JPS61130818A - Flowmeter - Google Patents

Flowmeter

Info

Publication number
JPS61130818A
JPS61130818A JP25381984A JP25381984A JPS61130818A JP S61130818 A JPS61130818 A JP S61130818A JP 25381984 A JP25381984 A JP 25381984A JP 25381984 A JP25381984 A JP 25381984A JP S61130818 A JPS61130818 A JP S61130818A
Authority
JP
Japan
Prior art keywords
piston
flow rate
tube
movement
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25381984A
Other languages
Japanese (ja)
Inventor
Yasufumi Yamagata
康文 山形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOKO RES KK
Original Assignee
KOKO RES KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOKO RES KK filed Critical KOKO RES KK
Priority to JP25381984A priority Critical patent/JPS61130818A/en
Publication of JPS61130818A publication Critical patent/JPS61130818A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/22Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
    • G01F1/26Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters of the valve type

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To enable the maintaining of the linearity satisfactorily in the relationship between the flow rate and the electric signal, by arranging a tube constant in the diameter with an escape groove for a fluid formed on the side thereof along the axis thereof and an output means for obtaining an output indicating changes in the position of a shielding means in the tube. CONSTITUTION:As a liquid flows into a cylindrical tube 4 from the opening end 4b side, a piston 6 is forced to the right against an eccentric force of a coil spring 7 while a fluid flows out of the tube 4 through an escape groove 5. In this case, the movement of the piston 6 and the opening length of the escape groove 6 are determined by the pressure corresponding to the flow rate of the fluid. So to speak, the movement of the piston 6 corresponds to the flow rate. Then, with the movement of the piston 6, the core of a differential transformer 8 is moved through a connecting rod 9 to obtain an output voltage corresponding to the movement of the piston 6, hence, the flow rate from the differential transformer 8 thereby indicating the flow rate by the voltage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は管路や溝を流れる流体の流量を測定する流量
針に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] This invention relates to a flow needle for measuring the flow rate of fluid flowing through a pipe or a groove.

〔従来の技術〕[Conventional technology]

従来、この種の流量針としてロータメータが知られてい
る。
Conventionally, a rotameter has been known as this type of flow rate needle.

これは第4図に示すように下から上に次第に内径が拡大
するテーパ管(11内に浮子(2)を置き、下から上に
流れる流体の流量を、テーパ管(1)内に浮遊する浮子
(2)の位置によって測定するものである。
As shown in Figure 4, a float (2) is placed inside a tapered tube (11) whose inner diameter gradually expands from bottom to top, and the flow rate of the fluid flowing from bottom to top is suspended in the tapered tube (1). It is measured by the position of the float (2).

なお、(31はテーパ管に刻まれた目盛である。Note that (31 is a scale engraved on the tapered tube.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このロータメータの場合、テーパ管(1)という特異な
形状のものが必要になる。また、浮遊する浮子(2)の
位置により測定するものであり、しかも浮子(2)が流
体により躍るような状態になり、正確に目盛の指示値を
判読しにくくなるとともにこの浮子(2)の位置を電気
信号に変換しにくいという欠点がある。
In the case of this rotameter, a tapered tube (1) with a unique shape is required. In addition, the measurement is performed based on the position of the floating float (2), and the float (2) moves due to the fluid, making it difficult to accurately read the indicated value on the scale and causing the float (2) to move. The drawback is that it is difficult to convert the position into an electrical signal.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、径が一定で側面に管軸方向に沿って流体の
逃げ溝(5)が形成された管(4)と、流体圧力によっ
て逃げ溝(5)の開口面積を変化させる遮へい手段(6
)と、この遮へい手段(6)の管(4)内の位置の変化
をネオ出力を得る出力手段(8)とからなる。
This invention consists of a tube (4) having a constant diameter and a fluid relief groove (5) formed on the side surface along the tube axis direction, and a shielding means (4) that changes the opening area of the relief groove (5) depending on the fluid pressure. 6
) and an output means (8) for obtaining a neo output from a change in the position of the shielding means (6) within the tube (4).

