JPS6113140A - Quantitative analysis of iron by plasma luminous analysis - Google Patents

Quantitative analysis of iron by plasma luminous analysis

Info

Publication number
JPS6113140A
JPS6113140A JP13320884A JP13320884A JPS6113140A JP S6113140 A JPS6113140 A JP S6113140A JP 13320884 A JP13320884 A JP 13320884A JP 13320884 A JP13320884 A JP 13320884A JP S6113140 A JPS6113140 A JP S6113140A
Authority
JP
Japan
Prior art keywords
iron
added
cobalt
solution
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13320884A
Other languages
Japanese (ja)
Inventor
Toshio Hashimoto
敏雄 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP13320884A priority Critical patent/JPS6113140A/en
Publication of JPS6113140A publication Critical patent/JPS6113140A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • G01N21/73Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited using plasma burners or torches

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To perform rapid and accurate quantitative analysis of iron contained in an arrestor element, etc. protecting an electric communication device, etc. from a shock voltage, by measuring a luminous intensity at a wave length of 2,382Angstrom . CONSTITUTION:Subjecting a specially prepared specimen reagent to a plasma luminous analysis for measurement of a luminous intensity at a wave length of 2,382Angstrom , iron content is calculated by predetermined calibration curve and cobalt correction value. The calibration curve is so drawn that to an aqueous solution containing zinc oxide 2.38g, boric acid 1g, concentrated hydrochloric acid 20ml, concentrated hydrofluoric acid 0.5ml per 100ml water iron is added in a quantity of 0.5, 1.0, 3.0 and 0.5mg respectively for 4 kinds of aqueous solution. Further, the correction of cobalt is so made that, concerning a specimen prepared by the specified method, a value DELTAFe of a measured value less a theoretical value is obtained and a correction formula is developed from a co-relationship between said value and added amount of cobalt.

Description

【発明の詳細な説明】 〔発明の目的〕 本発明は、プラズマ発光による鉄の定量分析法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] The present invention relates to a method for quantitatively analyzing iron using plasma emission.

〔技術的背景〕 落雷などによって発生する異常′電圧ないしはこの異常
電圧によって発生する誘導電圧が電気通信機器を破壊す
ることはしばしばある。雷の如き高電圧でない場合にし
ても、許容量を超えた衝撃を電圧が電子機器を不都合に
することがあり、このような状態奮起させないように線
路と大地間あるいは線路間にアレスター素子全挿入する
ことが一般的に行われている。
[Technical Background] Abnormal voltages generated by lightning strikes, etc., or induced voltages generated by such abnormal voltages often destroy telecommunications equipment. Even if the voltage is not as high as lightning, the shock beyond the permissible voltage can cause problems for electronic equipment, and to prevent this from happening, it is necessary to insert all arrester elements between the line and the ground or between the lines. It is commonly done.

このアレスターは、2個の電極ケ絶縁物、空隙などのギ
ャップを介して対向させたもので異常電圧が加わったと
きこの電極間で放電を行わせ、主回路へ不都合が及ぶこ
とを□防いでいるものである。
This arrester has two electrodes facing each other with a gap such as an insulator or an air gap between them, and when an abnormal voltage is applied, a discharge occurs between the electrodes to prevent problems from reaching the main circuit. It is something that exists.

ところで、このような目的で使用するアレスター素子は
品質を安定化させるために当然のことながら素子材料中
の成分の把握が必要である。螢光X線スペクトルを分析
すると、アレスター素子に鉄全添加していないにも拘ら
ず鉄が必ず検出されている。
By the way, in order to stabilize the quality of arrestor elements used for such purposes, it is of course necessary to understand the components in the element material. When analyzing the fluorescent X-ray spectrum, iron is always detected even though all iron is not added to the arrester element.

この鉄の混入原因としては、製造工程中での混入、原料
中への頭初からの含有しているものに起因しているのか
は今のところ不明である。いずれにしても現状ではアレ
スター素子中に鉄が若干含まれていても素子特性は満足
されているが、この鉄の許容量が明確に確定できれば不
必要に高品位の原材料ケ用意することはなく従ってアレ
スター素子のコストダウンが可能となる。
It is currently unclear whether this iron contamination is caused by contamination during the manufacturing process or by being included in the raw materials from the beginning. In any case, at present, even if the arrester element contains a small amount of iron, the element characteristics are satisfied, but if the allowable amount of iron could be clearly determined, there would be no need to prepare high-grade raw materials unnecessarily. Therefore, it is possible to reduce the cost of the arrester element.

〔発明の目的〕[Purpose of the invention]

本発明は、以上のよう庁素子特性と含有鉄の許容限界量
の関係全確認する上で必要な鉄の定量分析法の確立ケ目
的とするものであって、プラズマ、発光分析による鉄の
定量法を提供するものである。
The purpose of the present invention is to establish a quantitative analysis method for iron necessary for fully confirming the relationship between element characteristics and the allowable limit amount of contained iron as described above. It provides law.

〔発明の概要〕[Summary of the invention]

本発明は、上述の目的全達成させるために検討を行い到
達したものであって、試料溶液をプラズマ発光分析+c
処して波長238.2nmr2382X)における発光
強度を測定し検量線とコバルト補正値を用いて鉄含有量
を算出することからなるプラズマ発光分析による鉄の定
量法に関するものである。
The present invention has been achieved through studies to achieve all of the above objectives, and is based on plasma emission analysis + c
This invention relates to a method for quantifying iron by plasma emission spectrometry, which involves measuring the luminescence intensity at a wavelength of 238.2 nm (2382X) and calculating the iron content using a calibration curve and a cobalt correction value.

プラズマ発光分析を行うにあたり、分析線(使用波長)
の決定が必要であり、発光強度が定量分析濃度範囲であ
り、かつ妨害元素の発光スペクトルがないか捷たは近接
していないことが望ましい。
When performing plasma emission analysis, the analytical line (wavelength used)
It is necessary to determine the emission intensity, and it is desirable that the emission intensity is within the concentration range for quantitative analysis, and that the emission spectrum of interfering elements is not distorted or close to each other.

この分析線の決定にあたり次の試料溶解方法に則り試料
水溶液全調整し、また分析線の決定全行つた。
To determine this analytical line, the sample aqueous solution was prepared in accordance with the following sample dissolution method, and the analytical line was determined.

