JPS6113151A - Manipulator for supersonic flaw detection - Google Patents

Manipulator for supersonic flaw detection

Info

Publication number
JPS6113151A
JPS6113151A JP59133203A JP13320384A JPS6113151A JP S6113151 A JPS6113151 A JP S6113151A JP 59133203 A JP59133203 A JP 59133203A JP 13320384 A JP13320384 A JP 13320384A JP S6113151 A JPS6113151 A JP S6113151A
Authority
JP
Japan
Prior art keywords
probe
flaw detection
roller
contactor
steel pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59133203A
Other languages
Japanese (ja)
Other versions
JPH0255746B2 (en
Inventor
Masakazu Takahashi
雅和 高橋
Akira Murayama
村山 章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP59133203A priority Critical patent/JPS6113151A/en
Publication of JPS6113151A publication Critical patent/JPS6113151A/en
Publication of JPH0255746B2 publication Critical patent/JPH0255746B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Abstract

PURPOSE:To attempt reduction of dimensions of apparatus and stabilized inspection, by installing roller gap adjusting and vertical travel adjusting mechanisms and allowing a supersonic wave detector to run parallel to a steel pipe. CONSTITUTION:A hand wheel 12A for adjusting a roller gap and that 13A for a vertical travel are so operated that, a supersonic wave contactor 3 accommodated in its holder 2 runs parallel to a partion 1B to be inspected of a steel pipe 1. At this moment, a depression adjusting hand wheel 11A is operated so that the contactor 3 contacts the portion 1B under the specified pressure to adjust the depression pressures of each roller 10A-10D. Next, a flaw detection is conducted by rotating the steel pipe 1 and allowing the contactor 3 to run parallel to the portion 1B to be inspected. When the contactor 3 runs in the inspecting range and a potentiometer detects the running limit, the contactor 3 stops automatically. Next, the reversing hand wheel 9 is operated to set the direction of the contactor 3 in the opposite direction and an automatic travel is set along the return stroke and the flaw detection covering the whole range of the portion 1B is completed. Consequently, even if OD of the steel pipe 1 is different, the detection can be done with constant contact pressure and running speed, etc.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は鋼管を超音波探傷するための超音波探傷用マ
ニピュレータに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an ultrasonic flaw detection manipulator for ultrasonic flaw detection of steel pipes.

〔従来技術〕[Prior art]

油井管1、特にドリルパイプの管端部は第4図(a) 
+ (bl * (clに示すように強度が少さくなる
の?防ぐため肉厚を厚くシ、内外径を異にしている。さ
らに、これらの部分の強度を保証するために磁粉探傷、
超音波探傷などの検査が行なわれている。
The oil country pipe 1, especially the end of the drill pipe, is shown in Figure 4(a).
+ (bl * (Does the strength decrease as shown in cl?) To prevent this, the wall thickness is thickened and the inner and outer diameters are different.Furthermore, in order to guarantee the strength of these parts, magnetic particle flaw detection,
Inspections such as ultrasonic flaw detection are being conducted.

鋼管1t−超音波探傷する場合は第5図に示すように管
軸方向0円周方向に対し斜角探傷を行なっている。具体
的な走査方法については種々の方法があるが、大型の設
備を用いて自動的に行なうものと、手動で行なうものと
に大別される0自動でドリルパイプの超音波探傷全行な
う場合は、ドリルパイプの管端部が数種類の外径を有し
ていることから、母管部をターニングローラ等〕回転装
置にセットし、母管部でドリルパイプ全回転させなから
探触子を探傷部位の高さに合わせ、横行走査範囲2位置
等を調整した後に探触子を自動で走査して探傷を行なう
。また手動で超音波探傷を行なうフ揚合には、ド11ル
パイプを回転装置で回転させなから探触子走査を手動で
行ないながら探傷を行なう。
When performing ultrasonic flaw detection on a steel pipe 1t, as shown in FIG. 5, oblique flaw detection is performed with respect to the tube axis direction and the circumferential direction. There are various methods for specific scanning methods, but they can be roughly divided into those that are performed automatically using large equipment and those that are performed manually. Since the end of the drill pipe has several different outside diameters, the main pipe part is set on a rotating device such as a turning roller, and the probe is used for flaw detection without fully rotating the drill pipe in the main pipe part. After adjusting the position of the transverse scanning range 2 according to the height of the part, the probe is automatically scanned to perform flaw detection. In addition, when performing ultrasonic flaw detection manually, the flaw detection is performed while manually scanning the probe without rotating the door pipe with a rotating device.

