JPS61130302A - Ribofuranan sulfate having anticoagulant activity and its production - Google Patents

Ribofuranan sulfate having anticoagulant activity and its production

Info

Publication number
JPS61130302A
JPS61130302A JP25349184A JP25349184A JPS61130302A JP S61130302 A JPS61130302 A JP S61130302A JP 25349184 A JP25349184 A JP 25349184A JP 25349184 A JP25349184 A JP 25349184A JP S61130302 A JPS61130302 A JP S61130302A
Authority
JP
Japan
Prior art keywords
ribofuranan
sulfate
anticoagulant activity
formula
sulfating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25349184A
Other languages
Japanese (ja)
Other versions
JPS6354283B2 (en
Inventor
Toshiyuki Uryu
瓜生 敏之
Kenichi Hatanaka
畑中 研一
Hiromi Kuzuhara
葛原 弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Original Assignee
University of Tokyo NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC filed Critical University of Tokyo NUC
Priority to JP25349184A priority Critical patent/JPS61130302A/en
Publication of JPS61130302A publication Critical patent/JPS61130302A/en
Publication of JPS6354283B2 publication Critical patent/JPS6354283B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain ribofuranan sulfate having an anticoagulant activity, by sulfating ribofuranan. CONSTITUTION:Ribofuranan sulfate of formula I (wherein n is 10-500 and R is H or SO3Na) is obtained by sulfating ribofuranan with a sulfating agent. When n in formula I is smaller than 10, the anticoagulant activity is decreased, while when it is larger than 500, the synthesis of this compound is difficult. Examples of the sulfating agents which can be used include sulfuric anhydride/ trimethylamine complex, chlorosulfonic acid and piperidine N-sulfate. Ribofuranan sulfate of formula I has an anticoagulant activity in the medical field and therefore a substance containing it as an effective component can be used as a medical polymeric material which must prevent coagulation of the blood, such as a material for artificial hearts and artificial blood vessels. Ribofuranan which is a starting material for ribofuranan sulfate can be obtained by, for example, a process shown in formula II (wherein Bn is CH2C6H5).

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は医学分野における抗凝血活性を有する硫酸化リ
ボフラナンおよびその製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a sulfated ribofuranan having anticoagulant activity in the medical field and a method for producing the same.

(従来の技術) 血栓症あるいは高脂血症は悪性腫瘍、動脈硬化症、塘尿
病、ネフローゼ症候群等の疾患に伴って起こる場合か多
い。近年、上記疾患の増加に伴って、血栓症あるいは高
脂血症は増加傾向にある。
(Prior Art) Thrombosis or hyperlipidemia often occurs in conjunction with diseases such as malignant tumors, arteriosclerosis, urinary tract disease, and nephrotic syndrome. In recent years, with the increase in the above-mentioned diseases, thrombosis and hyperlipidemia have been on the rise.

現在、これらの治療に有効な薬剤としては、例えば、デ
キストラン硫酸あるいはヘパリン等がある。テキストラ
ン硫酸は、微生物、例えばロイコノストック゛・メツセ
ンチロイデス(Leuconostocmesente
roides )によって生産されるα−1,6結合を
しfc、D−グルコビラノースのポリマーであるテキス
トランの硫酸エステルであり、抗凝血作用を有し、血栓
症の治療に有効な薬剤として知られている。
Currently, effective drugs for these treatments include, for example, dextran sulfate and heparin. Texturan sulfate can be used against microorganisms such as Leuconostocmesente.
It is a sulfate ester of Textran, which is a polymer of α-1,6-linked fc and D-glucobylanose produced by roides), and has an anticoagulant effect and is used as an effective drug for the treatment of thrombosis. Are known.

一万、動物組織中に存在するムコ多糖類のヘパリンは、
強い抗凝血作用、脂血清澄作用など広範な生理作用を有
しており、その活性は人工ヘバリノイドに比べ非常に強
いが、標品の品質が一定でなく、ま之構造が複雑で単離
方法も煩雑である0ヘパリンは、その分子中に硫酸化さ
れ次アミノ糖を有することが特徴的である。ヘパリン中
の活性部位は次式で表される。
Heparin, a mucopolysaccharide that exists in animal tissues,
It has a wide range of physiological effects, including strong anticoagulant effects and lipid serum clarifying effects, and its activity is much stronger than that of artificial hevarinoids, but the quality of the standard products is inconsistent and its structure is complex, making it difficult to isolate. Heparin, which requires a complicated process, is characterized by having a sulfated subamino sugar in its molecule. The active site in heparin is represented by the following formula.