■、試料溶液の調整 微粉砕した試料3gを秤取してテフロン製加圧ルツボに
採り濃塩酸20ml.濃フッ化水素酸0,5ml k 
;C(7)ルツボに加え撹拌子を入れた上でステンレス
製容器中にルツボ全保持し容器ケ密封する。
(2) Preparation of sample solution Weigh out 3 g of the finely ground sample and place it in a pressurized Teflon crucible and add 20 ml of concentrated hydrochloric acid. Concentrated hydrofluoric acid 0.5ml k
;C(7) Add a stirrer to the crucible, hold the entire crucible in a stainless steel container, and seal the container.

ルツボの加熱前にスターラ上で撹拌を行いルツボ内容物
をなじ寸せることか好ましい。
It is preferable to stir the crucible on a stirrer to even out the crucible contents before heating the crucible.

その後このルツボを120℃、1時間(無撹拌)。Thereafter, this crucible was heated to 120°C for 1 hour (no stirring).

30分間撹拌からなるサイクルを2回行いろ時間加熱し
て試料溶解を図り、ルツボ會室温まで冷却したのちルツ
ボ内の溶液全すべてポリオレフィン製ビーカー中に移し
入れる。このビーカーには1gの硼酸全入れておき、こ
のビーカー全湯浴上で加熱し硼酸を溶解させて、再度室
温まで冷却してIQQm7のガラス製メスフラスコに移
し入れビーカー洗液も加えたのち標線まで水を加えて゛
試料溶液とする。
A cycle consisting of stirring for 30 minutes is performed twice to dissolve the sample by heating for a period of time, and after cooling the crucible to room temperature, the entire solution in the crucible is transferred into a polyolefin beaker. This beaker was completely filled with 1 g of boric acid, heated on a hot water bath to dissolve the boric acid, cooled to room temperature again, transferred to an IQQm7 glass volumetric flask, and added the beaker washing solution. Add water up to the line to make the sample solution.

■1分析線の決定 実際の試料と鉄のみを含有する標準溶液?用い発光スペ
クトルの比較?行ったが、鉄の発光スペクトル線238
.2n−(2382X)に現しfc鉄のスペクトル(第
1図)に対して実際の試料紫用いた時、第2図および第
3図の通りその近傍の268nm(2380X)に別の
ピークXが観察された。
■1 Determination of analytical line Actual sample or standard solution containing only iron? Comparison of emission spectra used? I went, but the emission spectrum line 238 of iron
.. When using the actual sample purple for the fc iron spectrum (Figure 1) expressed at 2n- (2382X), another peak It was done.

検討の結果このビークXは、コバルトの発光スペクトル
線であることが判明したが、一方、次に発光強度が強く
現れる239.6n包(2396x)の帯域(第4図)
音用いて調べた結果、第5図に示すとおり他の元素の発
光スペクトル線がみられ、このものがニッケル(第6図
)に基づくものであることが判った。
As a result of investigation, it was found that this peak X is an emission spectrum line of cobalt, but on the other hand, it is found that the next peak emission intensity appears in the 239.6n envelope (2396x) band (Figure 4).
As a result of a sound examination, emission spectrum lines of other elements were observed as shown in Figure 5, and it was determined that this line was based on nickel (Figure 6).

コバルトとニッケルが鉄の発光スペクトルに及ぼす影響
を第2図および!1g5図におけるスペクトルのMなり
合いで判断すると、238.23−r2382′Å)を
用いた方が重なりが少ないことからこの波長を分析線と
する。
Figure 2 shows the effects of cobalt and nickel on the emission spectrum of iron! Judging from the M distribution of the spectra in Figure 1g5, there is less overlap when using 238.23-r2382'A), so this wavelength is used as the analysis line.

■、検量線 アレスター素子中の鉄の8有量は、はKIQppm程度
であることから、鉄含有量が5.10.30.50pp
mの3N、HClを作製し検量線の直線性を調べたとこ
ろ、第7図(1)の如き直線が得られここから工(発光
強度)=17.9c+3.29  (c−鉄の濃度)相
関係数R=0.99999゜ 濃度換算の標準偏差(sc)=O,D1(ppm)の結
果を得た。
■The iron content in the calibration curve arrester element is about KIQppm, so the iron content is 5.10.30.50ppm.
When 3N HCl of m was prepared and the linearity of the calibration curve was examined, a straight line as shown in Figure 7 (1) was obtained. The results were obtained: correlation coefficient R = 0.99999°, standard deviation (sc) in terms of concentration = O, D1 (ppm).

■、試薬および共存元素の影響 鉄の濃度k 10 ppmとし対象とする元素のl湯度
を変化させてそれらの試料中の鉄の発光強度全測定し、
検量線から含有量?求め鉄の濃度との割合を求めた。
(2) Influence of reagents and coexisting elements. The concentration of iron was set to 10 ppm, and the total luminescence intensity of iron in the samples was measured by changing the temperature of the target element.
Content from the calibration curve? The ratio to the iron concentration was determined.

1)ビス−=r ス: 1500,2000および25
00ppmのBi(i7含有させたときの鉄の回収率は
次の通りであり、B1の影響はないとみなせる。鉄の回
収率と許容範囲の関係を第8図に示した。縦軸はFe回
収率(−、e Rec、%)、破線で示した範囲は許容
範囲を示したものである。
1) Bis=r Su: 1500, 2000 and 25
The iron recovery rate when 00 ppm Bi (i7) is included is as follows, and it can be considered that there is no influence of B1. The relationship between the iron recovery rate and the allowable range is shown in Figure 8. The vertical axis is Fe Recovery rate (-, e Rec, %), the range shown by the broken line shows the allowable range.

Fe実測値ppm   10.IQ   10.03 
 10.10Fe理論値ppm   10.00  1
0.00  10.00Fe回収率%  101.0 
 .100.3  101.02) コバルト:1oo
、a6.2oo、ssおよび301.29ppmのCo
f含有させたときの鉄の回収率は次の通りであり、CO
の添加量の増加に伴って鉄の回収率が多くなることが認
められた。
Actual Fe value ppm 10. IQ 10.03
10.10Fe theoretical value ppm 10.00 1
0.00 10.00Fe recovery rate% 101.0
.. 100.3 101.02) Cobalt: 1oo
, a6.2oo, ss and 301.29ppm Co
The recovery rate of iron when containing f is as follows, and CO
It was observed that the recovery rate of iron increased as the amount of iron added increased.

Fe実測値ppm   12.26  14.17  
16.26Fe理論値ppm :’  10.00  
10.00  10.00Fe回収率%   122.
6  141.7  162.6上表の結東7第9図に
示した。
Actual Fe value ppm 12.26 14.17
16.26Fe theoretical value ppm:' 10.00
10.00 10.00Fe recovery rate% 122.
6 141.7 162.6 Shown in Figure 9 of Yuito 7 in the table above.