しかしながら自動で超音波探触子を行なう場合には、探
傷設備の他に管端揃え装置などの付帯設備が必要となり
、設備費、イ幾器等の保全費用等が高くなり、また探傷
精度を高めるために探傷器が最低でも4チャンネル分必
蚤となる欠点を有する。
However, when using an ultrasonic probe automatically, in addition to flaw detection equipment, ancillary equipment such as a tube end alignment device is required, which increases equipment costs and equipment maintenance costs, and also reduces flaw detection accuracy. The drawback is that the flaw detector must have at least 4 channels in order to increase the performance.

さらに鋼管を回転装置にセントした後、探触部の外径等
に合わせて種々の調整を行なう必要があり検査工数を多
く必要とする。捷た手動で超音波探傷を行なう場合は探
触子を手動で鋼管に接触しながら走査を行々うため接触
圧が変動し測定精度が落ちると共tC、作業が才能率的
でちるという欠点がある。
Furthermore, after the steel pipe is inserted into the rotating device, it is necessary to make various adjustments according to the outer diameter of the probe section, etc., which requires a large number of inspection steps. When performing ultrasonic flaw detection using a loose manual method, scanning is performed while the probe is in manual contact with the steel pipe, so the contact pressure fluctuates, reducing measurement accuracy, and the work is labor intensive. There is.

〔発明の目的〕[Purpose of the invention]

この発明は上記した欠点を改善し、異径で構成された鋼
管であっても、その形状に左右されることなく簡単に超
音波探傷できるようにした超音波探傷用マニピュレータ
を提供することを目的とするものである。
The purpose of this invention is to improve the above-mentioned drawbacks and provide a manipulator for ultrasonic flaw detection that allows easy ultrasonic flaw detection of steel pipes with different diameters, regardless of their shape. That is.

〔発明の概要〕[Summary of the invention]

この発明の超音波探傷用マニピュレータは、鋼管の探傷
を行なう超音波探触子を収納し、フレームに沿って走行
可能な探触子ホルダならびにフレームの左右両側面に各
々取付け、各々前後2個からなるローラ、ローラ間隔調
整機構、ローラ上下昇降調整機構、ローラ押付調整機構
、探触子反転機構、走行距離検出器及び走行速度制御回
路とを備えている。
The manipulator for ultrasonic flaw detection of the present invention accommodates an ultrasonic probe for flaw detection of steel pipes, has a probe holder that can run along the frame, and is attached to both the left and right sides of the frame, and has two probes in the front and back. The vehicle is equipped with a roller, a roller interval adjustment mechanism, a roller up/down adjustment mechanism, a roller pressing adjustment mechanism, a probe reversing mechanism, a travel distance detector, and a travel speed control circuit.

