JPS61130297A - Separation of oligosaccharide - Google Patents

Separation of oligosaccharide

Info

Publication number
JPS61130297A
JPS61130297A JP25376084A JP25376084A JPS61130297A JP S61130297 A JPS61130297 A JP S61130297A JP 25376084 A JP25376084 A JP 25376084A JP 25376084 A JP25376084 A JP 25376084A JP S61130297 A JPS61130297 A JP S61130297A
Authority
JP
Japan
Prior art keywords
oligosaccharide
column
oligosaccharides
passed
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25376084A
Other languages
Japanese (ja)
Inventor
Hiroshi Morita
博志 森田
Nobuhiro Oda
信博 織田
Nobuhiro Matsushita
松下 聿宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP25376084A priority Critical patent/JPS61130297A/en
Publication of JPS61130297A publication Critical patent/JPS61130297A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Saccharide Compounds (AREA)

Abstract

PURPOSE:To separate a large amount of an oligosaccharide in high purity, by treating the oligosaccharide by column chromatography using a synthetic adsorbent free from ion exchange group as the filler. CONSTITUTION:A sugar syrup composed of e.g. an oligosaccharide having a glucose polymerization degree of 1-10 (G1-10) is adjusted to a concentration of preferably 5-15%, and passed through a column packed densely with a synthetic adsorbent having preferably fine and uniform particle size, free from ion exchange group, and substituted with pure water. The amount of the sugar syrup to be passed through the column is preferably 5-10vol% of the amount of the adsorbent. Thereafter, water or an alcohol (e.g. ethanol) having a proper concentration is passed through the column to elute the adsorbed oligosaccharide successively from the one having lower polymerization degree.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はオリゴ糖の分離方法に係り、特にオリゴ糖をカ
ラムクロマトグラフィーを用いて分子量差により高純度
で分取するオリゴ糖の分離方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for separating oligosaccharides, and particularly to a method for separating oligosaccharides in which oligosaccharides are fractionated with high purity based on molecular weight differences using column chromatography. .

[従来の技術] でんぷんを酸により加水分解あるいはアミラーゼ等の酵
素により分解することにより、D、−グルコース単位の
α−1,4結合よりなる少糖類、所謂マルト・オリゴ糖
が得られる。このようなオリゴ糖は、その独特の物性に
より、医薬、診断基質等の分野において、その需要の飛
躍的な増大が期待されている物質である。現在、例えば
重合度零5(GS)のマルトペンタオースの高純度品は
[Prior Art] By hydrolyzing starch with acid or decomposing it with enzymes such as amylase, oligosaccharides consisting of α-1,4 bonds of D,-glucose units, so-called malto-oligosaccharides, are obtained. Due to their unique physical properties, such oligosaccharides are substances whose demand is expected to increase dramatically in the fields of medicine, diagnostic substrates, and the like. Currently, for example, high-purity maltopentaose with a degree of polymerization of zero 5 (GS) is available.

急性膵臓炎診断用のアミラーゼ活性測定基質として使用
されている。また、ややグレードの落ちた純度で分離さ
れたオリゴ糖でも、特に重合度=2(G2)のマルトー
ス、重合度=3(G3)のマルトペンオースは、食品分
野において、上品な風味を持つ甘味料、賦形剤として用
いられつつある。
It is used as a substrate for measuring amylase activity for diagnosing acute pancreatitis. In addition, even oligosaccharides separated with a slightly lower grade of purity, especially maltose with a degree of polymerization of 2 (G2) and maltopenose with a degree of polymerization of 3 (G3), are used in the food industry as sweets with an elegant flavor. It is being used as a filler and excipient.

重合度の異なるオリゴ糖の精密な分離(以下「単離」と
呼ぶ、)には、従来、ゲル濾過法、活性炭による吸着ク
ロマト法(活性炭法)、溶媒沈殿法、その他、特開昭5
9−148794号に開示されるカチオン交換樹脂によ
るクロマト法(GPCモード)(カチオン交換樹脂法)
が考えられている。      ゛ [発明が解決しようとする問題点] しかしながら、従来の単離法は次の■〜■に述べるよう
に、いずれも問題点を有し、現在までオリボ糖の高純度
単離品を大量にかつ容易に分取することができる工業的
な方法は確立されていない、このため、オリゴ糖の用途
についての開発も十分にはなされておらず、分取法の確
立により。
Precise separation (hereinafter referred to as "isolation") of oligosaccharides with different degrees of polymerization has conventionally been performed using gel filtration, adsorption chromatography using activated carbon (activated carbon method), solvent precipitation, and other methods.
Chromatography method using a cation exchange resin (GPC mode) disclosed in No. 9-148794 (cation exchange resin method)
is considered.゛ [Problems to be solved by the invention] However, all of the conventional isolation methods have problems, as described in Moreover, no industrial method has been established that allows for easy fractionation.For this reason, the use of oligosaccharides has not been fully developed, and a preparative method has not been established.