ヘパリンの抗凝、血作用に着目し、材料の表面を処理し
ようという試みは、G B H(graphite −
benzalkonium chloride −he
parin )法に始まる0GBH法はグラファイトコ
ーティングをし九打料表面に界面活性剤である塩化ペン
ザイコニウムを吸着させ、それにヘパリンを結合する方
法である0GBH法同様に界面活性剤(テトラメチルア
ンモニウムクロライド)を用いてヘパリンをイオン結合
させるTDMAO法も行われている。TDMAO法はG
BH法と比較してポリエチレンやポリ塩化ビニルなどの
柔軟な汎用高分子にも応用できる点が特徴である。この
ような材料表面にイオン結合したヘパリンは血液中に浴
出して、その抗凝結活性を示す九め短時間(24時間以
内)使用の抗血栓材料として臨床用に用いられる。たと
えばT DMAC法によりポリ塩化ビニル表面にヘパリ
ンを結合した材料は手術時のバイパス血管として使用さ
れている。しかしながら、血液中へのヘパリンの溶出速
度が早いため長時間の使用Kに適していない。
G B H (graphite-
benzalkonium chloride-he
The 0GBH method, which starts with the parin) method, uses a surfactant (tetramethylammonium chloride) to adsorb penzaiconium chloride, a surfactant, on the surface of a graphite coating, and binds heparin to it. ) has also been used to ionically bond heparin using the TDMAO method. TDMAO method is G
Compared to the BH method, this method is unique in that it can be applied to flexible general-purpose polymers such as polyethylene and polyvinyl chloride. Heparin ionically bound to the surface of such a material is released into the blood and is used clinically as an antithrombotic material for short-term use (within 24 hours), which exhibits its anticoagulant activity. For example, a material in which heparin is bonded to the surface of polyvinyl chloride using the T DMAC method is used as a bypass blood vessel during surgery. However, it is not suitable for long-term use because the elution rate of heparin into the blood is fast.

これらの方法のほかに、ポリマーマトリックス内部にヘ
パリンを結合させ、材料表面から血中へ溶出していくヘ
パリンを材料内部からの放出により補給し、抗血栓性を
持続させるという方法がある。
In addition to these methods, there is a method in which heparin is bound inside the polymer matrix, and the heparin eluted from the surface of the material into the blood is replenished by being released from within the material to maintain antithrombotic properties.

この方法に使用するポリマーは、生体内テストにおいて
4週間以上の抗血栓性を示すものも確認されている。
Some of the polymers used in this method have been confirmed to exhibit antithrombotic properties for 4 weeks or more in in vivo tests.

(発明が解決しようとする問題点) しかしながら、これらの方法には二つの問題点がある。(Problem to be solved by the invention) However, these methods have two problems.

ヘパリ/は、動物組織中から抽出するため、標品の品質
が一定でなく、構造が複雑で単離方法も煩雑である。さ
らに、ヘパリンが血液中に浴出するという方法では、長
時間の使用には適さない。
Since Hepari/ is extracted from animal tissue, the quality of the specimen is not constant, the structure is complex, and the isolation method is complicated. Furthermore, the method in which heparin is leached into the blood is not suitable for long-term use.

(問題点を解決する九めの手段) 本発明に、これらの問題点を解決するためにヘパリンの
ような高い抗凝血活at−有するヘバリノイドを化学合
成しようとするものである。
(Ninth Means for Solving the Problems) In order to solve these problems, the present invention attempts to chemically synthesize hevarinoids having high anticoagulant activity, such as heparin.

本発明は、このために、α−1,5結合した糖鎖を有し
、その分子やペヘパリンの如き硫酸基?含む新規ヘパリ
ノイドの硫酸化多糖を合成した。
For this purpose, the present invention has an α-1,5-linked sugar chain and a sulfate group such as that molecule or peheparin. A novel heparinoid sulfated polysaccharide containing sulfated polysaccharides was synthesized.