〔作用〕[Effect]

流体が管(4)内に入り込むとその圧力により遮へい手
段(6)が移動し、この遮へい手段の移動により逃げ溝
(5)がその圧力に応じた分だけ開口となって管(41
内に入った流体がこの開口部から流出する。
When the fluid enters the pipe (4), the shielding means (6) moves due to the pressure, and the movement of the shielding means opens the relief groove (5) by an amount corresponding to the pressure, and the pipe (41)
The fluid that has entered will exit through this opening.

流体の流量は、目盛あるいは電気信号で検出される。The flow rate of the fluid is detected by a scale or an electrical signal.

〔実施例〕〔Example〕

第1V!Jはこの発明の一実施例で、(4は径が一定の
円筒管である。この円筒管(4の側面には管軸方向に沿
って逃げ溝(5)が形成される。また、この円筒管(4
)内にはピストン(6)が挿入される。そして、このピ
ストン(6)は、これと円筒管(4の図中右側の閉塞端
部(4a)との間に設けられるコイルバネ(ηにより円
筒管(4の図中左側の開口端(4b)側に偏倚されてい
る。さらに、ピストン(6)には円筒管(4)の閉塞端
部(4a)のほぼ中心部に穿かれた透孔を介して管(4
)外に設けられる差動トランス(8)のコアと接続され
ている連接棒(9)が接続されている。
1st V! J is an embodiment of the present invention (4 is a cylindrical tube with a constant diameter. A relief groove (5) is formed on the side surface of this cylindrical tube (4) along the tube axis direction. Cylindrical tube (4
) is inserted into the piston (6). This piston (6) is connected to the open end (4b) of the cylindrical tube (4) by a coil spring (η) provided between it and the closed end (4a) of the cylindrical tube (4) on the right side of the figure. Furthermore, the piston (6) is fitted with a tube (4) through a through hole bored approximately in the center of the closed end (4a) of the cylindrical tube (4).
) is connected to a connecting rod (9) which is connected to the core of a differential transformer (8) provided outside.

このような構成において、開口端(4b)側から流体が
円筒管(4)内に流れ込むとピストン(6)がコイルバ
ネ(7)の偏倚力に抗して図上右側に押されるとともに
流体は逃げ溝(5)を介して管(4)外に流出する。
In such a configuration, when fluid flows into the cylindrical tube (4) from the open end (4b) side, the piston (6) is pushed to the right in the figure against the biasing force of the coil spring (7), and the fluid escapes. It flows out of the tube (4) through the groove (5).

この場合、流体の流量に応じた圧力によりピストン(6
)の移動量及び逃げ溝(5)の開口長さが決まる。
In this case, the piston (6
) and the opening length of the relief groove (5) are determined.

つまり、このピストン(6)の移動量が流量に応じたも
のとなる。そして、このピストン(6)の移動により連
接棒(9)を介して差動トランス(8)のコアが移動し
、ピストン(6)の移動量に応じた、従って流量に応じ
た出力電圧がこの差動トランス(8)より得られる。し
たがって、この電圧により流量を指示するようにすれば
よい、                  1なお、
逃げ溝(5)の形状は第1図例のような長方形に限られ
るものではなく、流量の変化と差動トランス(8)の出
力変化とが一定の関係になるようにすればよく、例えば
、第2図に示すようにi (5)の幅を指数曲線的に変
化させるようにしてもよい。  。
In other words, the amount of movement of this piston (6) corresponds to the flow rate. The movement of the piston (6) causes the core of the differential transformer (8) to move via the connecting rod (9), and the output voltage changes in accordance with the amount of movement of the piston (6), and thus in accordance with the flow rate. Obtained from the differential transformer (8). Therefore, the flow rate can be indicated using this voltage. 1.
The shape of the relief groove (5) is not limited to the rectangular shape shown in the example shown in Fig. 1, but may be such that the change in flow rate and the change in the output of the differential transformer (8) have a constant relationship. , the width of i (5) may be changed exponentially as shown in FIG. .

