JPS6113015B2 - - Google Patents

Info

Publication number
JPS6113015B2
JPS6113015B2 JP5281778A JP5281778A JPS6113015B2 JP S6113015 B2 JPS6113015 B2 JP S6113015B2 JP 5281778 A JP5281778 A JP 5281778A JP 5281778 A JP5281778 A JP 5281778A JP S6113015 B2 JPS6113015 B2 JP S6113015B2
Authority
JP
Japan
Prior art keywords
yarn
cashmere
composite yarn
multifilament
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP5281778A
Other languages
Japanese (ja)
Other versions
JPS54147246A (en
Inventor
Akio Kimura
Osamu Wada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP5281778A priority Critical patent/JPS54147246A/en
Publication of JPS54147246A publication Critical patent/JPS54147246A/en
Publication of JPS6113015B2 publication Critical patent/JPS6113015B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はカシミヤ調複合糸及びその製造方法に
関し、更に詳しくは沸水処理により嵩高性の優れ
たバルキー性を呈すると共に、表面の感触が極め
てソフトでヌメリ感の大きいカシミヤ調のタツチ
と均斉な表面とを兼ね備えた布帛を作り得る芯鞘
構造のカシミヤ調複合糸に関する。 従来、嵩高糸としては、嵩高紡績糸とフイラメ
ントのテキスチヤードヤーンとに大別できる。前
者の嵩高紡績糸の場合、通常乾熱温度180℃にお
ける乾熱収縮率が10〜25%の高収縮繊維の原綿と
低収縮繊維の原綿とをほゞ均等割合(重量)で混
合しこれに撚係数50〜100にて紡績し、糸あるい
は布帛の状態で熱処理することにより、高収縮繊
維を収縮させて嵩高糸を得ている。しかるに、こ
の様にして得られた嵩高紡績糸は収縮処理によ
り、高収縮繊維と低収縮繊維が分離する傾向を示
し、低収縮繊維が糸の外側に輪奈を形成しながら
はみ出てくるので、糸形態を悪化させ、最終製品
たる布帛はその外観が不均斉でかつ表面タツチが
粗硬なものとなる欠点がある。この粗硬感を少な
くするために単繊維繊度の小さい繊維を用いる試
みが従来行なわれてきた。しかしながら、単繊維
繊度が極端に細くなると(例えば0.9デニール以
下)繊維の紡績性の面特にネツプ、糸斑の面で問
題があり、糸質を向上させるためには紡績機械の
回転数を下げねばならず、生産性が低下するとい
う問題があつた。 一方、フイラメント糸をテキスチヤード加工す
ることにより得られる嵩高加工糸は均斉な外観を
有するが、紡績糸に比べ繊維同志の絡まりが少な
く、又繊維の充填度も低いため、布帛にした場合
の嵩高性に乏しい欠点がある。このように嵩高紡
績糸の優れたバルキー性、風合、及びフイラメン
トのテキスチヤードヤーンによる嵩高加工糸の優
れた均斉性、高度のソフト感及びヌメリ感を兼備
するカシミヤ調タツチの嵩高糸は従来技術によつ
ては未だ実現されていないのが現状である。 それ故、本発明の目的は極細マルチフイラメン
ト糸特に0.9デニール以下の単繊維繊度を有する
マルチフイラメント糸の有する高度のソフト感並
びにヌメリ感を最大限に発揮せしめたカシミヤ調
の糸を提供すことにある。 更に本発明の他の目的は紡績手段によらずし
て、上記極細マルチフイラメントの特性をカシミ
ヤ調タツチに転換せしめる、新規な加工法を提供
することにある。 本発明者等は上記の目的を達成せんとして種々
検討した結果、極細マルチフイラメント糸の特
性、即ち高度のソフト感、ヌメリ感だけを以てし
ては糸全体の機能として従来カシミヤ調紡績糸の
域には到底達し得ないが、かかる糸に毛羽を有
し、且つ糸全体としては潜在的に膨み効果を有す
るコンパクトな糸条を複合するとき両者の機能特
性が相乗的に発揮され所望の糸条が得られること
を見出し、本発明に到達したのである。 かくして、本発明によれば (1) 乾熱温度180℃における乾熱収縮率が10〜25
%である高収縮繊維を10〜50%含有する毛羽様
繊維束を芯成分とし、他方、単繊維繊度が0.9
デニール以下のマルチフイラメント糸を鞘成分
する複合糸であつて、鞘成分は該複合糸におい
て30〜60重量%を占め且つ互いに混合交絡した
状態で芯成分を包絡被覆していることを特徴と
するカシミヤ調複合糸、並びに (2) 乾熱温度180℃における乾熱収縮率が10〜25
%である高収縮繊維を10〜50%含有する毛羽様
繊維束と単繊維繊度が0.9デニール以下で且
