このような受信信号10を増幅器
11で充分増幅したのちゲート回路12に印加す
る。このゲート回路12は第1図2のゲート回路
とほぼ同じ構成になつており、パルス発生器3の
出力信号5を観測物体までの音波往復時間τ(例
えば物体Aを観測する場合にはτA)だけ遅延し
た信号13をシフトレジスタ等の遅延回路14に
より発生させ、ゲート回路12の開閉信号とす
る。このように構成されたゲート回路12の動作
は例えばτ=τaと設定すると第3図15に示す
ように、物体Aからの反射波のみを通過させるこ
とになる。なお、厳密に言えば、物体Aからさら
にCsT2/2(Cs:音速)の整数倍の距離だけ離
れた位置に存在する物体からの反射信号もゲート
12を通過することになり、これが不要信号混入
となる。ただし一般にはこのような遠距離からの
反射信号は音波伝播中の減衰により微弱な信号と
なる。
FIG. 1 is a configuration diagram of a portion (hereinafter referred to as a wave transmitting portion) that transmits ultrasonic waves of an apparatus according to the present invention. 1st
In the figure, 1 is the signal generator, usually 2~5MHz
Generates a sine wave (frequency is f 0 ). 2 is a normal gate circuit made of diodes, etc., and by opening and closing the gate with a pulse train 5 synchronized with the output 4 of a signal generator generated by a pulse generator 3 consisting of a counting circuit and a logic circuit, a sine wave pulse train shown in 6 is generated. occurs. where the pulse width
T 1 is measured at an integer multiple of the period of the signal 4 and has a time length of several μs with respect to the distance resolution of the observation site. In addition, T 2 of signal 6 corresponds to the distance where unnecessary signals are mixed and the maximum measurable speed, and as mentioned above, the speed up to 1/2T 2 in the amount of Doppler frequency movement is the conventional distance CsT 2 /2 (Cs: sound speed) It becomes possible to measure the interference of unnecessary signals (described in detail later). After sufficiently amplifying such a signal 6 with an amplifier 7, it is transmitted into the body using an electroacoustic transducer 8 made of PZT or the like. The ultrasonic waves thus transmitted are reflected by blood cells and the like and are detected by a piezoelectric receiver 9 made of PZT or the like in the wave receiving section shown in FIG. This received signal is received with a delay of the sound wave propagation time τ as shown in FIG. 310. Here, τ A and τ B correspond to the propagation time to blood cells A and B, respectively. Such a received signal 10 is sufficiently amplified by an amplifier 11 and then applied to a gate circuit 12. This gate circuit 12 has almost the same configuration as the gate circuit shown in FIG. ) is generated by a delay circuit 14 such as a shift register, and is used as an opening/closing signal for the gate circuit 12. The operation of the gate circuit 12 configured in this way is such that when τ=τ a is set, only the reflected wave from the object A is passed, as shown in FIG. 3, 15. Strictly speaking, reflected signals from objects located further away from object A by an integral multiple of CsT 2 /2 (Cs: speed of sound) will also pass through the gate 12, and these are unnecessary signals. This will result in contamination. However, in general, such a reflected signal from a long distance becomes a weak signal due to attenuation during sound wave propagation.