第3図はこの発明のさらに他の実施例の断面図で、この
例ではピストン(6)と円筒管(4)の閉塞端部(4a
)間に油(18)が挿入されるとともに、この円筒管(
4)の閉塞端部(4a)側をダイヤフラムαのとし、付
け、このダイヤフラム(至)の先端に差動トランス(8
)のコアと接続される連接棒(9′)を取り付けるよう
にする。さらに、ダイヤフラム■の先端部と差動トラン
ス(8)間には連接棒(9′)をその中心に有する状態
のコイルバネ(11)が設けられ、固定されている差動
トランス(8)に対しダイヤフラム(IIは図中左側に
弾性的に偏倚させられている。
FIG. 3 is a sectional view of still another embodiment of the present invention, in which the piston (6) and the closed end (4a) of the cylindrical tube (4) are shown.
) is inserted between the oil (18) and this cylindrical tube (
The closed end (4a) side of 4) is a diaphragm α, and a differential transformer (8
) to attach the connecting rod (9') which is connected to the core. Furthermore, a coil spring (11) having a connecting rod (9') at its center is provided between the tip of the diaphragm ■ and the differential transformer (8), and is connected to the fixed differential transformer (8). The diaphragm (II) is elastically biased to the left in the figure.

この例においては、流体の流量に応じてダイヤフラムQ
lが収縮し、これが復帰伸張するときコイルバネ(11
)′の偏倚力に抗して連接棒(9′)に接続されたコア
を偏倚させ、差動トランス(8)の出力電圧としてはそ
のコア偏倚量に応じた値が得られる。
In this example, the diaphragm Q
When l contracts and returns to expansion, the coil spring (11
)', the core connected to the connecting rod (9') is biased, and the output voltage of the differential transformer (8) has a value corresponding to the amount of core bias.

なお、上記の例ではピストン(6)を復帰させる手段と
してはコイルバネや油を用いたが、これに限られるもの
ではない0例えば、流体が下から上に流れるような場合
、ピストン(6)はこれを管(4)の開口端側より抜は
落ちてしまわないようにしておけば、ピストン(6)自
身の重力がピストン復帰手段として働くことになる。
In the above example, a coil spring or oil is used as a means for returning the piston (6), but the method is not limited to this. For example, when fluid flows from the bottom to the top, the piston (6) If this is prevented from falling from the open end of the tube (4), the gravity of the piston (6) itself will act as a piston return means.

また、変位を電気信号に変換する変位トランスデユーサ
としては、差動トランスに限られるものではない。例え
ば第5図に示すように、2個のコイル(12)  (1
3)間にこれらの間の磁束を切るように坂(14)を挿
入し、ピストン(6)の移動に応じてこの板(14)に
より切る磁束の量を変えるようにすれば、一方のコイル
(12)に流れる電流11により発生する磁束が他方の
コイルと鎖交する量が変わることになり、この他方のコ
イルから得られる誘導電流12の大きさがピストン(6
)の変位に応じたものとなるので、この他方のコイルよ
り流量に応じて変化する電気信号を得ることができる。
Furthermore, the displacement transducer that converts displacement into an electrical signal is not limited to a differential transformer. For example, as shown in Figure 5, two coils (12) (1
3) If a slope (14) is inserted between them to cut the magnetic flux between them, and the amount of magnetic flux cut by this plate (14) is changed according to the movement of the piston (6), one coil (12) The amount by which the magnetic flux generated by the current 11 flowing in the piston (6) interlinks with the other coil changes, and the magnitude of the induced current 12 obtained from this other coil changes.
), it is possible to obtain an electrical signal that changes depending on the flow rate from this other coil.

また、第6図に示すように、ピストン(6)の変位に応
じて摺動する板(15)をランプ(16)と受光素子(
17)間に挿入して、受光素子(17)で受光する光量
をピストン(6)の変位に応じたものとして、受光素子
(17)より流量に応じた電気信9号を得るようにする
こともできる。
In addition, as shown in FIG. 6, a plate (15) that slides according to the displacement of the piston (6) is connected to the lamp (16) and the light receiving element (
17) By inserting the light receiving element (17) between them, the amount of light received by the light receiving element (17) is made to correspond to the displacement of the piston (6), and an electric signal 9 corresponding to the flow rate is obtained from the light receiving element (17). You can also do it.