本発明は次式 (式中nは10〜500の整数であり、R=Hま念は5
o8Naである)で表される硫酸化リボフラナンにある
。式中のnは10〜500である。nが10よりも小さ
いと抗凝血活性が小さくなり、また500よりも大きく
なると、この化合物を合成することが困難になる。
The present invention is based on the following formula (where n is an integer from 10 to 500, and R=H is 5
o8Na) is a sulfated ribofuranan. n in the formula is 10-500. If n is smaller than 10, the anticoagulant activity will be low, and if n is larger than 500, it will be difficult to synthesize this compound.

また、本発明はりボフラナンを硫酸化する硫酸化リボフ
ラナンの製造法にある。硫識化剤としては無水硫酸トリ
メチルアミンコンプレックス、クロロスルホン酸、ピペ
リジンN−硫酸等を用いることができる。
The present invention also provides a method for producing sulfated ribofuranan by sulfating ribofuranan. As the sulfur recognition agent, anhydrous trimethylamine sulfate complex, chlorosulfonic acid, piperidine N-sulfuric acid, etc. can be used.

さらに、本発明は、この硫酸化リボ7ラナンを有効成分
として含有する血液凝固抑制物質にある。
Furthermore, the present invention resides in a blood coagulation inhibitor containing this sulfated ribo-7-ranan as an active ingredient.

硫酸化リボフラナンは抗凝血活性を有するので、これを
有効成分とする物質は、人工心臓あるいは人工血管など
の血液凝固を抑制する必要のある医用高分子材料として
用いられる。
Since sulfated ribofuranan has anticoagulant activity, substances containing it as an active ingredient are used as medical polymer materials that need to inhibit blood coagulation, such as in artificial hearts and blood vessels.

硫酸化リボフラナンの原料となるリボフラナンは、例え
ば次のような工程で得ることができる。
Ribofuranan, which is a raw material for sulfated ribofuranan, can be obtained, for example, by the following process.

Bn−OH206H。Bn-OH206H.

以下、本発明を実施例に基づき詳しく説明する○(実施
例〉 (1→5)−α−D−リボ7ラナン(5)の調製D−リ
ボース(IJ を真空熱分解(chem、 Bar、 
Hereinafter, the present invention will be explained in detail based on examples.
.

上ユ6.3565 (19]3ノ参照)することにより
得られ次化合物1.4−アンヒドロ−α−D−リボピラ
ノース(2)を用いる。
The following compound 1.4-anhydro-α-D-ribopyranose (2) obtained by the above procedure (see 19.3) is used.

壕ず、水素化ナトリウム10.9’i乾燥ジメチルホル
ムアミド(DMF)100#t/に懸濁し、前記化合物
(2)10.9を100−のDll[Fに溶解したもの
を攪拌しながら滴下する。1時間反応後、31dのベン
ジルクロライドを5(11/のDMF K:溶解したも
のを滴下し、約20時間室温で攪拌する。反応混合物を
大量の氷水中にあけ、クロロホルムで抽出したのち、濃
縮して、n−ブチルクロライドより化合物1.4−アン
ヒドロ−2,8−ジー0−ベンジル−α−D−リポピラ
ノース(8)の結晶20g(収率84チ)を得る。化合
物(3〕の物理的性質は次に示す通りである。
Without water, 10.9'i of sodium hydride was suspended in 100 #t/dry dimethylformamide (DMF), and 10.9 of the compound (2) dissolved in 100-Dll[F was added dropwise with stirring. . After reacting for 1 hour, the benzyl chloride of 31d dissolved in 5 (11/1) DMF K was added dropwise and stirred at room temperature for about 20 hours. The reaction mixture was poured into a large amount of ice water, extracted with chloroform, and then concentrated. Then, 20 g (yield: 84 g) of crystals of compound 1,4-anhydro-2,8-di-0-benzyl-α-D-lipopyranose (8) are obtained from n-butyl chloride. The physical properties are as follows.

m、p、 : 65.0〜66.5℃ 比旋元度: 〔α)p  35−9°(C1,クロロホ
ルム〕18G −NMR:δ128.21〜138.4
0 (芳香族)。
m, p,: 65.0-66.5°C Specific rotation degree: [α)p 35-9° (C1, chloroform] 18G-NMR: δ128.21-138.4
0 (aromatic).