用途の拡大、需要の増大を図ることが強く望まれていた
There was a strong desire to expand its uses and increase demand.

■ ゲル濾過法 従来技術のうちでは最もオリゴ糖の単離に適した方法と
考えられるが、充填剤が非常に高価な事が最大の短所で
あり、そのため、装置のスケールアップがコスト的に困
難である。また、充填剤の粒径が細かいため、通液圧損
が大きい。
■ Gel filtration method It is considered to be the most suitable method for isolating oligosaccharides among the conventional techniques, but its biggest disadvantage is that the packing material is very expensive, making it difficult to scale up the equipment. It is. In addition, since the particle size of the filler is small, the pressure loss through liquid flow is large.

■ 活性炭法 吸着力が強すぎ、吸着物を溶離させるのに多量のアルコ
ール(エタノール等)が必要である。また、重合度の高
いオリゴ糖の溶離は困難である。
■ Activated carbon method The adsorption power is too strong and a large amount of alcohol (ethanol, etc.) is required to elute the adsorbed material. Furthermore, it is difficult to elute oligosaccharides with a high degree of polymerization.

しかも溶離液のアルコール濃度をあまりあげると、被処
理物であるオリゴ糖が析出してしまうこととなる。
Moreover, if the alcohol concentration of the eluent is increased too much, the oligosaccharide to be treated will precipitate.

■ 溶媒沈殿法 活性炭性以北に多量の有機溶媒を必要とする。■ Solvent precipitation method Requires a large amount of organic solvent beyond activated carbon.

しかも、分離性は他の方法に比べて劣り、単離には好適
ではない。
Furthermore, the separation property is inferior to other methods, and it is not suitable for isolation.

■ カチオン交換樹脂法 方法自体には、充填剤がゲルに比べ大粒径であるため差
圧上昇が少ない、操作性が良い、安価であり、スケール
アップがゲルよりもし易い等のメリットがあるが、オリ
ゴ糖を単離するには、分離性が不足する。そのため、数
十m長のカラムにりよる数十サイクル循環通液といった
方法をとる必要があり、回収液は非常に薄くなるため、
その後のオリゴ糖の濃縮は容易ではない。
■ The cation exchange resin method itself has advantages such as less increase in differential pressure because the filler has a larger particle size than gel, is easy to operate, is inexpensive, and is easier to scale up than gel. , the separation properties are insufficient to isolate oligosaccharides. Therefore, it is necessary to use a method of circulating the liquid through dozens of cycles using a column several tens of meters long, and the recovered liquid becomes very dilute.
Subsequent concentration of oligosaccharides is not easy.

[問題点を解決するための手段] 本発明は上記従来の問題点を解消し、オリゴ糖の分離性
が良く単離に適するオリゴ糖の分離方法を提供するべく
な□されたものである。即ち、本発明は従来のゲル濾過
法、活性炭法、カチオン交換樹脂法と同様のカラムによ
るクロマト分離法において、充填剤として、イオン交換
基を持たない合成吸着剤を用いる事によって、オリゴ糖
を分子量差に基き効果的に分離できるようにしたもので
あって、 オリゴ糖をカラムクロマトグラフィーにより分離する方
法において、カラムにイオン交換基を持たない合成吸着
剤の充填剤を充填したことを特徴とするオリゴ糖の分離
方法、 を要旨とするものである。
[Means for Solving the Problems] The present invention has been made to solve the above-mentioned conventional problems and to provide a method for separating oligosaccharides that has good separation properties and is suitable for isolation. That is, the present invention uses a synthetic adsorbent that does not have an ion exchange group as a packing material in a chromatographic separation method using a column similar to the conventional gel filtration method, activated carbon method, or cation exchange resin method, thereby reducing the molecular weight of oligosaccharides. A method for separating oligosaccharides by column chromatography, which enables effective separation based on differences, characterized in that the column is filled with a synthetic adsorbent packing material that does not have an ion exchange group. The gist is a method for separating oligosaccharides.