さらに、連接棒(9)又は(9′)を電気的抵抗を有す
る棒とし、これを水銀溜の中に挿入しておき、ピストン
(6)の変位に応じたこの連接棒の移動を抵抗変化とし
て取り出すようにする手段を用いることもできる。
Furthermore, the connecting rod (9) or (9') is a rod having electrical resistance, which is inserted into the mercury reservoir, and the movement of the connecting rod in accordance with the displacement of the piston (6) changes the resistance. It is also possible to use a means for taking out the data as follows.

また、上記の例は出力を電気信号として取り出すように
したが、管(4)に目盛を設け、ピストン(6)の位置
をこれにて判読できるようにし、あるいは逃げ溝の開口
長さを判読できるようにして、この目盛により流量を知
るようにしてもよい。
In addition, in the above example, the output is taken out as an electric signal, but it is also possible to provide a scale on the pipe (4) so that the position of the piston (6) can be read, or the opening length of the relief groove can be read. The scale may be used to determine the flow rate.

さらに、逃げ溝(5)を遮へいする手段としてはビトン
に限らず、例えば第3図例と同様にダイヤフラムを有す
るような場合に、このダイヤフラムの伸縮に応じて逃げ
溝の開口面積を変化させる板状体を設けるようにしても
よい。
Furthermore, the means for shielding the relief groove (5) is not limited to the Viton, but for example, in the case where the relief groove has a diaphragm as in the example shown in FIG. A shaped body may be provided.

〔発明の効果〕〔Effect of the invention〕

ごの発明によれば、径が一定の通常の管を用いることが
できるので、従来のようなテーパ管を用いる場合に比べ
て流量と電気信号の関係が直線住良(保たれ、従来のロ
ータメータの浮子の位置を外部から光学的に電気信号に
変換する方法や磁性体浮子の位置を外部に設けたコイル
により検出する方法に比して技術的に実現が容易である
According to the invention, since a regular pipe with a constant diameter can be used, the relationship between the flow rate and the electrical signal is maintained in a straight line (compared to the conventional case of using a tapered pipe), and it is possible to This method is technically easier to implement than a method of optically converting the position of the float into an electrical signal from the outside or a method of detecting the position of the magnetic float using an external coil.

また、流量制御応用に言及すれば、直線性の高い検出方
法であるこの発明を活用することにより回路的な関数補
正を必要としなくなる等の顕著な効果があるほか、一方
、逃げ溝の形状を選ぶことによって任意関数を乗じた形
の出力信号を得ることも可能である。
In addition, in terms of flow rate control applications, the use of this invention, which is a highly linear detection method, has remarkable effects such as eliminating the need for circuit-based function correction. It is also possible to obtain an output signal multiplied by an arbitrary function by selecting the desired function.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の斜視図、第2図はその一
部の変更例を示す図、第3図はこの発明の他の実施例の
断面図、第4図は従来の流量計としてのロータメータの
一例を承す斜視図、第5図1及び第6図はこの発明の要
部の他の例を示す図である。 (4)は円筒管、(5)は逃げ溝、(6)はピストン、
(7)はコイルバネ、(8)は差動トランス、(9)は
差動トランス(8)のコアとピストン(6)間を接続す
る連接棒である。 −CN         Cf3 昧     昧    派 区 六か 銖           1 凸r
Fig. 1 is a perspective view of one embodiment of the present invention, Fig. 2 is a diagram showing a partial modification thereof, Fig. 3 is a sectional view of another embodiment of the invention, and Fig. 4 is a conventional flow rate diagram. FIG. 5 is a perspective view of an example of a rotameter as a meter, and FIGS. 5 and 6 are diagrams showing other examples of essential parts of the present invention. (4) is a cylindrical pipe, (5) is a relief groove, (6) is a piston,
(7) is a coil spring, (8) is a differential transformer, and (9) is a connecting rod that connects the core of the differential transformer (8) and the piston (6). -CN Cf3 Mei Mei Faku Rokuka-ku 1 Convex r

Claims (1)