ローラは各々鋼管外周に押付けられて、超音波探触子を
鋼管に対して位置決めする。ローラ間隔調整機構はフレ
ームの左右両側面に設けた各々前後2個のローラの間隔
を鋼管外径に合わせて調整し、ローラ上下昇降調整機構
は前記フレームの左右両側面に設けた各々1組のローラ
の上下位置を同じく鋼管外径に合わせて調整し、このロ
ーラ間隔調整機構及びローラ上下昇降調整機構により超
音波探触子が鋼管の被検査部分と平行になるように位置
決めする。
The rollers are each pressed against the outer periphery of the steel tube to position the ultrasonic probe relative to the steel tube. The roller spacing adjustment mechanism adjusts the spacing between the two front and rear rollers provided on both the left and right sides of the frame in accordance with the outer diameter of the steel pipe, and the roller up/down adjustment mechanism adjusts the spacing between two rollers, each set on the left and right sides of the frame. The vertical positions of the rollers are also adjusted according to the outer diameter of the steel pipe, and the ultrasonic probe is positioned in parallel with the portion of the steel pipe to be inspected using the roller interval adjustment mechanism and the roller up/down adjustment mechanism.

ローラ押付正調゛整機構は前記各ローラを鋼管に押付け
る圧力を調整し、超音波探触子が鋼管の被検査部分に接
触する圧力を一定にする0探触子反転機構は探触子ホル
ダをフレームに沿って走行させ、超音波探触子を鋼管と
平行に走行させる。走行距離検出器は探触子ホルダの走
行する距離を検出し、超音波探触子の走行範囲を規定す
る。走行速度制御回路は走行距離検出器の出力信号から
探触子ホルダの走行速度を演算し、探触子反転機構にフ
ィードバックし超音波探触子の走行速度を制御する。
The roller pressing adjustment mechanism adjusts the pressure with which each of the rollers is pressed against the steel pipe, and the probe reversing mechanism adjusts the pressure at which the ultrasonic probe contacts the portion to be inspected of the steel pipe. is run along the frame, and the ultrasonic probe is run parallel to the steel pipe. The travel distance detector detects the travel distance of the probe holder and defines the travel range of the ultrasonic probe. The traveling speed control circuit calculates the traveling speed of the probe holder from the output signal of the traveling distance detector, feeds it back to the probe reversing mechanism, and controls the traveling speed of the ultrasonic probe.

〔発明の実施例〕[Embodiments of the invention]

御1図(al 、 (blはこの発明の一実施例を示し
、(a)は正面図、(b)は側面図である。図において
1は異なる外径D+ * D! + Ds’t:有する
鋼管、2は円周方向及び管軸方向に超音波を送波する2
チヤンネルの超音波探触子ろを収納し、歯車群4及び走
行モータ5からなる探触子反転機構6に取付けられフレ
ーム7に沿ってA矢印方向および逆方向に走行する探触
子ホルダ、8は超音波探触子3−を−反転−・ンドル9
により反転させる探触子反転機構である。
Figure 1 (al, (bl) shows one embodiment of the present invention, (a) is a front view, (b) is a side view. In the figures, 1 indicates different outer diameters D+ * D! + Ds't: The steel pipe 2 has a steel pipe 2 that transmits ultrasonic waves in the circumferential direction and the pipe axial direction.
a probe holder 8 that accommodates the ultrasonic probe loop of the channel, is attached to a probe reversing mechanism 6 consisting of a gear group 4 and a travel motor 5, and runs along a frame 7 in the direction of arrow A and in the opposite direction; Inverts the ultrasonic probe 3- to the end 9.
This is a probe reversing mechanism that inverts the probe.

10A〜10Dは各々ローラ押付圧調整機構11に取付
けられ、ローラ間隔調整機構12.ローラ上下昇降調整
機構15を介してフレーム7の左右画側面に設けられた
超音波探触子位置決め用のローラで、10A、10Cは
前ローラ、10B。
10A to 10D are each attached to the roller pressing pressure adjustment mechanism 11, and the roller interval adjustment mechanism 12. Rollers 10A and 10C are front rollers, and 10B are rollers for positioning the ultrasonic probe, which are provided on the left and right sides of the frame 7 via a roller up/down adjustment mechanism 15.

10Dは後ローラである。10D is a rear roller.