以下に本発明につき詳細に説明する。The present invention will be explained in detail below.

本発明において、分離の対象となる原液としては、グル
コース重合度1 ” l O(G + ”Glo)程度
のオリゴ糖よりなる糖液が挙げられる。(なお、グルコ
ース重合度1(Gl)の糖(グルコース)は単糖類であ
るから、狭義のオリゴ糖には含まれない、しかしながら
、本発明においては、このグルコースも分離対象とする
ものであり、従って、本発明においていうオリゴ糖はグ
ルコースをも包含する広義のものである。)このような
糖液は、でんぷんの酸による加水分解又は酵素による分
解によって簡単に得られる。これらのオリゴ糖のうち特
定の1種類(例えばマルトペンタオース(Gs))を特
に単離したい場合には、でんぷんの分解の際に、特殊な
酵素(この場合にはマルトペンタオース生成アミラーゼ
)を用いて、目的物質を多く含む糖液を調製し、原液と
する事が望ましい。本発明の方法において、原液のオリ
ゴ糖濃度は30%程度まで処理可能であるが、望ましく
は5〜15%のものが良い。
In the present invention, the stock solution to be separated includes a sugar solution made of oligosaccharides with a degree of glucose polymerization of about 1"lO (G+"Glo). (Note that since sugar (glucose) with a degree of glucose polymerization of 1 (Gl) is a monosaccharide, it is not included in oligosaccharides in the narrow sense. However, in the present invention, this glucose is also targeted for separation. Therefore, the oligosaccharide referred to in the present invention has a broad meaning that includes glucose.) Such a sugar solution can be easily obtained by hydrolyzing starch with an acid or decomposing it with an enzyme. If you specifically want to isolate one specific type of these oligosaccharides (for example, maltopentaose (Gs)), you can use a special enzyme (in this case, maltopentaose-generating amylase) during the decomposition of starch. It is desirable to prepare a sugar solution containing a large amount of the target substance and use it as a stock solution. In the method of the present invention, it is possible to treat the oligosaccharide concentration of the stock solution up to about 30%, but preferably 5 to 15%.

本発明においては、このような原液をイオン交換基を持
たない合成吸着剤の充填剤を充填したカラムに通液する
In the present invention, such a stock solution is passed through a column filled with a synthetic adsorbent packing material having no ion exchange group.

充填剤としては、ダイヤイオンHP20、ダイヤイオン
5P207 (いずれも三菱化成工業(株)製)、アン
バーライトXAD (ロームアンドハース社製)シリー
ズ等の多孔性のポリマー(ハイポーラスポリマー)が挙
げられるが、吸着力の面から、特にダイヤイオン5P2
07が好ましい。充填剤の粒径は細かく均一であるもの
ほど好ましいが、一般に市販されているものをそのまま
用いるものでも十分に分離を行なうことができる。
Examples of fillers include porous polymers (high porous polymers) such as Diaion HP20, Diaion 5P207 (all manufactured by Mitsubishi Chemical Industries, Ltd.), and Amberlite XAD (manufactured by Rohm and Haas) series. , in terms of adsorption power, especially Diamond Ion 5P2.
07 is preferred. It is preferable that the particle size of the filler is fine and uniform, but separation can be effected satisfactorily even if a commercially available filler is used as it is.

カラムとしては、数十K g / c rn’の圧に耐
えるものであれば良く、その材質に制限はない、充填剤
は、タップ法、振動法あるいはスラリー充填法等の通常
の方法によりカラムに密に充填する。
The column may be of any material as long as it can withstand a pressure of several tens of kg/c rn', and there are no restrictions on its material.The packing material may be packed into the column by a conventional method such as a tap method, a vibration method, or a slurry filling method. Fill densely.

原液及び溶離液の通液方向は、上向流、下降流のどちら
でも良く、その流速は特に制限はないがSVo 、 2
〜3 、 Oh r−’(1)範囲、特に好ましくはS
Vo 、4〜l 、0hr−程度が好適である。
The direction of flow of the stock solution and eluent may be either upward flow or downward flow, and the flow rate is not particularly limited, but SVo, 2
~3, Oh r-' (1) range, particularly preferably S
Vo, about 4-1, 0 hr- is suitable.