第4図aは上記した送波信号の周波数スペクト
ルを示しており、搬送波(信号発生器1の出力
波)の周波数f0を中心周波数成分として、その左
右にf0±n/T2(n=1、2……)の副次波成分
を含んでいる。一方、ゲート回路12を通過した
受信信号は、物体Aが静止している場合には第4
図aの通りとなり、また物体Aが移動している場
合にはドツプラー効果によりその運動速度に対応
して周波数スペクトル全体が左右に平行移動(厳
密には周波数が定数倍)することになる。そこで
本実施例では送波信号のスペクトルの一成分、例
えば第4図aに示した周波数fT=f0+1/T2
成分に注目し、この成分に相当する受波信号の成
分のドツプラー移動量を検出する。すなわち第2
図17は周波数fTを中心として巾1/T2の通過
帯域巾を有するフイルターである。第4図bは送
波、受波信号の周波数スペクトルのうち周波数f
Tの近傍を拡大して示すもので、点線は送波信号
のスペクトルを示す。実線は受波信号のスペクト
ルを示し、送波信号の各成分に対しドツプラー効
果によりそれぞれfdだけ移動している。フイル
タ17の選択特性は第4図bの16に示す通りで
あり、フイルター17を通過した信号は第4図C
のようになる。すなわわちドツプラーシフトの量
|fd|が1/2Tを越えない限り、注目した送波信 号の一成分fTに対応する受波信号の一成分(fT
+fd)のみがフイルター17の出力に現れ、そ
の他の受波信号成分は阻止される。そこで、この
フイルター17の出力と、信号発生器19から得
る周波数fcなる信号とを混合器18で混合し、
低域濾波器20により混合波の低周波成分のみ抽
出する。その出力の周波数は|fT+fd−fC
となる。fCの値は第4図cに示したようにフイ
ルター17の通過帯域外とし、低域濾波器20の
カツトオフ周波数はfT>fCの場合(fT+1/2T −fC)とすれば良い。すると、ドツプラーシフ
トfdがゼロのとき抽出出力の周波数は|fT−f
C|となり、fT−fC>0とすると、fdが正(正
のドツプラーシフト)のときは抽出出力の周波数
は高周波側に、fdが負(負のドツプラーシフ
ト)のときは低周波側に|fd|だけずれる。し
たがつて低域濾波器20の出力の周波数によりド
ツプラ移動量|fd|とその向きを知ることがで
きる。
FIG. 4a shows the frequency spectrum of the above-mentioned transmission signal, with the frequency f 0 of the carrier wave (output wave of the signal generator 1) as the center frequency component, and f 0 ±n/T 2 (n =1, 2...) sub-wave components. On the other hand, if the object A is stationary, the received signal that has passed through the gate circuit 12 is
As shown in Figure a, when the object A is moving, the entire frequency spectrum will shift horizontally (strictly speaking, the frequency will be multiplied by a constant) due to the Doppler effect in response to the speed of movement. Therefore, in this embodiment, we focus on one component of the spectrum of the transmitted signal, for example, the component at the frequency f T =f 0 +1/T 2 shown in FIG. Detect the amount of movement. That is, the second
FIG. 17 shows a filter having a passband width of 1/T 2 centered on the frequency f T . Figure 4b shows the frequency f of the frequency spectrum of the transmitted and received signals.
This is an enlarged view of the vicinity of T , and the dotted line indicates the spectrum of the transmitted signal. The solid line indicates the spectrum of the received signal, which is shifted by f d with respect to each component of the transmitted signal due to the Doppler effect. The selection characteristics of the filter 17 are as shown in 16 in Fig. 4b, and the signal passing through the filter 17 is as shown in Fig. 4C.
become that way. That is , unless the amount of Doppler shift |f d | exceeds 1/ 2T2 , one component of the received signal (f T
+f d ) appears at the output of the filter 17, and other received signal components are blocked. Therefore, the output of this filter 17 and a signal of frequency f c obtained from the signal generator 19 are mixed in a mixer 18,
A low-pass filter 20 extracts only low frequency components of the mixed wave. The frequency of its output is |f T +f d −f C |
becomes. The value of f C is set outside the passband of the filter 17 as shown in FIG . Just do it. Then, when the Doppler shift f d is zero, the frequency of the extracted output is |f T - f
C |, and if f T - f C > 0, when f d is positive (positive Doppler shift), the frequency of the extracted output will be on the high frequency side, and when f d is negative (negative Doppler shift), the frequency of the extracted output will be on the high frequency side. is shifted toward the lower frequency side by |f d |. Therefore, the Doppler movement amount |f d | and its direction can be determined from the frequency of the output of the low-pass filter 20.

このとき測定可能なドツプラーシフト量の絶対
値は1/2Tであり、すなわち本装置はドツプラーシ フト量に換算して−1/2Tから+1/2Tまでの
範囲の 速度を測定できる。また、ドツプラーシフトの向
きの検出のために追加した部分はフイルター17
のみであり、特に多数位置(種々のτ)にある物
体の速度を同時測定する装置を構成する場合に非
常に有利となる。
The absolute value of the amount of Doppler shift that can be measured at this time is 1/ 2T2 , that is, this device can measure speeds in the range from -1/ 2T2 to +1/ 2T2 in terms of Doppler shift amount. . Also, the part added to detect the direction of Doppler shift is filter 17.
This is particularly advantageous when constructing a device that simultaneously measures the velocity of objects at multiple positions (various τ).