ローラ押付圧調整機w411は作動油を内蔵し、押付圧
調整/・ンドル11Aを操作することにより油圧を加変
じて各ローラ゛10A〜10Dが鋼管1を押付ける押付
力を調整する。a−ラ間隔調整機構12は歯車群を内蔵
し、ローラ間隔調整−・ンド#12Aの操作により前ロ
ーラ10A(10C)及び後ローラ10B(ioD)を
それぞれ矢印B。
The roller pressing pressure adjustment device w411 contains hydraulic oil, and adjusts the pressing force with which each of the rollers 10A to 10D presses the steel pipe 1 by changing the hydraulic pressure by operating the pressing pressure adjustment handle 11A. The a-ra spacing adjustment mechanism 12 has a built-in gear group, and the front roller 10A (10C) and the rear roller 10B (ioD) are moved in the direction of the arrow B by operating the roller spacing adjuster #12A.

C方向に移動しローラ間隔を調整する。ローラ上下昇降
調整機構13も歯車群からなり、ローラ上下ハンドル1
3Aを操作することにエクローラ間隔調整機構11の位
置を可変して各ローラ10A〜10.Dの位置を上下す
る。14は探触子ホルダ2の走行距°離を検出する例え
ばポテンショメータからなる走行距離検出器及びこの検
出器の出力信号から走行速度を演算し、所定の速度で探
触子を走行させる走行速度制御回路を内蔵した制御装置
である。
Move in direction C and adjust the roller interval. The roller up/down adjustment mechanism 13 also consists of a group of gears, and the roller up/down handle 1
3A, the position of the roller spacing adjustment mechanism 11 is varied to adjust the position of each roller 10A to 10. Move the position of D up and down. Reference numeral 14 denotes a travel distance detector consisting of, for example, a potentiometer that detects the travel distance of the probe holder 2, and a travel speed control that calculates the travel speed from the output signal of this detector and causes the probe to travel at a predetermined speed. It is a control device with a built-in circuit.

上記のよう、に構成した超音波探傷用マニピュレータの
動作を説明する。
The operation of the ultrasonic flaw detection manipulator configured as described above will be explained.

まず第2図に示すように被検査材3.である鋼g1の母
管部1Aを管回転装置15にセットし、超音波探傷マニ
ピュレータ16を懸垂装置17にエフ銅管1の被検査部
1Bにセットする。
First, as shown in FIG. 2, the material to be inspected 3. A main pipe portion 1A of steel g1 is set on the tube rotating device 15, and an ultrasonic flaw detection manipulator 16 is set on the suspension device 17 on the inspected portion 1B of the F copper pipe 1.

超音波探傷マニピュレータのセットは、第1図(al 
、 (blに示すように被検査部1Bの外径D1. D
The ultrasonic flaw detection manipulator set is shown in Figure 1 (al.
, (outer diameter D1.D of the inspected part 1B as shown in bl)
.

に合わせてフレーム7の両側面に設けたローラ間隔調整
ハンド°ル12A及びローラ上下l・ンドル15A’r
操作し、探触子ホルダ2に収納された超音波探触子3が
被検査部1Bと平行に走行できるように行なう。このと
き、同時に一超音波探触子6が被検査部1Bと一定圧力
で接触しながら走行するよう押付圧調整!・ンドル11
Aを操作し、各ローラ10A〜IOBの押付力の調整を
行なう。
Roller spacing adjustment handles 12A and roller upper and lower l/ndle 15A'r provided on both sides of frame 7 according to
The operation is performed so that the ultrasonic probe 3 housed in the probe holder 2 can run parallel to the part to be inspected 1B. At this time, the pressing pressure is adjusted so that one ultrasonic probe 6 travels while contacting the inspected part 1B with a constant pressure at the same time!・Ndol 11
A is operated to adjust the pressing force of each roller 10A to IOB.