ろ) ケイ素: 50,100および15QppmのS
ie添加した0    ゛ 負の干渉を与えることが認められるが許容範囲内である
ことが認められた。第10図にこの結果を示したO Fe測定値ppm   9.91    9.97  
 9.91Fe理論値ppm   10.00   1
0.00  10.00Fe回収率%  99.1  
  99.7   99.14)アルミニウム:2,6
および4ppmのAt’l−添加した。
) Silicon: 50,100 and 15Qppm S
Although it was recognized that the ie added 0゛ caused negative interference, it was recognized that it was within the permissible range. The results are shown in Figure 10.O Fe measurement ppm 9.91 9.97
9.91Fe theoretical value ppm 10.00 1
0.00 10.00Fe recovery rate% 99.1
99.7 99.14) Aluminum: 2,6
and 4 ppm At'l- were added.

Fe測定値ppm   9.95  10.08   
10.08Fe理論値ppm   10.00  10
.00   10.00Fe回収率%  99.5  
100.8   100.8この関係全第11図に示し
た。
Fe measurement value ppm 9.95 10.08
10.08Fe theoretical value ppm 10.00 10
.. 00 10.00Fe recovery rate% 99.5
100.8 100.8 This relationship is shown in Figure 11.

5)ニッケル: 200,300および、400ppm
のNiを添加した。
5) Nickel: 200, 300 and 400ppm
of Ni was added.

Fe測定値ppm    9.89  10.08  
 9.89Fe理論値ppm   10.00  10
.00  10.00Fe回収率%  98.9  1
oo、s    98.9この関係を第12図に示した
Fe measurement value ppm 9.89 10.08
9.89Fe theoretical value ppm 10.00 10
.. 00 10.00Fe recovery rate% 98.9 1
oo, s 98.9 This relationship is shown in FIG.

6)クロム: 2/i6.A、 592.8および73
9.2ppmのCrf添加した。鉄の回収率はCrの添
加量の増加に伴って増えることが認められた。第16図
にその挙動を示した。
6) Chromium: 2/i6. A, 592.8 and 73
9.2 ppm of Crf was added. It was observed that the iron recovery rate increased as the amount of Cr added increased. Figure 16 shows the behavior.

Cr添加fjt ppm    2d6.il    
592.8   739.2Fe測定値ppm    
10.97  1167  12.32Fe理論値pp
m    10.OQ   10.00  10.0Q
Fe回収率%   1[]9.7  116.7  1
23.27)銅: 0.5.1.0および1.5ppm
のCui添加した。
Cr addition fjt ppm 2d6. il
592.8 739.2 Fe measurement value ppm
10.97 1167 12.32Fe theoretical value pp
m 10. OQ 10.00 10.0Q
Fe recovery rate % 1[]9.7 116.7 1
23.27) Copper: 0.5, 1.0 and 1.5 ppm
of Cui was added.

Fe測定値ppm   9.91   9.97  1
0.03Fe理論値ppm  10.00  10.0
0  10.00Fe回収率%  99.1 ’   
99.7  100.3この関係全第14図に示した。
Fe measurement value ppm 9.91 9.97 1
0.03Fe theoretical value ppm 10.00 10.0
0 10.00Fe recovery rate% 99.1'
99.7 100.3 This relationship is shown in Figure 14.

8) ジルコニウム:1,6および5 pPmのZrを
添加した。
8) Zirconium: 1, 6 and 5 pPm of Zr were added.

Fe測定値ppm  10.Qろ  10.22  1
0.09Fe理論値ppm  10.00  10.0
0  10.00Fe回収率% 100.ろ  1[)
2.2  100.9この関係を第15図に示した0 9)マンガン゛1[]0.200および300ppmの
Mnケ添加1.たところ、Mn添加量の増大に伴って涙
の回収率は低下する傾向は認められたが、その量は少な
く影響ケ無視し得る。
Fe measurement value ppm 10. Qro 10.22 1
0.09Fe theoretical value ppm 10.00 10.0
0 10.00Fe recovery rate% 100. Ro 1 [)
2.2 100.9 This relationship is shown in Figure 15. As a result, it was observed that the tear recovery rate tended to decrease as the amount of Mn added increased, but the amount was small and the effect could be ignored.

Fe測定値ppm   9.92   9.86   
975Fe、理論値ppm  10.00  10.0
0  10.00Fe回収率%  99.298.6 
  97.5この関係?第16図に示した。
Fe measurement value ppm 9.92 9.86
975Fe, theoretical value ppm 10.00 10.0
0 10.00Fe recovery rate% 99.298.6
97.5 This relationship? It is shown in FIG.

10)アンチモン: 2500,3000および650
0ppmのsb全添加した。
10) Antimony: 2500, 3000 and 650
A total of 0 ppm of sb was added.

Fe測定値ppm   9.81   9.53   
9.53Fe理論値ppm   10.00  10.
00  10.00Fe回収率%  98.1   9
5.3    95.3この関係?第17図に示した。
Fe measurement value ppm 9.81 9.53
9.53Fe theoretical value ppm 10.00 10.
00 10.00Fe recovery rate% 98.1 9
5.3 95.3 This relationship? It is shown in FIG.

11)酸化亜鉛: 2.0.2.5および6.0町のZ
nOf添加したところ、表示の通り負の影響が現れるこ
とが認めらね、たが、これは溶液の粘性上昇に起因した
試料吸い」−げ量の減少、霧化効率の減少、プラズマへ
の試料導入効率の減少などによるものと判断されるC第
18図)。
11) Zinc oxide: 2.0, 2.5 and 6.0 town Z
When nOf was added, no negative effects were observed as shown, but this was due to a decrease in the amount of sample suction due to an increase in the viscosity of the solution, a decrease in atomization efficiency, and a decrease in the amount of sample absorbed into the plasma. This is considered to be due to a decrease in introduction efficiency, etc. (Fig. 18).

Fe測定値  ppm    9.72   9.72
    9.92Fe理論値  ppm   10.0
0  10.00   10.00Fe回収率  % 
  972   972    992コバルトが鉄、
の分析線に対して正の影響を与えることは第6図の結果
から明らかであるが、第19図と第20図の比J絞によ
って判るようにクロムの発光スペクトル線は鉄と同じ分
析線の位置にはない。従ってクロム全使用したときに現
れる正への影#は、クロム中に混入している鉄分に起因
するものと考えられる。
Fe measurement value ppm 9.72 9.72
9.92Fe theoretical value ppm 10.0
0 10.00 10.00Fe recovery rate %
972 972 992 Cobalt is iron,
It is clear from the results in Figure 6 that it has a positive effect on the analytical line of It is not in the position. Therefore, it is thought that the positive shadow # that appears when all chromium is used is due to the iron mixed in the chromium.