つ、供給糸条全体の30〜60重量%を占めるマル
チフイラメント糸とを前者に比べて30〜70%オ
ーバーフイードしつつ流体撹乱処理域に供給
し、該流体撹乱処理域で該マルチフイラメント
糸を該繊維束の周りに包絡被覆せしめて芯鞘構
造を形成することを特徴とするカシミヤ調複合
糸の製造方法 が提供される。 更に、これについて述べると、本発明の典型的
な例においては高収縮繊維を含み、潜在的に膨み
効果を有する毛羽様繊維束を芯成分としこれに極
細フイラメント糸を包絡被覆させることにより、
糸全体としての繊維充填度を芯成分によつて維持
し、その際芯成分の呈する粗硬感(特に沸水処理
後)を鞘成分たる極細フイラメント糸により排除
すると共にその大なる表面積を利用して高度のヌ
メリ感を現出させるものである。そして複合糸全
体或いは芯−鞘成分間の絡まりの程度については
毛羽と極細フイラメントとの優れた絡合性更には
極細フイラメント間の高度の交絡性を乱流加工に
よつて発揮せしめるようにしたものである。この
ような複合糸はそれ自身カシミヤ調の風合、タツ
チを呈するが、これら特性は糸状或いは布帛でリ
ラツクス熱処理(例えば沸水中で)することによ
つてより強く現出するに至る。 本発明で使用する、乾熱温度180℃における乾
熱収縮率が10〜25%である高収縮繊維は、従来使
用されているものと同様のものであつて、ポリエ
ステル、ポリアミド、ポリアクリル繊維等の合成
繊維からなる。この場合、乾熱収縮率として10%
未満では、充分な嵩高性が得られず、25%を超え
ると収縮率が大きすぎるため複合糸の外観を悪く
し、織編物にした場合、その風合を損ねるのであ
る。 このような高収縮繊維を10〜50%(重量%)含
有する繊維束を芯成分としている。ここで高収縮
繊維の混用率が10%未満の場合は嵩高の効果が少
なく、50%を超えると糸条の外観を悪くし、織編
物にした場合の風合を損ねることになる。 したがつて、高収縮繊維の混用率は10〜50%の
範囲とすべきであるが該高収縮繊維を含有する繊
維束は、融着、接着等の手段を利用した無撚糸、
仮撚手段を利用した仮撚捲縮糸でもよいが取扱い
易さの点では、実撚を有する紡績糸の形で使用す
ることが望ましい。勿論、上記繊維束は毛羽乃至
突出端を有する限り異収縮混繊フイラメント糸よ
り構成されていてもよく、この場合前記混繊糸は
周知の起毛手段により予め毛羽を付与されている
ことが必要である。 一方、本発明においては鞘成分として、単繊維
繊度が0.9デニール以下のマルチフイラメント糸
就中合成繊維マルチフイラメント糸を使用する。
この合成繊維マルチフイラメント糸としては、ポ
リエステル、ポリアミド、ポリアクリル繊維等の
合成繊維からなるものが適当であり、特に風合の
優れたポリエステルマルチフイラメント糸を使用
することが望ましい。 これら合成繊維マルチフイラメント糸の単繊維
は0.9デニール以下、好ましくは0.5デニール以下
の単繊維繊度を有していることが好ましい。単繊
維繊度が0.9デニールを超える場合は、表面がソ
フトでヌメリ感の大きなカシミヤ調の風合が得ら
れない。この様な0.9デニール以下の極めて細い
繊維を得るには、ポリエステルを紡糸ドラフト
200〜700、紡糸引取速度3000〜5000m/分で溶融
紡糸し、単糸デニール0.2〜0.9デニールの繊維を
形成せしめた后、該繊維を定長下又は20%以下の
伸長を与えつゝ100℃以上融点以下の温度で熱処
理する方法がある。 本発明の複合糸を有効に形成するためには、芯
部を構成する繊維束と鞘部を構成する極細合成繊
維マルチフイラメント糸との混合割合が極めて重
要になる。即ち、合成繊維マルチフイラメント糸
の構成割合を繊維束が30〜60重量%占める様に用
いることにより、繊維束の囲りを、合成繊維マル
チフイラメント糸を構成する多数の極細フイラメ
ントが完全に被覆し、理想的な芯鞘構造複合糸を
形成できるのである。複合糸を構成する合成繊維
マルチフイラメント糸の割合が60%を超えても合
成繊維マルチフイラメント糸の被覆状態に限つて
いえば、極めて良好となるが、複合糸中に含まれ
る前記高収縮繊維の占める割合が複合糸に対し4
重量%以下となり従つて高収縮繊維の効果が奏さ
れず、一方合成繊維マルチフイラメント糸の割合
が30%未満では合成繊維マルチフイラメント糸に
よる完全被覆包絡が困難となり、いずれも本発明
の目的とする複合糸は形成されない。 添付図面には、本発明によるカシミヤ調複合糸
の糸軸方向の側面図を示してある。該図におい
て、1は毛羽様繊維束(ここでは紡績糸)、2は
マルチフイラメント糸、3はマルチフイラメント
糸を構成する個々のフイラメントで、これらのフ
イラメント3は繊維束1を均斉に被覆包絡してい
ることが判る。 かかる複合糸は毛羽様繊維束と合成繊維マルチ
フイラメント糸とを同時に撹乱流体処理域に供給
し、その際繊維束に対し、合成繊維マルチフイラ
メント糸を30〜70%多くフイード(オーバーフイ
ード)して撹乱流体処理域に供給した場合、流体
の撹乱作用により、合成繊維フイラメント糸を構
成する多数の極細フイラメントが互いに交絡しな
がら繊維束を完全に包み込む様に被覆し芯鞘構造
をもつ複合糸が得られる。ここで合成繊維マルチ
フイラメント糸のオーバーフイード量が30%未満