100.47(1(3,G−1)、82.87 (10
,C−3)。
100.47 (1 (3, G-1), 82.87 (10
, C-3).

80.22(10,G−2)、  78.57(No、
0−4)。
80.22 (10, G-2), 78.57 (No,
0-4).

73、.30 、73.01 (20,(q)I、06
H5J 、 64.91(10。
73,. 30, 73.01 (20, (q) I, 06
H5J, 64.91 (10.

得られ念化合物<3) (C7I!i!、 11.9ミ
リモル〕を10 朋Hgの高真空下、−夜真空乾燥し、
あらかじめ水素化カルシウムによって乾燥した塩化メチ
レン(15Tlt/Jに真空アングル中で浴解する。
The obtained compound <3) (C7I!i!, 11.9 mmol) was vacuum dried under a high vacuum of 10 Hg overnight.
Methylene chloride, previously dried with calcium hydride, is dissolved in a vacuum angle to 15 Tlt/J.

重合管を液体窒素で冷却し、モノマー溶液が十分に凍結
した後、三フッ化ホウ素エーテラート(30μl 、 
0.24 ミIJモル)を導入する。重合管を真空ライ
ンから切り離し、−40″Cのエタノール浴中、1〜2
分間激しく振とうする。−40″Cにて30分間反応援
、重合アンプルを開管し、メタノールを注いで反応を停
止する。この際ポリマーが沈澱するので、これにクロロ
ホルムをポリマーが十分に溶解するまで加え、重炭酸ナ
トリウム水浴液で中和し、水洗して、無水硫酸す) I
Jウムで乾燥する。乾燥剤t−F別除去した後、F液を
濃縮して、石油ベンジンを加えて再沈澱させる。溶解、
濃縮、再沈澱の操作をさらに2回行い、ベンゼンに浴解
し、凍結乾燥を行い、ポリマーの2,3−ジー0−ベン
ジル−(1→6)−α−D−リボフラナン(4)a、s
a fl (転化率96%ンを得る。ポリマー(4)の
物理的性質は次に示す通りである。
After the polymerization tube was cooled with liquid nitrogen and the monomer solution was sufficiently frozen, boron trifluoride etherate (30 μl,
0.24 mmol) is introduced. The polymerization tube was separated from the vacuum line and placed in an ethanol bath at -40"C for 1 to 2 hours.
Shake vigorously for a minute. -40"C for 30 minutes, open the polymerization ampoule, and pour methanol to stop the reaction. At this time, the polymer precipitates, so add chloroform until the polymer is sufficiently dissolved, and add bicarbonate. Neutralize with sodium water bath, wash with water, and add anhydrous sulfuric acid)
Dry with Jum. After separately removing the desiccant t-F, the F solution is concentrated, and petroleum benzine is added to reprecipitate it. Dissolution,
The operations of concentration and reprecipitation were performed two more times, followed by bath dissolution in benzene and freeze-drying to obtain the polymer 2,3-di-0-benzyl-(1→6)-α-D-ribofuranan (4)a, s
The physical properties of the polymer (4) are as follows.