V、妨害要因の除去 1)酸化亜鉛 妨害原因がm液の粘性によるものであるから、実際の試
料溶液中の酸化亜鉛と同じ量を検量線作成標準溶液中に
混合することにより補正する。
V. Removal of interfering factors 1) Zinc oxide Since the interfering cause is due to the viscosity of the m solution, it is corrected by mixing the same amount of zinc oxide in the actual sample solution into the standard solution for creating the calibration curve.

2) コバルト 鉄の測定値(Fe勺から理論値(仕込み量、Fe)全差
引いた値を△Fe七し、コバルトの添加量との相関ヲ求
める。コバルトの影響による誤差はFe’−Fe−△F
e rppm)で表され■、2)の値?使用して△Fe
とコバルト′11klf(X)との相関?求めたところ
第21図となった。ここで相関係数R=0.9999゜
相関式へFe (ppm)=’1.99X 1O−2X
 + 0.23.標準偏差S二0.07 (ppm)と
なり、非常によい相関々係葡示している。
2) Subtract the total value of the theoretical value (feeding amount, Fe) from the measured value of cobalt iron (Fe) and calculate the correlation with the amount of cobalt added. The error due to the influence of cobalt is Fe'-Fe- △F
e rppm) and the value of 2)? Use △Fe
Correlation between and cobalt '11klf(X)? When I calculated it, I got Figure 21. Here, correlation coefficient R = 0.9999° Correlation formula Fe (ppm) = '1.99X 1O-2X
+0.23. The standard deviation S2 was 0.07 (ppm), indicating a very good correlation.

前2式からFe(ppm) = Fe’ −(1,99
x I Q−2−X +0.25)の補正式が得られる
From the previous two equations, Fe (ppm) = Fe' - (1,99
x I Q-2-X +0.25) is obtained.

この式?用いて試みに前出LV、2)のデータ全補正し
たものが次の表である。
This formula? The following table shows the data of LV and 2) all corrected using the above-mentioned LV.

Fe’       12.26   14.17  
 16.26Fe補正値(ppm)   10.03 
  9.94   11J、03Fe補正回収率c%)
    100.3    99.11   100.
3補正前のFe回収率と補正後の回収率について図示し
たものが第22図である。
Fe' 12.26 14.17
16.26Fe correction value (ppm) 10.03
9.94 11J, 03Fe corrected recovery rate c%)
100.3 99.11 100.
3. FIG. 22 is a diagram illustrating the Fe recovery rate before the correction and the recovery rate after the correction.

3) クロム クロム中の鉄の定量分析を標準添加法で行った。3) Chrome Quantitative analysis of iron in chromium was performed using the standard addition method.

具体的には、第26図A線で示した鉄標準溶液の検量#
(1=29’r6C+4Aの式で表される)に対してク
ロム400ppm’(i=金含有る溶液に鉄’(zlo
、20および30ppm添加した時の発光強度をプロッ
トしく BKfa、  I = 28.81c+40.
6) 両者(7J)勾配f:比較17kが殆ど同一(勾
配比−288,1/293.6=0.98)となり、マ
トリックスの影響のないことを確認した。
Specifically, the calibration # of the iron standard solution shown by the A line in Figure 26
(represented by the formula 1 = 29'r6C + 4A), 400 ppm' of chromium' (i = iron' (zlo
Plot the luminescence intensity when adding , 20 and 30 ppm. BKfa, I = 28.81c + 40.
6) Both (7J) slope f: Comparison 17k were almost the same (slope ratio -288, 1/293.6 = 0.98), confirming that there was no influence of the matrix.

このコトから、鉄標準溶液のバックグラウンドケ差し引
き、標準添加法の検量線から鉄を求めると(A O,6
−4,11/28.81= 1.27 (ppm)とな
り、これをクロム中の鉄に換算すると(1,27/1l
DO)、x100=0.32%が得られた。従って測定
値からクロム中の鉄ケ差(−引くことによりクロムの影
響を補正し得る。
From this, iron can be determined by subtracting the background of the iron standard solution and using the standard addition method calibration curve (A O, 6
-4,11/28.81= 1.27 (ppm), which is converted to iron in chromium (1,27/1l
DO), x100=0.32% was obtained. Therefore, the influence of chromium can be corrected by subtracting the difference in iron in chromium (-) from the measured value.

〔発明の実施例〕[Embodiments of the invention]

実施例1゜ 検量線 1001?ltあたり酸化亜鉛2.38g、硼酸1g。 Example 1゜ calibration curve 1001? 2.38g of zinc oxide and 1g of boric acid per liter.

濃塩酸2Qm4 diフッ化水素酸0.5 ml?!−
よむ水溶液に鉄に各’zo、5,1.0.3.0,5.
0=gずッi6”2加しfc l 4M類の溶液によっ
て倹奮線?作bK した。I=153.6C+13.5
.  相1関係数R=0.9999.  濃度換算の標
準偏差Sc= 0.035 (mg)となり、良い直線
性を示した。
Concentrated hydrochloric acid 2Qm4 dihydrofluoric acid 0.5ml? ! −
Add each 'zo' to the iron in the aqueous solution, 5, 1. 0. 3. 0, 5.
0 = gzut i6"2 plus fc l 4M solution was used to create a stimulant wire bK. I = 153.6C + 13.5
.. Correlation coefficient R=0.9999. The standard deviation in terms of concentration Sc was 0.035 (mg), indicating good linearity.

なお、擬似試料分析用検量線作5y用標準溶液中にNa
2003  ケ212mg加えて濃度ケ同一にした。
In addition, Na
2003 212mg was added to make the concentration the same.

擬似試料の分析 次表に示しfc組組成ケチる試料全5コ調整(−1前記
検量線を用いて鉄の濃度を算出した。
Analysis of pseudo samples All 5 samples were adjusted with fc group composition as shown in the following table (-1) The iron concentration was calculated using the above calibration curve.

+ : O,AN、 N・2C03溶液から作成、他の
元素はすべてHCI溶液から作成した。
+: Created from O, AN, N.2C03 solutions; all other elements were created from HCI solutions.

コバルトの影響による見かけ上の鉄分0.353 mg
Apparent iron content due to the influence of cobalt: 0.353 mg
.

クロム(99,99%2表示)中の鉄分Q、125mg
  の合計0.4’78mg  k測定値から差し引い
たところ、鉄の仕込値と非常に良い一致を示した。
Iron Q in chromium (99,99%2 display), 125mg
A total of 0.4'78 mg k was subtracted from the measured value, showing very good agreement with the iron charge value.