では、繊維束自体の表面への露出が著しくなり、
合成繊維マルチフイラメント糸により、繊維束を
完全に被覆することはできない。 また、オーバーフイード量が70%を超えると、
オーバーフイード分を撹乱流体処理域で吸収でき
ず、合成繊維マルチフイラメント糸と繊維束との
間に張力のアンバランスを生じて工程が不安定例
えば糸切れの発生原因となる。従つて、合成繊維
マルチ糸のオーバーフイード量は繊維束の全てを
確実且つ完全に包み込んでしまう範囲として30〜
70%のフイード差が採用される。 尚、本発明で言う撹乱流体処理は通常のインタ
ーレースノズルを使用して行なうことが出来る
が、乱流噴射ノズル(タスランノズル)を使用し
て行つてもよい。本発明による複合糸の使用に当
つては糸乃至布帛状態で例えば沸水によるリラツ
クス処理を施して芯部の繊維束に嵩性を発現させ
ることが最も好ましい。これにより糸全体として
の嵩性は一段と増加し優れたバルキー性を有する
と共に、表面の感触が極めてソフトでヌメリ感の
大きいカシミヤ調のタツチと均斉度の高い外観を
持つた布帛を得ることがきる。 即ち、単繊維度が0.9デニール以下である合成
繊維マルチフイラメント糸を鞘成分として使用す
ることにより、可とう性の大きい繊維を皮膚に接
する面に使用できるので従来の嵩高糸が持つてい
た粗硬感を排除し、ソフトなカシミヤ調の感触を
与えることになる。又、布帛の表面は単繊維が互
いに交絡した合成繊維マルチフイラメント糸で被
覆されているので優れた均斉度を有する。 更に、本発明の複合糸は高収縮繊維により優れ
た嵩高性を有しているが、鞘成分に使用した合成
繊維マルチフイラメント糸の単繊維が撹乱流体処
理により互いに交絡して芯成分の繊維束を被覆し
ている構造であるため、上記の嵩高性を損ねるこ
となく充分に被覆効果も発揮でき、それぞれの繊
維の特徴を相乗的に発揮するのである。 以上の如く、本発明によれば紡績工程を至るこ
となく高能率下にカシミヤ調の複合糸を得ること
ができ、この糸を用いた織編物は外着、中衣、セ
ーター等の分野に広く供することができる。 以下、本発明の実施例により説明する。 実施例 1 〔η〕0.65のポリエチレンテレフタレートを孔
数72ホールの紡糸口金より298℃で溶融后、紡糸
ドラフト420、紡糸引取速度3800m/分で紡糸
し、単繊維デニール0.44デニールの繊維を形成せ
しめた后、1対のゴデツトローラーとワインダー
との間に1対のネルソン型加熱ローラー(表面温
度210℃)を設け、最終ゴデツドローラーと該加
熱ローラーとの間で定長熱処理を施した。得られ
た極細マルチフイラメント糸(32de/72fil)を
6本ひき揃え合成繊維マルチフイラメント糸とし
て用い、乾熱温度180℃における乾熱収縮率が17
%のポリエステル繊維を33%含有する番手1/56
Nm(デニール換算で160de)高収縮混紡績糸を
毛羽様繊維束として用いた。該紡績糸に対し、前
記ポリエステルフイラメント糸を40%オーバーフ
イードして同時に通常の空気乱流タスランノズル
に供給し、加工速度160m/分にて撹乱加工を施
した結果、紡績糸の囲りをポリエステルフイラメ
ント糸が被覆性の極めて良好な状態にて被覆する
芯鞘型の複合糸が得られた。 該複合糸を10ゲージの丸編機により製編后、沸
水中で20分リラツクス熱処理した後該編地のバル
キー性評価のため該編地の圧縮率とその回復率を
測定し、更にはタツチを官能評価した。これらの
結果を合わせて第1表に示す。比較として、紡績
糸とポリエステルフイラメント糸の組み合せに沸
水収縮が13.5%の高収縮紡績糸番手1/56Nmとポ
リエステルマルチフイラメント糸75de/36fils
(5本ひき揃え糸)を用いて同様の方法にて空気
乱流撹乱処理を施して作成した複合糸の場合、更
に上記の高収縮混紡績糸番手1/56Nm100%、カ
シミヤ紡績糸番手1/22Nm、ポリエステル/ウー
ル50/50混紡糸番手1/56Nmの場合の結果も一括
して第1表に併記する。なお、丸編地はいずれの
糸使いの場合も同一目付に設計して供試した。
The present invention relates to a cashmere-like composite yarn and a method for producing the same, and more specifically, the present invention relates to a cashmere-like composite yarn and a method for manufacturing the same, and more specifically, it exhibits excellent bulkiness by boiling water treatment, and has a cashmere-like touch and a uniform surface with an extremely soft and slimy surface feel. This invention relates to a cashmere-like composite yarn with a core-sheath structure that can be used to create fabrics that