次に管回転装置515を駆動し鋼管1を回転させながら
、走行モータ5を駆動して超音波探触子3を被検査部1
Bに平行に走行させなから探傷を行なう。超音波探触子
ろは円周方向及び管軸方向に超音波を送波し、両方向に
存在する疵全同時に探傷する。超音波探触子3が検査範
囲を走行し、第6図に示すポテンショメータ18が走行
限を検出すると、その検出信号により走行モータ5の回
転を停止し超音波探触子3の走行を自動で停止させるQ 次に検査員が反転−・ンドル9を操作し、超音波探触子
3の向き、すなわち超音波の送波方向を逆にセットし、
超音波探触子′5を再び復路に沿って1[走行し、ポテ
ンショメータ18で始点を検出し℃自動で停止し、被検
査部1Bの全範囲の探傷を終了する。
Next, while driving the tube rotation device 515 to rotate the steel tube 1, the traveling motor 5 is driven to move the ultrasonic probe 3 to the part to be inspected.
Perform flaw detection without running parallel to B. The ultrasonic probe transmits ultrasonic waves in the circumferential direction and the tube axis direction, and detects all flaws in both directions simultaneously. When the ultrasonic probe 3 travels through the inspection range and the potentiometer 18 shown in FIG. Stopping Q Next, the inspector operates the reversing handle 9 to reverse the direction of the ultrasound probe 3, that is, the direction in which the ultrasound is transmitted.
The ultrasonic probe '5 is again moved along the return path, the starting point is detected by the potentiometer 18, and the ultrasonic probe '5 is automatically stopped at 0.degree. C. to complete the flaw detection of the entire range of the inspected part 1B.

超音波探触子3の走行中はポテンショメータ1Bの出力
信号を微分回路19に入力し走行速度を算出し、この走
行速度をあらかじめ設定した所定の走行速度20と差動
増巾器21で比較し、差動増巾器21から出力する偏差
信号を制御回路22に入力して、超音波探触子3の走行
を常に所定の走行速度22で行なっている。
While the ultrasonic probe 3 is running, the output signal of the potentiometer 1B is input to the differential circuit 19 to calculate the running speed, and this running speed is compared with a predetermined running speed 20 set in advance using the differential amplifier 21. , the deviation signal output from the differential amplifier 21 is input to the control circuit 22, and the ultrasonic probe 3 is always run at a predetermined running speed 22.

上記したようにこの実施例によれば鋼管1の外径が異な
っていても超音波探触子の接触圧、走行速度、走査ピッ
チを一定にして容易に鋼管1の探傷を行なうことができ
る。
As described above, according to this embodiment, even if the outer diameter of the steel pipe 1 is different, the steel pipe 1 can be easily inspected by keeping the contact pressure, traveling speed, and scanning pitch of the ultrasonic probe constant.

なお、上記実施例において鋼管1と接触丁乞ローラの取
付位置を変えることによって、直管の管端部も容易に検
査することができる。さらに超音波探触子ろを4チヤン
ネルにすれi1往路又は復路のみの走行で被検査部1B
の全範囲を走査することもできる。
In addition, in the above embodiment, by changing the mounting positions of the steel pipe 1 and the contact pinching roller, it is possible to easily inspect the pipe end of a straight pipe. Furthermore, by setting the ultrasonic probe to 4 channels and traveling only on the outbound or return trip, the area to be inspected is 1B.
It is also possible to scan the entire range.