処理温度は分離性の向上及び糖液の腐敗防止対策上50
℃以上が好ましいが、防腐対策が万全であれば常温でも
良い。
The processing temperature is 50°C to improve separation and prevent spoilage of the sugar solution.
The temperature is preferably 0.degree. C. or higher, but room temperature may be used as long as proper antiseptic measures are taken.

通液方法は、通常のカラムクロマトグラフィーにおける
方法と同様で良く、純水置換済みの充填カラムに、まず
原液をポンプにより流入させる。
The liquid passing method may be the same as that used in ordinary column chromatography, in which the stock solution is first introduced by a pump into a packed column that has been replaced with pure water.

この原液供給量は、カラムの充填剤量に対し20容量%
程度まで可能であるが、望ましくは5〜10容量%とす
るのが良い1次いで、バルブの切り換え等により、カラ
ム供給液を原液から溶離液に切り換え、原液と同流速で
溶離液を流し、吸着剤に吸着されているオリゴ糖を押し
出し展開する。これにより重合度の小さいもの(即ち分
子量の小さいもの)から順に大きいもの(即ち分子量の
大きいもの)へと、溶出する。
The amount of this stock solution supplied is 20% by volume based on the amount of column packing material.
Although it is possible to increase the amount up to a certain level, it is preferably 5 to 10% by volume.1 Next, the column supply liquid is switched from the stock solution to the eluent by switching the valve, etc., and the eluent is flowed at the same flow rate as the stock solution to complete the adsorption. The oligosaccharide adsorbed on the agent is extruded and expanded. As a result, the particles are eluted in order from those with a low degree of polymerization (that is, those with a low molecular weight) to those with a high degree of polymerization (that is, those with a large molecular weight).

溶離液としては、通常、水、好ましくは純水を用いるが
、重合度が4(マルトテトラオース)以上になると充填
剤への強い吸着力のために、水では容易に溶離しなくな
る。従ってそれ以上の重合度のオリゴ糖を溶離させるに
は、エタノール等のアルコールの稀薄な水溶液を用いる
。溶離液のアルコール濃度は濃いほど溶離させる力が強
いので、溶離目的物質の重合度に応じてアルコール濃度
を適宜変える。アルコール濃度の目やすとしては、例え
ば重合度5のオリゴ糖(マルトペンタオース)であれば
、儂度3重量%程度のエタノール水溶液で十分溶離する
ことができる。溶離液のアルコール濃度を1サイクルの
中で変える場合には、通常の液体クロマト法の手法であ
るステップワイズ法又はグラジェント法を採用するのが
有効である。更に、溶離液としては、上述の他に、疎水
性の水質を有している水溶性の有機溶媒1例えばアセト
ニトリル、エーテル類、ジオキシ酸等を用いることがで
きる。
Water, preferably pure water, is usually used as the eluent; however, if the degree of polymerization is 4 (maltotetraose) or higher, it will not be easily eluted with water due to strong adsorption to the filler. Therefore, in order to elute oligosaccharides with a higher degree of polymerization, a dilute aqueous solution of alcohol such as ethanol is used. Since the higher the alcohol concentration of the eluent, the stronger the elution power, the alcohol concentration is changed as appropriate depending on the degree of polymerization of the substance to be eluted. As a measure of alcohol concentration, for example, an oligosaccharide (maltopentaose) with a polymerization degree of 5 can be sufficiently eluted with an ethanol aqueous solution with a polymerization degree of about 3% by weight. When changing the alcohol concentration of the eluent within one cycle, it is effective to employ a stepwise method or a gradient method, which are common liquid chromatography techniques. Furthermore, as the eluent, in addition to the above, water-soluble organic solvents 1 having hydrophobic water properties such as acetonitrile, ethers, dioxy acids, etc. can be used.