畳: CV(%)=(s/−)x 1o。Tatami: CV (%) = (s/-) x 1o.

実施例2 同一アレスター素子からサンプル¥t5個採り、■に記
載した手順によって竹屑して試料を調整したのち、恢量
線管用いて各々の試料中の鉄の濃度を求めた。この素子
中のコバルト含有量を予め螢光X線で定量して補正式F
e(ppm) =Fe’−(1,99X 10″2・x
+0.23)k用いて測定値を補正した。
Example 2 Five samples were taken from the same arrester element, and the samples were prepared with bamboo shavings according to the procedure described in (1).The iron concentration in each sample was determined using a radiation tube. The cobalt content in this element was determined in advance using fluorescent X-rays, and the correction formula F
e (ppm) =Fe'-(1,99X 10''2・x
+0.23)k was used to correct the measured values.

その結果、アレスター素子中の鉄の含有量(pprr+
)は次のような値か得られた。
As a result, the iron content (pprr+
) obtained the following values.

サンプル数N=5 素子中のF e Mfflの平均M −68,8(pp
m)標準偏差S−6,11 変動係数CV=4.52 (%) 以上の結果から、アレスター素子中の鉄分の定量々どに
対して極めて有効な手段となるものであり、具体的には
例えば次のような手順で分析を行′うことができる。
Number of samples N = 5 Average of F e Mffl in the element M -68,8 (pp
m) Standard deviation S-6,11 Coefficient of variation CV=4.52 (%) From the above results, it is an extremely effective means for quantifying the iron content in arrester elements, and specifically, For example, analysis can be performed using the following procedure.

試料調製 ■ アレスター素:fをアルミナ乳バチで粉砕後、メノ
ウ容器に入れ振動混合ミルで微粉砕ケ行なう− (2)微粉砕後の素子會105℃で2hr乾燥する。
Sample Preparation (2) Arrester element: After pulverizing f with an alumina pestle, place it in an agate container and pulverize it with a vibrating mixing mill.

■ 試料粉末3g前後全正確にはかり、それを加圧ルツ
ボに入れる。
■ Weigh out approximately 3g of sample powder accurately and place it in a pressurized crucible.

■ 加圧ルツボ中に、濃塩酸2D?+ltと濃フン化水
素酸Q、5mA入れる。その際、先に入れた試料粉末が
飛散しない様に注意する。その後、撹拌子を入れてから
密封した後1分間撹拌し、溶液を均一にする。
■ Concentrated hydrochloric acid 2D in a pressurized crucible? +lt, concentrated hydrofluoric acid Q, and 5 mA. At this time, be careful not to scatter the sample powder that was added earlier. Then, add a stirring bar, seal the container, and stir for 1 minute to make the solution uniform.

■ 120℃で1時間加熱(、に後、スターシー上′で
ルツボ中の撹拌子を回(−で、撹拌を30分間行なう。
(2) After heating at 120°C for 1 hour, stir the crucible for 30 minutes with the stirring bar in the crucible rotated (-) on the starboard.

これを2サイクル、計6時間行ない試料を溶解する。This is repeated for 2 cycles for a total of 6 hours to dissolve the sample.

■ ルツボ分冷却後、試料溶液をポリビーカーに入れ、
さらにルツボを水で洗浄して、その洗液も同一のポリビ
ーカーに入れる。
■ After cooling the crucible, put the sample solution into a poly beaker.
Furthermore, the crucible is washed with water and the washing liquid is also placed in the same plastic beaker.

(〃ビーカーに硼酸1g全入れ、その後ビーカー全90
℃のウォーターバス中で加熱して硼酸を溶解する〇 ■ 溶液ケ冷却後、ガラス製の1oomlメスフラスコ
に移し入れ、水で容量を一定としfC後、直ちにポリの
試料ビンに移し換える。
(Put all 1g of boric acid into a beaker, then add all 90 g of boric acid to the beaker.
Dissolve boric acid by heating in a water bath at °C. After cooling the solution, transfer it to a 1 ooml glass flask, make the volume constant with water, and immediately transfer it to a polyester sample bottle after fC.

■ 純度9999%以上の酸化亜鉛2.38gを硼酸1
g’Th、4個のポリビーカーにおのおのはかり採る。
■ 2.38g of zinc oxide with a purity of 9999% or more mixed with 1 part of boric acid
g'Th, weigh each into 4 poly beakers.

■ 表示量の濃塩酸を添加して、酸化亜鉛と硼酸全90
℃のウォーターバス中で加熱して溶解する。
■ Add the indicated amount of concentrated hydrochloric acid to make a total of 90% zinc oxide and boric acid.
Dissolve by heating in a water bath at °C.

(乳) 冷却1表、濃フッ化水素酸0.5ml’に加え
る。
(Milk) Cool 1 table and add to 0.5 ml' of concentrated hydrofluoric acid.

■ 原子吸光用鉄標準溶液11000pp から25m
A分取し、濃塩酸Smlを加えて50ml一定にし、鉄
5DOppm標準溶液ケ作製する。そこから1゜2.6
.10mlを分取し1oomlのメスフラスコにあらか
じめ入れておく。
■ 25m from atomic absorption iron standard solution 11000pp
Take A fraction, add Sml of concentrated hydrochloric acid to make the volume constant to 50ml, and prepare a 5DOppm iron standard solution. 1°2.6 from there
.. Aliquot 10ml and place it in a 1ooml volumetric flask in advance.

■ ■の溶液を■のメスフラスコに移し入れ、さらにポ
リビーカーを、水で洗浄[、て、その洗液も同一のメス
フラスコに入れる。水で容量を一定にする。
■ Transfer the solution in ■ to the volumetric flask in ■, and wash the poly beaker with water [and then pour the washing solution into the same volumetric flask. Make the volume constant with water.

酸 ppm      g       溝t      
 g      ηIt5     2.38    
 19.9     1.0     0.5I D 
     2.38     19.8     1.
0     0.5602.3819.、!11.00
.55[)     2.38     19.o  
    1.0     0.5(p 純朋4N以上の
酸化亜鉛2.38gと硼酸1g全3個のポリビーカーに
採ル。
acid ppm g groove t
g ηIt5 2.38
19.9 1.0 0.5ID
2.38 19.8 1.
0 0.5602.3819. ,! 11.00
.. 55 [) 2.38 19. o
1.0 0.5 (p) 2.38 g of pure zinc oxide of 4N or higher and 1 g of boric acid were collected in three poly beakers.