なお、上記実施例では送波信号の中心周波数f0
の成分ではなく、fT=f0+1/Tの成分に着目し、 この成分に対応する受信信号成分のドツプラーシ
フトを計測する構成を例として述べたが、送波信
号スペクトルのどの成分に着目しても良い。ただ
し、第2図に示した受信部は第1図の信号発生器
1と電気回路の何らかの結合がある場合が多く、
ゲート12には抽出した受波信号の他に周波数f0
の不要信号が混入する。したがつて着目する送波
信号の成分をf0とした場合、フイルター17の通
過帯域はf0−1/2Tからf0+1/2Tとなり、上
記のf0な る不要信号はフイルター17を通過することにな
る。一方、上記実施例のように着目する送波信号
の成分をf0と異なる副次波の一成分とした場合こ
の周波数f0なる不要信号をフイルター17により
阻止することができる。したがつて着目する周波
数成分fTはf0と異なる副次波成分とするのが好
ましく、この場合には信号発生器1と受波部分と
の結合を厳密に防止する必要がないので装置構成
が大幅に楽になる。
In addition, in the above embodiment, the center frequency f 0 of the transmission signal
We have described an example configuration in which we focus on the component of f T = f 0 + 1/T 1 and measure the Doppler shift of the received signal component corresponding to this component, but which component of the transmitted signal spectrum You can also focus on However, the receiving section shown in FIG. 2 often has some kind of electrical circuit connection with the signal generator 1 shown in FIG.
In addition to the extracted received signal, the gate 12 also receives the frequency f 0
unnecessary signals are mixed in. Therefore, if the component of the transmitted signal to be focused on is f 0 , the passband of the filter 17 is from f 0 -1/2T 2 to f 0 +1/2T 2 , and the above unnecessary signal f 0 is passed through the filter 17. It will pass. On the other hand, when the component of the transmitted signal of interest is one component of a sub-wave different from f 0 as in the above embodiment, the filter 17 can block this unnecessary signal having the frequency f 0 . Therefore, it is preferable that the frequency component f T to be focused on is a sub-wave component different from f 0. In this case, there is no need to strictly prevent coupling between the signal generator 1 and the receiving part, so the device configuration becomes significantly easier.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明のよれば、単純なフイルタ
ーを使用するだけで測定可能な速度の範囲が従来
と変りがなく、しかも物体の移動の向きを含めた
速度測定が可能となる。
As described above, according to the present invention, the measurable speed range is the same as that of the conventional method by using a simple filter, and it is also possible to measure the speed including the direction of movement of the object.

【図面の簡単な説明】[Brief explanation of drawings]

第1図が本発明の正弦波パルスを発生し送波す
る送波部の構成および各部の波形を説明する説明
図であり、第2図が本発明の反射信号を処理する
受波部の構成を示す説明図であるり、第3図が受
波部における各部の信号波形を示す説明図であ
り、第4図がゲート通過信号およびフイルター通
過信号の周波数スペクトルを説明する説明図であ
る。 ここで1,9は信号発生器、2,12がゲート
回路、3がパルス発生器、7,11が増幅器、8
が電気音響変換器、9が同様の受波器、14が遅
延回路、17がフイルター、18が混合器、20
が低域濾波器である。
FIG. 1 is an explanatory diagram illustrating the configuration of a wave transmitting section that generates and transmits a sine wave pulse of the present invention and the waveforms of each section, and FIG. 2 is a configuration of a wave receiving section that processes reflected signals of the present invention. FIG. 3 is an explanatory diagram showing the signal waveforms of each part in the wave receiving section, and FIG. 4 is an explanatory diagram explaining the frequency spectra of the gate passing signal and the filter passing signal. Here, 1 and 9 are signal generators, 2 and 12 are gate circuits, 3 is a pulse generator, 7 and 11 are amplifiers, and 8
is an electroacoustic transducer, 9 is a similar receiver, 14 is a delay circuit, 17 is a filter, 18 is a mixer, 20
is a low pass filter.