このようにして、溶離液によりカラムからオリゴ糖をク
ロマト的に分離して流出した溶出液は、RI(示差屈折
計)等により含まれる糖分を検出し、フラクションコレ
クター等で分取する0分取した、目的物質のみ(あるい
は目的物質と許容範囲内の他成分)を含有するフラクシ
ョンは、通常の蒸発法又は逆浸透膜法等によって水、又
はアルコール水溶液等を除いて濃縮し、必要に応じて乾
燥した後、医薬用基質、食品用素材等の用途に供する。
In this way, oligosaccharides are chromatographically separated from the column using the eluent, and the eluate that flows out is used to detect the sugar content using an RI (differential refractometer), etc., and then collect it using a fraction collector, etc. The fraction containing only the target substance (or the target substance and other components within an acceptable range) is concentrated by removing water or alcohol aqueous solution by the usual evaporation method or reverse osmosis membrane method, and then concentrated as necessary. After drying, it is used for uses such as pharmaceutical substrates and food materials.

目的物質以外(あるいは目的物質とこれに隣接する成分
との混合液)は、そのまま廃棄しても良いが、原液に戻
して再処理するのが好ましい。
Although the substance other than the target substance (or the mixed liquid of the target substance and adjacent components) may be discarded as is, it is preferable to return it to its original solution and reprocess it.

本発明で用いる合成吸着剤は、再生等の処理を必要とせ
ず、何回でも使用することができる。
The synthetic adsorbent used in the present invention does not require treatment such as regeneration and can be used any number of times.

[作用] 本発明の分離機構は、ゲル濾過法及びカチオン交換樹脂
法のような分子のサイズ排除効果(充填剤の内部へ浸透
していけない分子サイズの大きなもの、即ち1分子量の
大きなものから順に溶出する特性ないし効果、)と全く
異なり、活性炭法と同様、オリゴ糖と充填剤との間の親
和力及び吸着力に基〈ものと考えられる。従って1分子
量の大きいもの、即ち重合度の大きいもの程充填剤との
親和力、吸着力が大きいことから、分子量の小さいもの
、即ち重合1隻の小さいものから順に溶出分離され、カ
ラムから分取される。
[Function] The separation mechanism of the present invention is based on the size exclusion effect of molecules such as gel filtration method and cation exchange resin method (larger molecular size that cannot penetrate into the inside of the filler, i.e., the larger one molecular weight). It is completely different from the elution characteristics or effects, and is thought to be based on the affinity and adsorption power between the oligosaccharide and the filler, similar to the activated carbon method. Therefore, the larger the molecular weight, that is, the larger the degree of polymerization, the greater the affinity and adsorption force with the packing material. Therefore, those with a smaller molecular weight, that is, those with a smaller polymerization degree, are eluted and separated in order, and fractionated from the column. Ru.

しかして、イオン交換基を持たない合成吸着剤に吸着し
たオリゴ糖は、その吸着力が比較的弱いので、溶離液と
して水、又はアルコール水溶液等を用いることによりほ
ぼ完全に単離回収することが可能である。
However, since the adsorption power of oligosaccharides adsorbed on synthetic adsorbents that do not have ion exchange groups is relatively weak, it is not possible to almost completely isolate and recover them by using water or an aqueous alcohol solution as an eluent. It is possible.

なお、本発明方法は、単離のみならず粗分離にも適用で
きる。
Note that the method of the present invention can be applied not only to isolation but also to crude separation.

[実施例] 以下に本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例に限定
されるものではない。
[Examples] The present invention will be explained in more detail by examples below.
The present invention is not limited to the following examples unless it exceeds the gist thereof.

実施例1 オリゴ糖としてマルト・オリゴ糖G + ” G 4の
等量混合液(各々2.5重量%、総濃度10重量%)を
原液とし、本発明の方法によりマルト・オリゴ糖の単離
を行なった。充填剤としてはダイヤイオン5P207を
市販品のまま用い、これをカラム(20mmφ、400
0mmH,容積1256m1)に密に充填した。このカ
ラムに原液を充填剤量に対して7容量%の割合となるよ
うに流入させ、次いで溶離液として純水をSv冨0.6
2hr″″’ (LV−2,48m/h r) の流速
で通液した。処理温度は常温(20℃)とした。
Example 1 Isolation of malto-oligosaccharides by the method of the present invention using a mixture of equal amounts of malto-oligosaccharides G + "G 4 (each 2.5% by weight, total concentration 10% by weight) as a stock solution as an oligosaccharide. Diaion 5P207 was used as a commercially available packing material, and this was packed into a column (20 mmφ, 400
0 mmH, volume 1256 ml). The stock solution was flowed into this column at a ratio of 7% by volume based on the amount of packing material, and then pure water was added as an eluent at an Sv concentration of 0.6
The liquid was passed through the tube at a flow rate of 2 hr'''' (LV-2, 48 m/hr). The treatment temperature was room temperature (20°C).