(の 後記表示量の濃塩酸を添加して、酸化亜鉛と硼酸
を90℃のウォーターバス中で加熱して溶解する。
(Add concentrated hydrochloric acid in the indicated amount below, and dissolve zinc oxide and boric acid by heating in a 90°C water bath.

■ 冷却後、濃フッ化水素酸0.5 mlを加える。■ After cooling, add 0.5 ml of concentrated hydrofluoric acid.

3)原子吸光用鉄標準溶液11000ppから25fi
t分取し、濃塩酸5ml加えて50ml一定にし鉄50
0ppmの標準溶液を作製し、そこから2tnL分取し
100mlガラス製メスフラスコに入れる。
3) Atomic absorption iron standard solution 11000pp to 25fi
t fraction, add 5 ml of concentrated hydrochloric acid and make the volume constant to 50 ml.
Prepare a 0 ppm standard solution, take 2 tnL from it and put it into a 100 ml glass volumetric flask.

(5)  金属コハル)−(99,99%、表示) 2
.0 g ′?f:塩酸2塩酸2処 濃度20000 ppm  の標準溶液を作製する。こ
の浴液から10.20及び3QmA分取して、先の■の
ガラス製のメスフラスコに入れる。
(5) Metal Kohar) - (99,99%, indicated) 2
.. 0 g′? f: Hydrochloric acid 2 Hydrochloric acid 2 Prepare a standard solution with a concentration of 20,000 ppm. Aliquot 10.20 and 3QmA from this bath liquid and place them in the glass volumetric flask mentioned above.

Ω ■の溶液全■に移し入れ、さらにポリビーカー?水
で洗浄1−て、その洗液も同一のメスフラスコに入れる
。水で容量一定後直ちにポリの試料ピンに移し換える。
Transfer all of the solution of Ω ■ to ■, and then add it to the poly beaker? Wash with water and add the washing solution to the same volumetric flask. Immediately after adjusting the volume with water, transfer to a plastic sample pin.

Tlpm   gml    g     ml   
  ppml00  Z38   19.8  1自 
  0.5    1.0200 2.38   19
.8  1.0   0.5    1.0300  
2、ろ8     19.8    1.rl    
  O,5’      1.0コバルトの補正方法 (〃 逆伍、制作成用標準溶液中の発光、重度を238
2λで測定し、鉄の検量Mk作成する。
Tlpm gml g ml
ppml00 Z38 19.8 1st
0.5 1.0200 2.38 19
.. 8 1.0 0.5 1.0300
2, Ro8 19.8 1. rl
O, 5' 1.0 Cobalt correction method (reverse 5, luminescence in standard solution for production, severity 238
Measure at 2λ and prepare iron calibration Mk.

■ コバルトの補正式作成用試料の調製の項で作製し々
6つの試料中の鉄の発光強度を測定し、■の@量線より
、その濃度會求める。
■ Measure the luminescence intensity of iron in the six samples prepared in the section on preparation of samples for creating the correction formula for cobalt, and find the concentration from the @ dose curve in ■.

(沙 コバルトの補正式作成用試料の調製の項■で添加
した鉄庚!尻(10ppm )の実測値との差tΔF’
eとおき、△FeとCO濃度との関係式を求める。
(Difference tΔF' from the actual value of ferrugin (10 ppm) added in section ① of preparing the sample for creating the correction formula for cobalt)
Let e, and find the relational expression between ΔFe and CO concentration.

優9 前もって螢光X線で試料中の酸化コバルトA(C
O2O3)を求める。
Yu9 Cobalt oxide A (C
O2O3) is determined.

・Co2O3υ1らコバルトa IJtに換算する。・Convert Co2O3υ1 to cobalt a IJt.

=0.711A(%) 0試料中のコバルト量ケ求める。=0.711A(%) 0 Find the amount of cobalt in the sample.

/、11x10−” XA 試料採取量(町)xZllxB)−3x A全■の関係
式の6項にあてはめて△Feを求め、イ111定fi&
より△FQf引くことによりコバルトの影響は除去で@
る。
/, 11x10-"
The influence of cobalt can be removed by subtracting △FQf from @
Ru.

■ なお、操作は、測定毎に行々う。■ The operation should be performed for each measurement.

以上の分析手順のフローシートy第21図に示した。The flow sheet of the above analysis procedure is shown in FIG. 21.

〔発明の効果〕〔Effect of the invention〕

本発明を実施することにより、 q、)加圧ルツボに試料と濃塩酸、儂フッ化水素酸及び
撹拌子全入れ加熱、撹拌全線り返ス事により試料の溶解
が容易になった。
By implementing the present invention, q.) The sample was easily dissolved by placing the sample, concentrated hydrochloric acid, hydrofluoric acid, and a stirring bar in a pressurized crucible, heating the crucible, and stirring the whole bar by repeating the process.

■ 倹撮巌用標準液と実試料溶液の、濃塩酸。■ Concentrated hydrochloric acid for standard solution and actual sample solution.

濃フッ化水素酸及び硼酸の酸濃度7合わせる事により、
その影響?除去した。
By combining the acid concentration 7 of concentrated hydrofluoric acid and boric acid,
That influence? Removed.

■ ガラス@(含ICP)舌・侵すフッ酸1硼。■Glass @ (contains ICP) tongue/corrosive hydrofluoric acid 1 boron.

酸でマスクした。Masked with acid.

■ I CP?使用し、検量線法で直接定量するため、
短時間でかつ正確な値が得られる。
■ ICP? for direct quantification using the calibration curve method.
Accurate values can be obtained in a short time.

■ 鉄の分析線にコバルトの分析線が重なる為、鉄の見
かけ上の測定値は、コバルト量に比例して増加する。こ
のためコバルトの補正式ヲ作成し、その影響全補正した
■ Since the iron analysis line overlaps the cobalt analysis line, the apparent measured value of iron increases in proportion to the amount of cobalt. For this reason, we created a correction formula for cobalt and corrected all its effects.

という特徴を示し、捷た次の 1 7レスター素子の不純物である鉄ヲ、迅速かつ旧確
に精度良く定量分析が出来る。
With this feature, iron, which is an impurity in the shredded 17 Leicester element, can be quickly and accurately quantitatively analyzed.

(2)原料の受入れ、製品の品質管理及び工程管理全正
確に行なえる。
(2) Accurately carry out raw material acceptance, product quality control, and process control.