〔発明の効果〕〔Effect of the invention〕

この発明の超音波探傷用マニピュレータはローラ間隔調
整機構、ローラ上下昇降調整機構に、より超音波探触子
を鋼管と平行に走行させることができる′ため、付帯設
備を必要装置の設備費、保険費用を必要とせず装置の小
型化、低下格化が果たせる。また超音波探触子の接触圧
力、走行速度V 一定にして探傷できるため安定した検
査を行々うことができ、鋼管の品質同上に寄与するとこ
ろが大である。さらに超音波探触子・探傷器が従来の半
分でも被検査部の全範囲を精度よく探傷することができ
る効果も有する。
The ultrasonic flaw detection manipulator of this invention has a roller spacing adjustment mechanism and a roller up/down adjustment mechanism that allow the ultrasonic probe to run parallel to the steel pipe. It is possible to downsize and downgrade the equipment without any expense. In addition, since flaw detection can be performed while keeping the contact pressure and traveling speed V of the ultrasonic probe constant, stable inspection can be performed, which greatly contributes to the quality of steel pipes. Furthermore, the ultrasonic probe/flaw detector has the effect of being able to accurately detect flaws in the entire range of the inspected part even if the ultrasonic probe/flaw detector is half the size of the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al 、 (blはこの発明の実施例を示し、
(a)は正面図、(b)は側面図、第2図は第1図に示
した実施例によジ鋼管の探傷を行なう場合の懸垂配置図
、第3図は第1図に示した実施例の制御装置のブロック
図、第4図(a) 、(bl 、 (clは各々ドリル
パイプの管端部を示した断面図、第5図は超音波探触子
の走査図である。 1・・・鋼管1.2・・・探触子ホルダ、3・・・超音
波探触子、4・・・歯車群、5・・・走行モータ、6・
・・探触子反転機構、7・・・フレーム、8・・・探触
子反転機構、10A、10C・・・前ローラ、1[IB
、10D・・・後ローラ、11・・・ローラ押付圧調整
機構、12・・ローラ間隔調整機構、13・・・ローラ
上下昇降調整機構、14・・・制御装置、15・・・管
回転装置、16・・・超音波探傷用マニピュレータ、1
7・・・懸垂装置、1日・・・ポテンショメータ。 代理人 弁理士 木 村 三 朗 第2図 第3図 第4図 1     (C) 第5図
FIG. 1 (al, (bl) shows an embodiment of this invention,
(a) is a front view, (b) is a side view, Fig. 2 is a suspension layout diagram when performing flaw detection on a steel pipe according to the embodiment shown in Fig. 1, and Fig. 3 is the same as shown in Fig. 1. A block diagram of the control device of the embodiment; FIG. 4(a), (bl, and cl) are cross-sectional views showing the ends of the drill pipe, and FIG. 5 is a scanning diagram of the ultrasonic probe. DESCRIPTION OF SYMBOLS 1... Steel pipe 1. 2... Probe holder, 3... Ultrasonic probe, 4... Gear group, 5... Travel motor, 6...
... Probe reversing mechanism, 7... Frame, 8... Probe reversing mechanism, 10A, 10C... Front roller, 1 [IB
, 10D... Rear roller, 11... Roller pressing pressure adjustment mechanism, 12... Roller interval adjustment mechanism, 13... Roller up/down adjustment mechanism, 14... Control device, 15... Tube rotation device , 16... manipulator for ultrasonic flaw detection, 1
7... Suspension device, 1st... Potentiometer. Agent Patent Attorney Sanro Kimura Figure 2 Figure 3 Figure 4 Figure 1 (C) Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)鋼管の探傷を行なう超音波探触子を収納し、フレ
ームに沿つて走行可能な探触子ホルダと;フレームの左
右両側面に各々取付け、各々前後2個からなるローラと
;前記前後2個のローラ間隔を調整するローラ間隔調整
機構と;前記フレームの左右両側面に取付けたローラの
上下位置を調整するローラ上下昇降調整機構と;前記各
ローラを鋼管に押付ける圧力を調整するローラ押付圧調
整機構と;前記探触子ホルダを走行させる探触子走行機
構と;前記探触子ホルダの走行距離を検出する走行距離
検出器と、該走行距離検出器の出力信号により前記探触
子ホルダの走行速度を演算・制御する走行速度制御回路
とを備えた超音波探傷用マニピユレータ。
(1) A probe holder that accommodates an ultrasonic probe for flaw detection of steel pipes and is movable along the frame; Rollers that are attached to both the left and right sides of the frame and consist of two rollers in the front and back; a roller interval adjustment mechanism that adjusts the distance between the two rollers; a roller vertical adjustment mechanism that adjusts the vertical position of the rollers attached to both left and right sides of the frame; and a roller that adjusts the pressure with which each of the rollers is pressed against the steel pipe. a pressing pressure adjustment mechanism; a probe traveling mechanism that causes the probe holder to travel; a travel distance detector that detects the travel distance of the probe holder; and a travel distance detector that detects the travel distance of the probe holder; A manipulator for ultrasonic flaw detection equipped with a traveling speed control circuit that calculates and controls the traveling speed of the child holder.
(2)探触子ホルダに超音波探触子を反転させる探触子
反転機構を設けた特許請求の範囲第1項記載の超音波探
傷用マニピユレータ。
(2) The manipulator for ultrasonic flaw detection according to claim 1, wherein the probe holder is provided with a probe reversing mechanism for reversing the ultrasonic probe.
JP59133203A 1984-06-29 1984-06-29 Manipulator for supersonic flaw detection Granted JPS6113151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59133203A JPS6113151A (en) 1984-06-29 1984-06-29 Manipulator for supersonic flaw detection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59133203A JPS6113151A (en) 1984-06-29 1984-06-29 Manipulator for supersonic flaw detection