比施光度: 〔α)D+15.3.4°(C]、クロロ
ホルム〕MH= 1.28 X 105(DPn = 
410 )得られたポリマー(4J a、o gをあら
かじめ金属ナトリウムにより乾燥した1、2−ジメトキ
シエタン(120+11/)に溶解する。この浴液を一
78℃に保っである液体アンモニア(40(11/)と
金属ナトリウム(5,8Iり中に窒素気流下で滴下する
0反応系を一78℃にて攪拌し、1.5時間後、塩化ア
ンモニウムを反応系の青色が消失するまで加える。さら
に水(lQ+a/)を那え、室温にてアンモニアを蒸発
させる。水(20m)を訓え、塩化メチレンで5回洗浄
し、水層を8日間透析する。水浴液は濃縮して凍結乾燥
し、ポリマーの(1→5)−α−D−リボフラナン(5
) 1.35 、!V C収率53%)を得る。ポリマ
ー(5)の物理的性質は次に示す通りである。
Specific light intensity: [α)D+15.3.4° (C], chloroform] MH = 1.28 x 105 (DPn =
410) The resulting polymer (4J a,o g) was dissolved in 1,2-dimethoxyethane (120+11/) previously dried with metallic sodium. /) and metallic sodium (5,8I) into a solution under a nitrogen atmosphere. The reaction system is stirred at -78°C, and after 1.5 hours, ammonium chloride is added until the blue color of the reaction system disappears. Prepare water (lQ+a/) and evaporate ammonia at room temperature. Prepare water (20 m), wash 5 times with methylene chloride, and dialyze the aqueous layer for 8 days. The water bath solution is concentrated and freeze-dried. , polymeric (1→5)-α-D-ribofuranan (5
) 1.35,! A VC yield of 53% is obtained. The physical properties of polymer (5) are as follows.

比施光度:〔α)D+ 164.1°(01、水)・1
80− NMR:δ]02.9a < 1(3,0−1
) 、 8L56(lG、G−4)、  71.47 
(ICj、0−2)。
Specific light intensity: [α) D+ 164.1° (01, water)・1
80-NMR:δ]02.9a<1(3,0-1
), 8L56 (lG, G-4), 71.47
(ICj, 0-2).

70.37 (10、0−3J 、 68.59 (1
0。
70.37 (10, 0-3J, 68.59 (1
0.

(3−5) 。(3-5).

ポリマー(5) (L2 gを、あらかじめ乾燥したジ
メチルスルホキシド(1801/)に溶解し、ピペリジ
y−N−硫酸(3,01i)CMえ、攪拌しながら80
℃で1時間反応させる。】0%過剰のL5N水酸化ナト
IJウム水溶液で中和し、濃縮する。
Polymer (5) (L2 g was dissolved in pre-dried dimethyl sulfoxide (1801/), piperidiy-N-sulfuric acid (3,01i) CM was added, and 80 g was added with stirring.
Incubate at ℃ for 1 hour. ] Neutralize with 0% excess L5N sodium hydroxide aqueous solution and concentrate.

メタノールを加えて沈澱したポリマーを水に溶解して、
透析、濃縮、凍結乾燥してポリマーである硫酸化(1→
5)−α−D−リボフラナンを0.1フy得る。このポ
リマーの物理的性質は次処示す通りである。
Add methanol and dissolve the precipitated polymer in water,
Dialysis, concentration, freeze-drying and polymer sulfation (1→
5) Obtain 0.1 fy of -α-D-ribofuranan. The physical properties of this polymer are as follows.

メタクロマジー反応:+ )l[n = 8.19 X 10’ 凝血活性テスト 抗凝血活性テストは、アメリカ薬局方「ヘノ<リン」の
力価検定法に準じて測定した(但し、羊直漿の代りに牛
血漿を用いた)。
Metachromatic reaction: + ) l[n = 8.19 bovine plasma was used instead).

被験物質を生理食塩水に浴解し、160r、/l/#度
とする。ま友標準ヘパリン(160IU/、)の] O
r/、1生理食塩水t−調製する。
The test substance is dissolved in physiological saline and adjusted to 160r/l/# degree. Mayu standard heparin (160IU/)] O
r/, 1 saline t- Prepare.

被験物質溶液及び標準ヘパリン溶液を各々0.8゜0、
フ、 0.6 、 OJ 、 0.4 、0.8.0.
2 、0.1及び0.06−ずつ、ガラス試験管(13
X10511)にとり、更罠全量が0.8 mになるよ
うに生理食塩水を加え混合する。
The test substance solution and standard heparin solution were each 0.8°0,
F, 0.6, OJ, 0.4, 0.8.0.
2, 0.1 and 0.06- each in glass test tubes (13
X10511), add physiological saline and mix so that the total volume of the trap is 0.8 m.