■ 微妙な鉄宮有量の変化が、素子特性に与える影響全
解析出来る。そのため素子の特性に悪影響を与えない範
囲で、原料の品質ケ下げる事が出来6ため、大きなコス
トダウンが可能である。
■ It is possible to fully analyze the effects of subtle changes in Tetsunomiya quantity on device characteristics. Therefore, the quality of the raw materials can be lowered within a range that does not adversely affect the characteristics of the element6, making it possible to significantly reduce costs.

という効果音発揮するものである。This is a sound effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第6図はプラズマ発光分析におけるチャート図
、第7図は鉄の濃度に対する発光強度を示した検量線を
画いたグラフ、第8図〜18図は各種共存元素の鉄分析
に対する妨害状況を示したグラフ、第19図および第2
0図はプラズマ発光分析のチャート図、第21図は鉄の
分析値から仕込値全差し引いた値とコバルト存在量との
関係全示すグラフ、第22図はコバルトの量に対して行
った補正前後のFe回収率の挙動を示したグラフ、第2
6図はクロム存在の有無によるFe濃度が示す発光強度
の挙動を示したグラフ、第24図は実際に分析に処する
試料の調製法を示した工程図、第25図は検量線作成の
ための試料の調製全示した工程図である。 代理人 弁理士  木 村 三 朗 第4図 第5図 −値憬郁 “′ 第19図     第20図 第21図 Coの縁cot (pprr+) 第22図 COc玲・抑t (ppm) 第24図 ICP (シ餓2382 A) 第25図
Figures 1 to 6 are charts for plasma emission analysis, Figure 7 is a graph showing a calibration curve showing luminescence intensity versus iron concentration, and Figures 8 to 18 are interferences of various coexisting elements to iron analysis. Graphs showing the situation, Figures 19 and 2
Figure 0 is a chart of plasma emission analysis, Figure 21 is a graph showing the relationship between the iron analysis value minus all the preparation values and the amount of cobalt present, and Figure 22 is the graph before and after the correction made to the amount of cobalt. Graph showing the behavior of Fe recovery rate, 2nd
Figure 6 is a graph showing the behavior of luminescence intensity indicated by Fe concentration depending on the presence or absence of chromium, Figure 24 is a process diagram showing the method of preparing samples to be actually analyzed, and Figure 25 is a diagram for creating a calibration curve. It is a process diagram showing the entire preparation of the sample. Agent Patent Attorney Sanro Kimura Figure 4 Figure 5 - Ikuo Kei "' Figure 19 Figure 20 Figure 21 Co's edge cot (pprr+) Figure 22 COc Ling/Suppression (ppm) Figure 24 ICP (Shiga 2382 A) Figure 25

Claims (4)

【特許請求の範囲】[Claims] (1)試料溶液をプラズマ発光分析に処して波長238
.2nm(2382′Å)における発光強度を測定し、
別途求めた検量線およびコバルト補正値を用いて鉄含有
量を算出することからなるプラズマ発光分析による鉄の
定量分析法。
(1) Subject the sample solution to plasma emission analysis to obtain a wavelength of 238
.. Measure the emission intensity at 2 nm (2382′ Å),
A quantitative iron analysis method using plasma emission spectrometry, which involves calculating the iron content using a separately determined calibration curve and cobalt correction value.
(2)恒量に達している粉砕試料の一定量を秤取しテフ
ロン加圧ルツボ中にとり濃塩酸、濃フツ化水素酸を加え
て全体をなじませたのち加熱撹拌したのち試料を溶解さ
せ次いでルツボを冷却してポリオレフイン製ビーカーに
洗い移し硼酸を添加して湯浴上で硼酸を溶解させ再度冷
却しメスフラスコを用いて正確に稀釈して得た試料溶液
を用いる特許請求の範囲第1項記載の定量分析法。
(2) Weigh out a certain amount of the pulverized sample that has reached a constant weight, place it in a Teflon pressurized crucible, add concentrated hydrochloric acid and concentrated hydrofluoric acid, mix the whole thing, heat and stir, dissolve the sample, and then place it in the crucible. Claim 1 describes the use of a sample solution obtained by cooling, washing the sample into a polyolefin beaker, adding boric acid, dissolving the boric acid on a hot water bath, cooling again, and diluting accurately using a volumetric flask. Quantitative analysis method.
(3)純度99.99%以上の酸化亜鉛2.38gと硼
酸1gとを4個のポリオレフインビーカーにそれぞれは
かり採り濃塩酸を19.9、19.8、19.4および
19.0mlずつそれぞれのビーカーに加えて90℃の
湯浴上で加熱溶解し冷却後濃フツ化水素酸0.5mlを
加えて溶液Aとし、一方原子吸光用鉄標準溶液から25
mlを分取し濃塩酸5mlを加えて鉄500ppm標準
溶液を作り、ここから1、2、6および10mlを4つ
の100mlメスフラスコにそれぞれ分取し前記4種の
溶液Aを同じ対応で用意した前記メスフラスコに洗い移
して標線まで稀釈し、238.2nm(2382Å)に
おけるプラズマ発光分析を行い発光強度を測定し各濃度
ついてプロツトして得た検量線を用いる特許請求の範囲
第1項記載の定量分析法。
(3) Weigh 2.38 g of zinc oxide with a purity of 99.99% or higher and 1 g of boric acid into 4 polyolefin beakers, and add 19.9, 19.8, 19.4, and 19.0 ml of concentrated hydrochloric acid to each. Add to the beaker, heat and dissolve on a 90°C water bath, and after cooling, add 0.5 ml of concentrated hydrofluoric acid to prepare solution A.
ml was taken out and 5 ml of concentrated hydrochloric acid was added to make a 500 ppm iron standard solution, from which 1, 2, 6 and 10 ml were each taken into four 100 ml volumetric flasks to prepare the above four solutions A in the same way. The sample is washed into the volumetric flask and diluted to the marked line, and then subjected to plasma emission analysis at 238.2 nm (2382 Å) to measure the emission intensity and use a calibration curve obtained by plotting each concentration. Quantitative analysis method.
(4)純度99.99%以上の酸化亜鉛2.38gと硼
酸1gとを3個のポリオレフインビーカーにそれぞれは
かり採り濃塩酸19.8、19.6および19.4ml
をそれぞれに加え90℃の湯浴上で加熱溶解し冷却後濃
フツ化水素酸0.5mlを加えて溶液Bとし、一方原子
吸光用鉄標準溶液から25ml分取し濃塩酸5mlを加
えて50mlとして鉄500ppmの標準溶液とし、そ
の2mlずつを3コの100mlメスフラスコに分取し
(溶液C)、別に99.99%の金属コバルト2.0g
を塩酸20mlに溶解して100mlとしコバルト濃度
20000ppmの標準溶液を作成しここから10、2
0および30mlを分取して前記3種類の溶液Cが入つ
ている3コのメスフラスコにそれぞれ加え、さらに溶液
Bをも加えて標線まで純水を加えて一定容としたものを
用いてプラズマ発光強度を測定し仕込み鉄濃度と実測値
との差ΔFeを求め、これとCo濃度との関係式から補
正式を導びき、鉄含有量の補正を行うことからなる特許
請求の範囲第1項記載の定量分析法。
(4) Weigh 2.38 g of zinc oxide with a purity of 99.99% or higher and 1 g of boric acid into three polyolefin beakers and add 19.8, 19.6 and 19.4 ml of concentrated hydrochloric acid.
were added to each, heated and dissolved on a 90°C water bath, and after cooling, 0.5 ml of concentrated hydrofluoric acid was added to prepare solution B. On the other hand, 25 ml was taken from the iron standard solution for atomic absorption, and 5 ml of concentrated hydrochloric acid was added to make 50 ml. A standard solution containing 500 ppm of iron was taken as a standard solution, and 2 ml of it was divided into three 100 ml volumetric flasks (solution C), and 2.0 g of 99.99% metallic cobalt was added separately.
Dissolve it in 20 ml of hydrochloric acid to make 100 ml to prepare a standard solution with a cobalt concentration of 20,000 ppm.
0 and 30 ml were added to each of the three volumetric flasks containing the three types of solutions C, and solution B was also added to make a constant volume by adding pure water up to the marked line. Claim 1, which comprises measuring the plasma emission intensity, determining the difference ΔFe between the charged iron concentration and the actual measurement value, deriving a correction formula from the relational expression between this and the Co concentration, and correcting the iron content. Quantitative analysis method described in section.
JP13320884A 1984-06-29 1984-06-29 Quantitative analysis of iron by plasma luminous analysis Pending JPS6113140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13320884A JPS6113140A (en) 1984-06-29 1984-06-29 Quantitative analysis of iron by plasma luminous analysis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13320884A JPS6113140A (en) 1984-06-29 1984-06-29 Quantitative analysis of iron by plasma luminous analysis