have the following properties. Conventionally, bulky yarns can be broadly classified into bulky spun yarns and filament textured yarns. In the case of the former bulky spun yarn, raw cotton of high shrinkage fibers and raw cotton of low shrinkage fibers with a dry heat shrinkage rate of 10 to 25% at a dry heat temperature of 180°C are mixed in approximately equal proportions (weight). By spinning with a twist coefficient of 50 to 100 and heat-treating the yarn or fabric, the high shrinkage fibers are shrunk and a bulky yarn is obtained. However, when the bulky spun yarn obtained in this way is subjected to shrinkage treatment, the high shrinkage fibers and low shrinkage fibers tend to separate, and the low shrinkage fibers protrude while forming loops on the outside of the yarn. This has the drawback that the yarn morphology deteriorates, and the final product, the fabric, has an asymmetrical appearance and a rough and hard surface touch. In order to reduce this rough and hard feeling, attempts have been made to use fibers with small single fiber fineness. However, when the single fiber fineness becomes extremely thin (for example, 0.9 denier or less), there are problems with the spinnability of the fibers, especially in terms of neps and yarn unevenness, and in order to improve the yarn quality, it is necessary to lower the rotation speed of the spinning machine. First, there was the problem of decreased productivity. On the other hand, bulky textured yarn obtained by texturing filament yarn has a uniform appearance, but compared to spun yarn, the fibers are less entangled with each other and the degree of fiber filling is lower, so it has less bulk when made into a fabric. There are some shortcomings. In this way, bulky yarn with a cashmere-like texture that combines the excellent bulkiness and texture of bulky spun yarn, as well as the excellent uniformity, high softness, and slimy feel of bulky processed yarn with textured filament yarn, is conventional. The current situation is that this technology has not yet been realized. Therefore, an object of the present invention is to provide a cashmere-like yarn that maximizes the highly soft and slimy feel of an ultra-fine multifilament yarn, particularly a multifilament yarn with a single fiber fineness of 