溶出液のクロマトグラムを測定したところ、第1図の破
線で示される溶出曲線が得られた。また、5分間毎の溶
出液のフラクションを高速液体クロマトグラフで分析し
て求めたG I” G 4の各々のマルト・オリゴ糖の
溶出曲線は第1図の実線で示す如くであった。
When the chromatogram of the eluate was measured, the elution curve shown by the broken line in FIG. 1 was obtained. Further, the elution curves of each malto-oligosaccharide of G I'' G 4, which were determined by analyzing fractions of the eluate every 5 minutes using a high performance liquid chromatograph, were as shown by the solid line in FIG.

このような単離処理において、156分後から220分
後までの溶出液のフラクションを集め、水を除いたとこ
ろ、はぼ純度lOO%の03  (マルトトリオース)
が約70%の回収率で回収できた。
In such an isolation process, fractions of the eluate from 156 minutes to 220 minutes were collected and water was removed.
was recovered with a recovery rate of approximately 70%.

実施例2 原液としてマルト・オリゴ糖G3〜G5の等量混合液(
!a濃度10重量%)を用い、溶離液として2重量%エ
タノール水溶液を用いたこと以外は、実施例1と同様に
して単離を行なった。
Example 2 A mixture of equal amounts of malto-oligosaccharides G3 to G5 as a stock solution (
! Isolation was carried out in the same manner as in Example 1, except that a 2% by weight aqueous ethanol solution was used as the eluent.

このときの溶出液のクロマトグラムの測定結果を第2図
の破線で、また5分毎の溶出液のフラクションを高速液
体クロマトグラフで分析して求めた各々のマルト・オリ
ゴ糖の溶出曲線を第2図の実線で示す。
The measurement results of the chromatogram of the eluate at this time are shown as broken lines in Figure 2, and the elution curves of each malto-oligosaccharide obtained by analyzing the fraction of the eluate every 5 minutes with a high performance liquid chromatograph are shown as the broken line in Figure 2. This is shown by the solid line in Figure 2.

本例の単離処理において、194分後から310分後ま
での溶出液のフラクションを集め。
In the isolation process of this example, fractions of the eluate from 194 minutes to 310 minutes were collected.

エタノール及び水を除いたところ、はぼ純度100%の
G5  (マルトペンタオース)が約63%の回収率で
回収できた。
When ethanol and water were removed, 100% pure G5 (maltopentaose) was recovered at a recovery rate of about 63%.

[効果] 以上詳述した通り、本発明のオリゴ糖の分離方法は、イ
オン交換基を持たない合成吸着剤の充填剤を充填したカ
ラムを用い、水又はアルコール水溶液等で溶離するもの
であり。
[Effects] As detailed above, the method for separating oligosaccharides of the present invention uses a column packed with a synthetic adsorbent packing material that does not have ion exchange groups, and elutes with water or an aqueous alcohol solution.

■ ゲル濾過法に比べはるかに安価な充填剤を用いる。■ Uses a much cheaper filler than the gel filtration method.

■ 溶離は水又はアルコール水溶液等で行なえる。■ Elution can be performed with water or an aqueous alcohol solution.

■ マルトースの精製法等と異なり、1サイクルで、数
成分の単離が行なえる。
- Unlike maltose purification methods, several components can be isolated in one cycle.

[相] 用いる装置は極めて簡易な構成のものである。[Phase] The device used has an extremely simple configuration.

等の様々な利点を有することから、経済的、工業的に極
めて有利に、マルト・オリゴ糖を高純度かつ高い回収率
で単離することができる。
Because of these various advantages, malto-oligosaccharides can be isolated with high purity and high recovery rate, which is extremely advantageous economically and industrially.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は各々実施例1及び実施例2で得られ
たクロマトグラムを示す図である。
FIG. 1 and FIG. 2 are diagrams showing chromatograms obtained in Example 1 and Example 2, respectively.