Claims (1)

【特許請求の範囲】 1 所定周期でくり返されるバースト状の正弦波
パルス列の送波信号により超音波パルスを送波す
る送波手段、 上記超音波パルスにより生じる反射波を受信す
る受信手段、 上記送波信号から所望の時間遅れを付した期間
中にのみ上記受信手段からの受信信号を通過せし
め、もつて所望の距離の領域にある移動物体から
の反射波の受信信号を抽出する抽出手段を有し、
抽出された信号から上記移動物体の流速及びその
方向を測定する装置において、 抽出された受信信号のうち、所定の周波数帯域
の信号のみを通過させる帯域通過手段を備え、該
帯域通過手段を通過した上記受信信号のスペクト
ルの一成分の周波数と、特定周波数との差を計測
して上記反射波のドツプラーシフトの量と向きを
計測することを特徴とする流速測定装置。 2 上記帯域通過手段は、上記送波信号のくり返
し周期T2に対してほぼT2 -1なる帯域巾を有する
ことを特徴とする特許請求の範囲第1項に記載の
流速測定装置。 3 上記帯域通過手段は、上記送波信号の中心周
波数成分と異なる副次波の一成分を中心とする周
波数帯域を通過し、もつて上記送波信号の中心に
周波数と同一周波数の不要信号の通過を阻止する
ことを特徴とする特許請求の範囲第1項に記載の
流速測定装置。
[Scope of Claims] 1. A transmitting means for transmitting an ultrasonic pulse using a transmission signal of a burst-shaped sine wave pulse train repeated at a predetermined period; a receiving means for receiving a reflected wave generated by the ultrasonic pulse; Extracting means for allowing the received signal from the receiving means to pass only during a period with a desired time delay from the transmitted signal, thereby extracting a received signal of a reflected wave from a moving object in an area of a desired distance. have,
The apparatus for measuring the flow velocity and direction of the moving object from the extracted signal includes band-pass means for passing only signals in a predetermined frequency band among the extracted received signals, A flow velocity measuring device characterized in that the amount and direction of the Doppler shift of the reflected wave are measured by measuring the difference between the frequency of one component of the spectrum of the received signal and a specific frequency. 2. The flow velocity measuring device according to claim 1, wherein the bandpass means has a bandwidth of approximately T 2 -1 with respect to a repetition period T 2 of the transmitted signal. 3. The band-passing means passes a frequency band centered on one component of the secondary wave different from the center frequency component of the transmitted signal, and passes an unnecessary signal having the same frequency as the center frequency of the transmitted signal. 2. The flow rate measuring device according to claim 1, wherein passage of the flow rate is prevented.
JP49061905A 1974-06-03 1974-06-03 Expired JPS6113165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP49061905A JPS6113165B2 (en) 1974-06-03 1974-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP49061905A JPS6113165B2 (en) 1974-06-03 1974-06-03

Publications (2)

Publication Number Publication Date
JPS50153972A JPS50153972A (en) 1975-12-11
JPS6113165B2 true JPS6113165B2 (en) 1986-04-11

Family

ID=13184623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP49061905A Expired JPS6113165B2 (en) 1974-06-03 1974-06-03

Country Status (1)

Country Link
JP (1) JPS6113165B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57207864A (en) * 1981-06-16 1982-12-20 Fujitsu Ltd Ultrasonic current meter

Also Published As

Publication number Publication date
JPS50153972A (en) 1975-12-11

Similar Documents

Publication Publication Date Title
JP3023569B2 (en) Method and apparatus for digitally measuring acoustic burst transit time in a fluid medium
US5313947A (en) CW and pulsed doppler diagnostic system
JPS60122548A (en) Ultrasonic diagnostic apparatus
US4534357A (en) Multiple demodulation frequency Doppler
US5818735A (en) Method and system for high resolution time-of-flight measurements
US6758815B2 (en) Apparatus and method for indicating mechanical stiffness properties of body tissue
JP2810720B2 (en) Ultrasound diagnostic equipment
JPS6111659A (en) Ultrasonic insepction device
JPS6113165B2 (en)
JP2608961B2 (en) Sound wave propagation time measurement method
JPS61279233A (en) Doppler blood flow speedometer
JPH0395477A (en) Ultrasonic detector
JPS63203141A (en) Ultrasonic doppler flow speed detector
JPS60256441A (en) Ultrasonic diagnostic apparatus
JP2760079B2 (en) Ultrasonic sensor
JPH0341385A (en) Reference estimation doppler speed measurement and instrument therefor
JPH05200024A (en) Ultrasonic wave doppler diagnosing apparatus
JPH01170885A (en) Sonar device
JPH0611565A (en) Ultrasonic range finder
JPH0414020B2 (en)
JPH02246949A (en) Ultrasonic doppler blood flow meter
JPS6123920A (en) Flow velocity and flow rate measuring device
JPS63238483A (en) Radar equipment
JPH03170082A (en) Active sonar device
JPS62240034A (en) Ultrasonic blood stream observing apparatus