0.9 denier or less. be. Still another object of the present invention is to provide a novel processing method that converts the characteristics of the ultrafine multifilament into a cashmere-like touch without using spinning means. As a result of various studies aimed at achieving the above object, the inventors of the present invention found that the characteristics of the ultra-fine multifilament yarn, i.e., the high degree of softness and sliminess, do not exceed the range of conventional cashmere-like spun yarns in terms of the overall function of the yarn. However, when such a yarn has fluff and is combined with a compact yarn that has a potential swelling effect as a whole, the functional characteristics of both are synergistically exhibited to create the desired yarn. They discovered that this can be obtained and arrived at the present invention. Thus, according to the present invention, (1) the dry heat shrinkage rate at a dry heat temperature of 180°C is 10 to 25
The core component is a fuzzy fiber bundle containing 10 to 50% of high shrinkage fibers with a single fiber fineness of 0.9%.
A composite yarn comprising a multifilament yarn of denier or less as a sheath component, characterized in that the sheath component accounts for 30 to 60% by weight of the composite yarn and envelops and covers the core component in a mixed and entangled state. Cashmere-like composite yarn and (2) dry heat shrinkage rate of 10 to 25 at a dry heat temperature of 180℃
A fuzzy fiber bundle containing 10 to 50% high shrinkage fiber, which is 30%, and a multifilament yarn, which has a single fiber fineness of 0.9 denier or less and accounts for 30 to 60% by weight of the entire supplied yarn, are compared to the former. A cashmere-like composite characterized by supplying the multifilament yarn to a fluid agitation treatment area while overfeeding by ~70%, and enveloping the multifilament yarn around the fiber bundle in the fluid agitation treatment area to form a core-sheath structure. A method of manufacturing yarn is provided. Furthermore, in a typical example of the present invention, a fluff-like fiber bundle containing high shrinkage fibers and potentially having a swelling effect is used as a core component, and an ultra-fine filament yarn is wrapped around it.