Claims (1)

【特許請求の範囲】[Claims] (1)オリゴ糖をカラムクロマトグラフィーにより分離
する方法において、カラムにイオン交換基を持たない合
成吸着剤の充填剤を充填したことを特徴とするオリゴ糖
の分離方法。
(1) A method for separating oligosaccharides by column chromatography, characterized in that the column is filled with a synthetic adsorbent packing material having no ion exchange group.
JP25376084A 1984-11-30 1984-11-30 Separation of oligosaccharide Pending JPS61130297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25376084A JPS61130297A (en) 1984-11-30 1984-11-30 Separation of oligosaccharide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25376084A JPS61130297A (en) 1984-11-30 1984-11-30 Separation of oligosaccharide

Publications (1)

Publication Number Publication Date
JPS61130297A true JPS61130297A (en) 1986-06-18

Family

ID=17255758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25376084A Pending JPS61130297A (en) 1984-11-30 1984-11-30 Separation of oligosaccharide

Country Status (1)

Country Link
JP (1) JPS61130297A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU603165B2 (en) * 1986-12-15 1990-11-08 Kabushiki Kaisha Yakult Honsha Method for producing galactooligosaccharide
EP1572219A4 (en) * 2002-11-22 2009-07-29 Phenolics Llc Efficient method for producing compositions enriched in total phenols
CN110514775A (en) * 2019-09-02 2019-11-29 中国林业科学研究院林产化学工业研究所 A kind of HPLC analytical method of tannic acid
WO2020128945A1 (en) * 2018-12-19 2020-06-25 Glycom A/S Separation of oligosaccharides

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU603165B2 (en) * 1986-12-15 1990-11-08 Kabushiki Kaisha Yakult Honsha Method for producing galactooligosaccharide
EP1572219A4 (en) * 2002-11-22 2009-07-29 Phenolics Llc Efficient method for producing compositions enriched in total phenols
WO2020128945A1 (en) * 2018-12-19 2020-06-25 Glycom A/S Separation of oligosaccharides
CN113226506A (en) * 2018-12-19 2021-08-06 格礼卡姆股份公司 Isolation of oligosaccharides
JP2022513615A (en) * 2018-12-19 2022-02-09 グリコム・アクティーゼルスカブ Separation of oligosaccharides
EP3897902A4 (en) * 2018-12-19 2022-07-20 Glycom A/S Separation of oligosaccharides
CN110514775A (en) * 2019-09-02 2019-11-29 中国林业科学研究院林产化学工业研究所 A kind of HPLC analytical method of tannic acid

Similar Documents

Publication Publication Date Title
Aspberg et al. Group-specific adsorption of glycoproteins
Liu et al. Preparative separation and purification of rebaudioside A from steviol glycosides using mixed-mode macroporous adsorption resins
JPH06192283A (en) Method for production pure rebaudioside a
CA1333779C (en) Method for producing galactooligosaccharide
Liu et al. Purification of the mother liquor sugar from industrial stevia production through one-step adsorption by non-polar macroporous resin
WO2014025560A1 (en) Mannose production from palm kernel meal using simulated moving bed separation
EP0382836B1 (en) Fractionation of branched beta cyclodextrins
Bieser et al. Continuous countercurrent separation of saccharides with inorganic adsorbents
US4294623A (en) Method of producing high purity maltose
JPS61130297A (en) Separation of oligosaccharide
CN107043431A (en) The purification process of bacillary capsular polysaccharide
US5071560A (en) Process for purifying phenylalanine
Walborg Jr et al. Ion-exchange chromatography of saccharides: An improved system utilizing boric acid/2, 3-butanediol buffers
Bitteur et al. GC and HPLC of grape monoterpenyl glycosides
Delattre et al. Purification of oligouronides using hollow-fiber membrane functionalised with L-histidine
CN106589075B (en) Purification method of teicoplanin
CN111747999A (en) Method for separating and preparing trehalulose from sucrose isomerase enzymatic hydrolysate
JPS62120394A (en) Treatment of oligosaccharide solution
JP2005509640A (en) Acarbose purification method
JP2834807B2 (en) Production method of refined lactulose
JPS62118894A (en) Purification of saccharified starch solution
JPS61132200A (en) Desalting of sugar solution
JPH02286695A (en) Separation of oligosaccharide
Mikeš et al. Rapid chromatographic separation of technical enzymes on spheron ion exchanges
KR0149689B1 (en) Method of improving the concentration of maltopentose in oligsaccharide solution