各試w!管に牛血漿’I 1 w!/ずつを加え混合し
、次いで2%塩化カルシウム水溶液Q、2 It/ずつ
を加え、直ちに試験管を静かに転倒混和する。
Each trial lol! Bovine plasma in the tube 'I 1 w! / 2 It / each and then add 2% aqueous calcium chloride solution Q, 2 It / each, and immediately mix by gently inverting the test tube.

7〜10分後、各試験管の凝血状態fcO、0,25゜
0.5 、0.75 、 ]、θのクラスに分けて記録
し、凝血状態が0.5の時の被験物質及び標準ヘパリン
の量から被験物質の力価を求めた。この結果を第1表に
示す。
After 7-10 minutes, record the coagulation status of each test tube by dividing it into classes of fcO, 0.25°0.5, 0.75, ], θ, and compare the test substance and standard when the coagulation status is 0.5. The potency of the test substance was determined from the amount of heparin. The results are shown in Table 1.

ゝ牛血漿:あらかじめ、採血容器に10%クエン酸ナト
リウム(Na8C6H,O,−2H20)水溶液40n
df入れておき、この容器に新鮮な牛血960 #l/
を入れ、混和したのちaooorpm、  lo分間遠
心分離して血漿を採取する。
Bovine plasma: Prepare 40n of 10% sodium citrate (Na8C6H,O,-2H20) aqueous solution in a blood collection container in advance.
df and put fresh cow blood in this container 960 #l/
After mixing, centrifuge at AOOORPM for LO minutes to collect plasma.

第1表 本発明の硫酸化(1→5)−α−D−リボフラナンはヘ
パリンの約11%の抗凝血活性テストし、且つ対照のデ
キストラン硫酸の約2.7倍の活性を有することが知ら
れる。
Table 1 The sulfated (1→5)-α-D-ribofuranan of the present invention was tested for anticoagulant activity of about 11% of heparin, and was found to have about 2.7 times the activity of the control dextran sulfate. known.

なお、マウスを用いた急注毒!I1.(LD6o)は、
I Ji’ /1cg以上(静注)であった。
In addition, rapid injection poisoning using mice! I1. (LD6o) is
I Ji' /1 cg or more (intravenous injection).

(発明の効果) 本発明の硫酸化(1→5ノーα−D−リボフラナンと、
比較例として硫酸化(1→6)−α−D−キシロフラナ
ン及びテキストラン硫酸の抗凝結活性を第2表に示す。
(Effects of the invention) The sulfated (1→5 no α-D-ribofuranan) of the present invention,
Table 2 shows the anticoagulant activity of sulfated (1→6)-α-D-xylofuranan and texturan sulfate as comparative examples.

分子量のほぼ同じ位の硫酸化多糖を比較すると、硫酸化
リボフラナンは、デキストラン硫酸の約3倍の活性があ
るものの硫酸化キシロフラナンよりやや活性が低い。し
かしながら、リボフラナンとキシロフラナンの合成経路
中、特に七ツマー合成において決定的な差異が生じる。
Comparing sulfated polysaccharides with approximately the same molecular weight, sulfated ribofuranan has approximately three times the activity of dextran sulfate, but is slightly less active than sulfated xylofuranan. However, critical differences occur during the synthesis routes of ribofuranan and xylofuranane, particularly in the heptadmer synthesis.

すなわち、キシロフラナンの原料である無水キシロース
はシロップ状であるため、アセチル化してシリカゲルの
カラムクロマトで精製し、脱アセチル化、ベンジル化後
、カラムクロマトで精M、aPa分取′fr:経てモノ
マーが合成される。これに対し、リボフラナンの原料で
ある無水リボースは結晶性がよいため、再結晶で精製で
き、なおかつ、ベンジル化したものの結晶性もよい。こ
のため、モノマー合或はキシロースの場合と比較してリ
ボースの場合の万がはるかに容易である。
That is, anhydrous xylose, which is the raw material for xylofuranan, is in the form of a syrup, so it is acetylated and purified by silica gel column chromatography, deacetylated, benzylated, and purified by column chromatography. be synthesized. On the other hand, anhydrous ribose, which is the raw material for ribofuranan, has good crystallinity, so it can be purified by recrystallization, and the benzylated product also has good crystallinity. Therefore, the monomer combination is much easier in the case of ribose than in the case of xylose.