The fiber filling degree of the yarn as a whole is maintained by the core component, and the roughness and hardness that the core component exhibits (especially after boiling water treatment) is eliminated by the ultra-fine filament yarn that is the sheath component, and its large surface area is utilized. It gives a highly slimy feel. As for the degree of entanglement between the entire composite yarn or between the core and sheath components, the excellent entanglement between the fluff and the ultra-fine filaments, as well as the high degree of entanglement between the ultra-fine filaments, is achieved through turbulence processing. It is. Such a composite yarn itself exhibits a cashmere-like feel and touch, but these characteristics become more pronounced when the yarn or fabric is subjected to relaxing heat treatment (for example, in boiling water). The high shrinkage fibers used in the present invention, which have a dry heat shrinkage rate of 10 to 25% at a dry heat temperature of 180°C, are the same as those conventionally used, such as polyester, polyamide, polyacrylic fibers, etc. Made of synthetic fibers. In this case, the dry heat shrinkage rate is 10%
If it is less than 25%, sufficient bulkiness cannot be obtained, and if it exceeds 25%, the shrinkage rate is too high, which deteriorates the appearance of the composite yarn and impairs the feel of a woven or knitted fabric. A fiber bundle containing 10 to 50% (weight %) of such high shrinkage fibers is used as a core component. If the mixing ratio of high shrinkage fibers is less than 10%, the bulking effect will be small, and if it exceeds 50%, the appearance of the yarn will deteriorate and the texture of the woven or knitted fabric will be impaired. Therefore, the blending rate of high shrinkage fibers should be in the range of 10 to 50%, but fiber bundles containing high shrinkage fibers may be made of non-twisted yarns using means such as fusing or adhesion.
Although a false-twisted crimped yarn using a false-twisting means may be used, from the viewpoint of ease of handling, it is preferable to use the yarn in the form of a spun yarn having real twist. Of course, the fiber bundle may be composed of a differentially contracted mixed filament yarn as long as it has fluff or a protruding end, and in this case, it is necessary that the mixed fiber yarn has been given fluff in advance by a well-known raising means. be. On the other hand, in the present invention, a multifilament yarn, particularly a synthetic fiber multifilament yarn, having a single fiber fineness of 0.9 denier or less is used as the sheath component.
Suitable synthetic fiber multifilament yarns are those made of synthetic fibers such as polyester, polyamide, and polyacrylic fibers, and it is particularly desirable to use polyester multifilament yarns that have excellent texture. The single fibers of these synthetic fiber multifilament yarns preferably have a single fiber fineness of 0.9 denier or less, preferably 0.5 denier or less. If the single fiber fineness exceeds 0.9 denier, a cashmere-like texture with a soft and slimy surface cannot be obtained. To obtain such extremely thin fibers of 0.9 denier or less, polyester is spun into a draft.
After melt spinning at a speed of 200 to 700 m/min and a spinning take-off speed of 3000 to 5000 m/min to form a single fiber with a denier of 0.2 to 0.9 denier, the fiber was heated at 100°C under a constant length or while being elongated by 20% or less. There is a method of heat treatment at a temperature below the melting point. In order to effectively form the composite yarn of the present invention, the mixing ratio of the fiber bundle constituting the core and the ultrafine synthetic fiber multifilament yarn constituting the sheath is extremely important. That is, by using the synthetic fiber multifilament yarn so that the fiber bundle accounts for 30 to 60% by weight, the fiber bundle is completely covered by the large number of ultrafine filaments that make up the synthetic fiber multifilament yarn. , it is possible to form a composite yarn with an ideal core-sheath structure. Even if the proportion of the synthetic fiber multifilament yarn constituting the composite yarn exceeds 60%, the coverage of the synthetic fiber multifilament yarn will be extremely good, but the high shrinkage fibers contained in the composite yarn will The ratio is 4 to composite yarn.