Publications (1)

Publication Number Publication Date
JPS6113140A true JPS6113140A (en) 1986-01-21

Family

ID=15099256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13320884A Pending JPS6113140A (en) 1984-06-29 1984-06-29 Quantitative analysis of iron by plasma luminous analysis

Country Status (1)

Country Link
JP (1) JPS6113140A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189460A (en) * 1988-12-02 1990-07-25 Aluminum Co Of America <Alcoa> Automatic sample adjustor for sample analysis
JPH0424904A (en) * 1990-05-15 1992-01-28 Ngk Insulators Ltd Regulation of resistance value of thick film resistor
CN101793830A (en) * 2010-03-16 2010-08-04 武汉钢铁(集团)公司 Method for measuring sulfur content in iron ore
CN102297855A (en) * 2011-07-18 2011-12-28 联众(广州)不锈钢有限公司 Method for analyzing chemical components of nickel-containing pig iron
JP2017161486A (en) * 2016-03-11 2017-09-14 株式会社住化分析センター Quantitative apparatus, quantitative method, control program, and storage medium

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02189460A (en) * 1988-12-02 1990-07-25 Aluminum Co Of America <Alcoa> Automatic sample adjustor for sample analysis
JPH0424904A (en) * 1990-05-15 1992-01-28 Ngk Insulators Ltd Regulation of resistance value of thick film resistor
CN101793830A (en) * 2010-03-16 2010-08-04 武汉钢铁(集团)公司 Method for measuring sulfur content in iron ore
CN102297855A (en) * 2011-07-18 2011-12-28 联众(广州)不锈钢有限公司 Method for analyzing chemical components of nickel-containing pig iron
JP2017161486A (en) * 2016-03-11 2017-09-14 株式会社住化分析センター Quantitative apparatus, quantitative method, control program, and storage medium

Similar Documents

Publication Publication Date Title
CN103149074B (en) X-ray fluorescence spectra analyzes the MTG YBCO bulk method of molybdenum, manganese, vanadium or ferrochrome sample
CN103149073B (en) X-ray fluorescence spectra analyzes the MTG YBCO bulk method of ferrosilicon, Si-Ca-Ba, silicomanganese, ferro-aluminum or ferro-titanium sample
CN109030528A (en) A kind of method that X-ray fluorescence spectra analyzes fluorine chlorine in smelting smoke dust
Tsuchiya et al. Major element analysis of rock samples by X-ray fluorescence spectrometry, using scandium anode tube
CN106442073A (en) Fusion sample preparation method for X-ray fluorescence analysis of element contents of silicon and phosphorus in silicon-manganese ball alloy
CN105651799A (en) X fluorescence detection method of impurity content in quartz sand
CN109557118A (en) A kind of method of each component content in x-ray fluorescence spectrometry ferro-titanium
JPS6113140A (en) Quantitative analysis of iron by plasma luminous analysis
CN109738419B (en) Method for measuring boron content in aluminum-based boron carbide material
Trimmel et al. Determination of 48 elements in 7 plant CRMs by ICP-MS/MS with a focus on technology-critical elements
CN105699409B (en) The method that x-ray fluorescence glass flux sheet method measures barium sulfate content in barite
CN104502179A (en) Test sample treatment method for simultaneously measuring content of silicon and phosphor in silicon-manganese alloy by ICP
Armstrong Determination of chemical valence state by X-ray emission analysis using electron beam instruments: Pitfalls and promises
CN108760654A (en) Method for rapidly determining content of lead element in tin plate coating
CN110389146B (en) Method for detecting total iron content in iron material through X-fluorescence cobalt internal standard-ICP cobalt compensation
CN112213342A (en) Portable analysis and detection system for content of elements in ore
Williams et al. Small-angle scattering of X-rays and neutrons
CN111239172A (en) Method for determining phosphorus content in coal
Krishna et al. Determination of iron in nuclear grade zirconium oxide by x-ray fluorescence spectrometry using an internal intensity reference
Milner et al. The microchemical analysis of ferrous and non-ferrous alloys
CN117191540B (en) Wet digestion method and iron phosphate glass total component analysis method
Yap X‐ray fluorescence determination of trace element concentrations of zinc and arsenic and their relation to ceramic attribution
Fuller et al. The determination of trace amounts of platinum in glass by colorimetry, spark-source mass spectrography and X-ray fluorescence spectrometry
Völkening et al. Determination of heavy metal traces in metallic materials with IDMS.
Heald Methods of soil and plant analysis: with special reference to strontium 90 Contamination