ま九本発明は抗凝血活性を有するヘパリノイドを化学台
底することができるだけでなく、このヘパリノイドが純
化学合成であるため構造が一定であり、生理活性をある
程度制御できる。さらに、セグメント化ポリウレタンな
どの合成高分子と共有結合させることにより、ヘパリノ
イドをポリマー主鎖中に導入し、持続した抗血栓性を有
する複合材料を合成することも可能である。
Furthermore, the present invention not only makes it possible to chemically synthesize heparinoid having anticoagulant activity, but also allows the heparinoid to have a constant structure and control its physiological activity to a certain extent because it is a purely chemically synthesized heparinoid. Furthermore, it is also possible to incorporate heparinoids into the polymer backbone by covalently bonding them with synthetic polymers such as segmented polyurethanes to synthesize composite materials with sustained antithrombotic properties.

さらに本発明は抗血栓性を必要とする医用材料、例えば
、人工心臓、人工血管などに応用することができる。
Furthermore, the present invention can be applied to medical materials that require antithrombotic properties, such as artificial hearts and artificial blood vessels.

Claims (1)

【特許請求の範囲】 1、一般式: ▲数式、化学式、表等があります▼ (式中のnは10〜500の整数であり、R=Hまたは
SO_3Naである)で表される硫酸化リボフラナン。 2、一般式: ▲数式、化学式、表等があります▼ (式中のnは10〜500の整数であり、R=Hまたは
SO_3Naである)で表される硫酸化リボフラナンを
製造するに当たりリボフラナンを硫酸化剤によつて硫酸
化する硫酸化リボフラナンの製造法。 3、一般式: ▲数式、化学式、表等があります▼ (式中のnは10〜500の整数であり、R=Hまたは
SO_3Naである)で表される硫酸化リボフラナンを
有効成分として含有する血液凝固抑制物質。
[Claims] 1. General formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Sulfated ribofuranan represented by (n in the formula is an integer from 10 to 500, and R=H or SO_3Na) . 2. General formula: ▲ There are mathematical formulas, chemical formulas, tables, etc. A method for producing sulfated ribofuranan by sulfating it with a sulfating agent. 3. General formula: ▲There are mathematical formulas, chemical formulas, tables, etc.▼ Contains sulfated ribofuranan as an active ingredient (n in the formula is an integer from 10 to 500, and R=H or SO_3Na) Blood clotting inhibitor.
JP25349184A 1984-11-30 1984-11-30 Ribofuranan sulfate having anticoagulant activity and its production Granted JPS61130302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25349184A JPS61130302A (en) 1984-11-30 1984-11-30 Ribofuranan sulfate having anticoagulant activity and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25349184A JPS61130302A (en) 1984-11-30 1984-11-30 Ribofuranan sulfate having anticoagulant activity and its production

Publications (2)

Publication Number Publication Date
JPS61130302A true JPS61130302A (en) 1986-06-18
JPS6354283B2 JPS6354283B2 (en) 1988-10-27

Family

ID=17252115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25349184A Granted JPS61130302A (en) 1984-11-30 1984-11-30 Ribofuranan sulfate having anticoagulant activity and its production

Country Status (1)