If the proportion of the synthetic fiber multifilament yarn is less than 30% by weight, the effect of high shrinkage fibers will not be achieved.On the other hand, if the proportion of the synthetic fiber multifilament yarn is less than 30%, it will be difficult to completely cover and envelop the synthetic fiber multifilament yarn, both of which are the objects of the present invention. No composite threads are formed. The accompanying drawings show a side view of the cashmere-like composite yarn according to the present invention in the yarn axis direction. In the figure, 1 is a fluff-like fiber bundle (spun yarn here), 2 is a multifilament yarn, and 3 is an individual filament constituting the multifilament yarn, and these filaments 3 uniformly cover and envelop the fiber bundle 1. It can be seen that Such a composite yarn is produced by simultaneously feeding a fuzzy fiber bundle and a synthetic fiber multifilament yarn to a disturbed fluid treatment zone, and at the same time, feeding (overfeeding) 30 to 70% more synthetic fiber multifilament yarn to the fiber bundle. When supplied to the disturbed fluid treatment area, the large number of ultrafine filaments constituting the synthetic fiber filament yarn intertwine with each other due to the disturbance action of the fluid, completely enveloping the fiber bundle, resulting in a composite yarn with a core-sheath structure. It will be done. If the overfeed amount of the synthetic fiber multifilament yarn is less than 30%, the fiber bundle itself will be exposed to the surface,
Synthetic fiber multifilament yarns do not allow complete coverage of fiber bundles. Also, if the overfeed amount exceeds 70%,
The overfeed cannot be absorbed in the turbulent fluid treatment area, causing an imbalance in tension between the synthetic fiber multifilament yarn and the fiber bundle, resulting in unstable processes, such as yarn breakage. Therefore, the overfeed amount of synthetic fiber multi-yarn should be 30~30 to ensure that all the fiber bundles are completely wrapped up.
A feed difference of 70% is adopted. Note that the turbulent fluid treatment referred to in the present invention can be performed using a normal interlaced nozzle, but may also be performed using a turbulent jet nozzle (taslan nozzle). When using the composite yarn according to the present invention, it is most preferable to subject the yarn or fabric to a relaxation treatment using, for example, boiling water to impart bulk to the core fiber bundle. As a result, the bulkiness of the yarn as a whole is further increased, and it is possible to obtain a fabric with excellent bulkiness, an extremely soft surface feel, a cashmere-like touch with a slimy feel, and a highly uniform appearance. . In other words, by using synthetic fiber multifilament yarn with a monofilament degree of 0.9 denier or less as a sheath component, highly flexible fibers can be used on the surface that comes into contact with the skin, which eliminates the roughness and hardness that conventional bulky yarns have. This eliminates the texture and gives a soft cashmere-like feel. Furthermore, since the surface of the fabric is covered with synthetic fiber multifilament yarn in which single fibers are intertwined with each other, it has excellent uniformity. Furthermore, although the composite yarn of the present invention has excellent bulkiness due to its high shrinkage fibers, the single fibers of the synthetic fiber multifilament yarn used for the sheath component become entangled with each other due to the disturbed fluid treatment, resulting in a fiber bundle of the core component. Since it has a structure in which the fibers are coated, it is possible to sufficiently exhibit the coating effect without impairing the above-mentioned bulkiness, and the characteristics of each fiber are synergistically exhibited. As described above, according to the present invention, it is possible to obtain a cashmere-like composite yarn with high efficiency without going through the spinning process, and woven and knitted fabrics using this yarn can be widely used in fields such as outerwear, innerwear, and sweaters. can be provided. The present invention will be explained below using examples. Example 1 Polyethylene terephthalate with [η] 0.65 was melted at 298°C using a spinneret with 72 holes, and spun at a spinning draft of 420 and a spinning take-off speed of 3800 m/min to form a single fiber with a denier of 0.44 denier. After that, a pair of Nelson-type heating rollers (surface temperature 210°C) was provided between the pair of godet rollers and the winder, and constant length heat treatment was performed between the final godet roller and the heating roller. Six of the obtained ultra-fine multifilament yarns (32de/72fil) were used as a synthetic fiber multifilament yarn, and the dry heat shrinkage rate at a dry heat temperature of 180℃ was 17.