Publications (2)

Publication Number Publication Date
JPS6113151A true JPS6113151A (en) 1986-01-21
JPH0255746B2 JPH0255746B2 (en) 1990-11-28

Family

ID=15099138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59133203A Granted JPS6113151A (en) 1984-06-29 1984-06-29 Manipulator for supersonic flaw detection

Country Status (1)

Country Link
JP (1) JPS6113151A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577761U (en) * 1992-03-26 1993-10-22 三菱電機株式会社 Inspection equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577761U (en) * 1992-03-26 1993-10-22 三菱電機株式会社 Inspection equipment

Also Published As

Publication number Publication date
JPH0255746B2 (en) 1990-11-28

Similar Documents

Publication Publication Date Title
CN102818842A (en) Ultrasonic automatic detection system of tubing with variable wall thickness and step
JPH02225702A (en) Method and device for positioning transversing direction of member moving along railroad rail
GB1559469A (en) Method and apparatus for automatic ultrasonic flaw detection
JP2005181140A (en) Pipe inspection truck and pipe inspection device
JPS6113151A (en) Manipulator for supersonic flaw detection
CN203479760U (en) Bidimensional power-driven scanning device
JPH1010100A (en) Piping flaw detecting device
KR20170040501A (en) A detection device for welding flaw region inside of pipe having overlay welding
GB1591173A (en) Measuring and checking device for roller tracks comprising juxtaposed rollers
DD296153A5 (en) DEVICE FOR AUTOMATIC ULTRASONIC TESTING OF THE END PIPES OF PIPES
CN213091658U (en) Nondestructive testing equipment
JP3526001B2 (en) Ring end face inspection method and end face inspection apparatus
EP0029070A1 (en) Apparatus for surface inspection and treatment of steel members
CN111413411A (en) Ultrasonic wave right angle return bend lathe of detecting a flaw
JPS5826258A (en) Scanning machine for flaw detection
CN210427456U (en) Feeding and returning mechanism of steel pipe ultrasonic flaw detection device
JP4380941B2 (en) Inspection device
JPH0562299B2 (en)
JPS6058505A (en) Automatic running type plate-thickness measuring apparatus
JPH07167840A (en) Flaw detection method of inclination angle of axle
JPH0152231B2 (en)
JPH05209869A (en) Self-running type flaw detecting apparatus for thick plate
JPS6228865B2 (en)
CN117783283A (en) Ultrasonic nondestructive testing equipment for weld joint of spiral welded pipe
JPS6228423B2 (en)