【特許請求の範囲】 1、径が一定で側面に管軸方向に沿って流体の逃げ溝が
形成された管と、流体圧力によって上記逃げ溝の開口面
積を変化させる遮へい手段と、この遮へい手段の上記管
内の位置の変化を示す出力を得る出力手段とからなる流
量計。 2、遮へい手段の上記管内の位置の変化を示す出力を得
る出力手段が上記管に付された目盛である特許請求の範
囲第1項記載の流量計。 3、遮へい手段の上記管内の位置の変化を示す出力を得
る出力手段が上記遮へい手段の位置の変化に応じて変化
する電気信号を得る変位トランスデューサである特許請
求の範囲第1項記載の流量計。
[Scope of Claims] 1. A tube having a constant diameter and having a fluid relief groove formed on the side surface along the tube axis direction, a shielding means that changes the opening area of the relief groove according to fluid pressure, and this shielding means and an output means for obtaining an output indicating a change in the position of the inside of the pipe. 2. The flowmeter according to claim 1, wherein the output means for obtaining an output indicating a change in the position of the shielding means within the pipe is a scale attached to the pipe. 3. The flowmeter according to claim 1, wherein the output means for obtaining an output indicating a change in the position of the shielding means in the pipe is a displacement transducer for obtaining an electric signal that changes in accordance with a change in the position of the shielding means. .
JP25381984A 1984-11-30 1984-11-30 Flowmeter Pending JPS61130818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25381984A JPS61130818A (en) 1984-11-30 1984-11-30 Flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25381984A JPS61130818A (en) 1984-11-30 1984-11-30 Flowmeter

Publications (1)

Publication Number Publication Date
JPS61130818A true JPS61130818A (en) 1986-06-18

Family

ID=17256574

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25381984A Pending JPS61130818A (en) 1984-11-30 1984-11-30 Flowmeter

Country Status (1)

Country Link
JP (1) JPS61130818A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337406U (en) * 1989-08-24 1991-04-11
KR100526140B1 (en) * 2002-03-26 2005-11-08 한만성 Electronic measuring instrument
DE102005038428A1 (en) * 2005-08-12 2007-02-15 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses wiederum vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Braunschweig Device for measuring the properties of a fluid stream comprises a measuring unit lying opposite an inlet opening for acquiring the impulse force of the fluid stream hitting a surface of the measuring unit

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562162U (en) * 1979-06-19 1981-01-09

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS562162U (en) * 1979-06-19 1981-01-09

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337406U (en) * 1989-08-24 1991-04-11
KR100526140B1 (en) * 2002-03-26 2005-11-08 한만성 Electronic measuring instrument
DE102005038428A1 (en) * 2005-08-12 2007-02-15 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses wiederum vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Braunschweig Device for measuring the properties of a fluid stream comprises a measuring unit lying opposite an inlet opening for acquiring the impulse force of the fluid stream hitting a surface of the measuring unit
DE102005038428B4 (en) * 2005-08-12 2007-09-27 Bundesrepublik Deutschland, vertreten durch das Bundesministerium für Wirtschaft und Technologie, dieses wiederum vertreten durch den Präsidenten der Physikalisch-Technischen Bundesanstalt Braunschweig Apparatus and method for detecting a mass flow of a fluid

Similar Documents

Publication Publication Date Title
CN100514007C (en) Flowmeter
US3894433A (en) Rotameter system with electrical read-out
US4069708A (en) Flowmeter plate and sensing apparatus
US4051723A (en) Force-type flowmeter
US5115684A (en) Flowmeter for measuring the rate of fluid flow in a conduit
US3678754A (en) Flow measuring device
US3416371A (en) Flow meter with electrical read-out
JPH0519923B2 (en)
US5193400A (en) Universal rotameter
Mandal et al. Design of a flow transmitter using an improved inductance bridge network and rotameter as sensor
JPS61130818A (en) Flowmeter
US5520058A (en) Magnetic reluctance flowmeter
US4227409A (en) Flowmeter
US4489614A (en) Flowmeter
GB2317234A (en) Suspended body flowmeter
US4361051A (en) Flowmeter
US4041756A (en) Force-type flowmeter
US4059015A (en) Angle-to-current converter
US2581588A (en) Fluid flowmeter
US3331245A (en) Sensory transducers
US5079961A (en) Rotameter with remote read-out device
JPH0238817A (en) Flowmeter using bellows
JPH037780Y2 (en)
US4404855A (en) High sensitive micromanometer
SU932252A1 (en) Level indicator