Country Link
JP (1) JPS61130302A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477976B1 (en) * 2002-10-23 2005-03-23 (주)열린기술컨설팅 Polyribofuranan compounds and their preparation
WO2019054344A1 (en) * 2017-09-12 2019-03-21 王子ホールディングス株式会社 Pentosan polysulfate and method for producing pentosan polysulfate
US11274165B2 (en) 2017-02-28 2022-03-15 Oji Holdings Corporation Pentosan polysulfate, pharmaceutical composition, and anticoagulant
US11278485B2 (en) 2017-05-31 2022-03-22 Oji Holdings Corporation Moisturizing topical preparation
US11286272B2 (en) 2016-08-31 2022-03-29 Oji Holdings Corporation Production method for acidic xylooligosaccharide, and acidic xylooligosaccharide
US11312790B2 (en) 2016-08-31 2022-04-26 Oji Holdings Corporation Production method for pentosan polysulfate
US11344570B2 (en) 2017-12-20 2022-05-31 Oji Holdings Corporation Pentosan polysulfate and medicine containing pentosan polysulfate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100477976B1 (en) * 2002-10-23 2005-03-23 (주)열린기술컨설팅 Polyribofuranan compounds and their preparation
US11286272B2 (en) 2016-08-31 2022-03-29 Oji Holdings Corporation Production method for acidic xylooligosaccharide, and acidic xylooligosaccharide
US11312790B2 (en) 2016-08-31 2022-04-26 Oji Holdings Corporation Production method for pentosan polysulfate
US11274165B2 (en) 2017-02-28 2022-03-15 Oji Holdings Corporation Pentosan polysulfate, pharmaceutical composition, and anticoagulant
US11278485B2 (en) 2017-05-31 2022-03-22 Oji Holdings Corporation Moisturizing topical preparation
WO2019054344A1 (en) * 2017-09-12 2019-03-21 王子ホールディングス株式会社 Pentosan polysulfate and method for producing pentosan polysulfate
JPWO2019054344A1 (en) * 2017-09-12 2020-10-15 王子ホールディングス株式会社 Manufacturing method of pentosan polysulfate and pentosan polysulfate
US11390693B2 (en) 2017-09-12 2022-07-19 Oji Holdings Corporation Pentosan polysulfate and method for producing pentosan polysulfate
US11344570B2 (en) 2017-12-20 2022-05-31 Oji Holdings Corporation Pentosan polysulfate and medicine containing pentosan polysulfate

Also Published As

Publication number Publication date
JPS6354283B2 (en) 1988-10-27

Similar Documents

Publication Publication Date Title
ES2224541T3 (en) NEW SULFATED POLYACARIDS OF THE HEPARINIC TYPE.
AU670030B2 (en) Water insoluble derivatives of polyanionic polysaccharides
JP2001510713A (en) Use of a hyaluronic acid derivative in the manufacture of a biocompatible material having physical hemostatic and embolic activity and prophylactic activity against adhesion formation after anastomosis
EP0648122B1 (en) PREVENTING TISSUE ADHESION USING $i(IN SITU) MODIFICATION OF ALGINATE
US5696100A (en) Method for controlling O-desulfation of heparin and compositions produced thereby
AU692389B2 (en) Cyclodextrin compounds and methods of making and use thereof
US8178499B2 (en) Ester derivatives of hyaluronic acid for the preparation of hydrogel materials by photocuring
US5296471A (en) Method for controlling o-desulfation of heparin and compositions produced thereby
JP2855307B2 (en) Photoreactive glycosaminoglycans, cross-linked glycosaminoglycans and methods for producing them
EP0658112B1 (en) A conjugate comprising a straight-chained polymer having bound sulphated glucosaminoglucans such as heparin, its preparation, use and a corresponding substrate
JP4278716B2 (en) N-sulfated hyaluronic acid compound, derivative thereof and production method
KR100378109B1 (en) Hydrophobic multicomponant heparin conjugates, a preparing method and a use thereof
EP3974462A1 (en) Polyethylene glycol derivative, preparation method therefor, and polyethylene glycol hydrogel enabling fast crosslinking reaction
CZ296842B6 (en) Cross-linked hyaluronic acids
WO1996006867A9 (en) Method for controlling o-desulfation of heparin and compositions produced thereby
US7345117B1 (en) Sulphated hyaluronic acid and sulphated derivatives thereof covalently bound to polyurethanes, and the process for their preparation
EP0990002B1 (en) Dextran derivatives, preparation method and applications as medicine with specific biological action
JPH08508540A (en) Non-anticoagulant, chemically modified heparin-like substances for the treatment of hypovolemic shock and related shock syndromes
JPS61130302A (en) Ribofuranan sulfate having anticoagulant activity and its production
JPS61130301A (en) Xylofuranan sulfate having anticoagulant activity and its production
US2832766A (en) Sulfated aminopolysaccharides
JPS59164722A (en) Agent for suppressing blood coagulation and cleaning lipemic blood
ITTS20010016A1 (en) REGULAR CROSS-LINKED POLYSACCHARIDES.
JPS5928563B2 (en) Novel azido sugar polymer and its production method
JPH02124902A (en) Blood coagulation inhibitor

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term