Count 1/56 containing 33% polyester fiber
Nm (160 de in terms of denier) high shrinkage blended yarn was used as a fluff-like fiber bundle. The spun yarn was overfed with the polyester filament yarn by 40% and was simultaneously fed to a normal air turbulence Taslan nozzle and subjected to agitation processing at a processing speed of 160 m/min. As a result, the polyester filament yarn was surrounded by polyester. A core-sheath type composite yarn was obtained in which the filament yarn covered with extremely good coverage. After knitting the composite yarn using a 10-gauge circular knitting machine, it was subjected to a relaxing heat treatment in boiling water for 20 minutes, and the compression ratio and recovery rate of the knitted fabric were measured to evaluate the bulkiness of the knitted fabric. was sensory evaluated. These results are shown in Table 1. For comparison, a combination of spun yarn and polyester filament yarn has a high shrinkage spun yarn count of 1/56Nm with a boiling water shrinkage of 13.5% and a polyester multifilament yarn of 75de/36fils.
In the case of a composite yarn created by applying air turbulence disturbance treatment using the same method using (5 aligned yarns), the above-mentioned high shrinkage blended yarn count 1/56Nm 100%, cashmere spun yarn count 1/ 22Nm and polyester/wool 50/50 blend yarn count 1/56Nm are also listed in Table 1. The circular knitted fabrics were designed and tested to have the same weight regardless of the yarn used.

【表】 実施例 2 実施例1と同様の方法にて得られた極細マルチ
フイラメント糸を4本ひき揃えてポリエステルマ
ルチフイラメント糸として用い、高収縮混紡績糸
番手1/56Nmを紡績糸として用いた。該紡績糸に
対し、前記ポリエステルマルチフイラメント糸を
20%オーバーフイードして、同時にインターレー
スノズルに供給し、加工速度120m/分にて撹乱
加工を施した結果、紡績糸の囲りをポリエステル
マルチフイラメント糸が被覆性の極めて良好な状
態にて被覆する芯鞘型の複合糸が得られた。該複
合糸を用いて14ゲージの横編機にて製編した后の
バルキー性、タツチは良好なものであつた。 実施例 3 実施例1において高収縮繊維の乾熱収縮率、混
用率、鞘成分の使用割合、更にはオーバーフイー
ド率を種々変更して得た複合糸より編地を作り、
評価した結果を第2表に示す。第2表より、前記
の条件が本発明で規定する範囲を満足する場合に
限つてのみ所望のカシミヤ調複合糸ひいては布帛
が得られることが判る。
[Table] Example 2 Four ultrafine multifilament yarns obtained in the same manner as in Example 1 were used as a polyester multifilament yarn, and a high shrinkage blended yarn with a count of 1/56 Nm was used as the spun yarn. . The polyester multifilament yarn is added to the spun yarn.
As a result of overfeeding the spun yarn by 20%, simultaneously feeding it to the interlace nozzle, and performing disturbance processing at a processing speed of 120 m/min, the polyester multifilament yarn covers the spun yarn with extremely good coverage. A core-sheath type composite yarn was obtained. After knitting using the composite yarn on a 14-gauge flat knitting machine, the bulkiness and touch were good. Example 3 A knitted fabric was made from the composite yarn obtained by variously changing the dry heat shrinkage rate of the high shrinkage fiber, the mixing ratio, the use ratio of the sheath component, and the overfeed ratio of the high shrinkage fiber in Example 1,
The evaluation results are shown in Table 2. From Table 2, it can be seen that the desired cashmere-like composite yarn and hence fabric can be obtained only when the above-mentioned conditions satisfy the range specified in the present invention.

【表】 尚、上記表において、実験No.3,8,9及び11
は本発明の例、その他の実験No.の項目における
( )内の値は本発明の範囲を逸脱した場合を示
す。
[Table] In the above table, Experiment Nos. 3, 8, 9 and 11
Indicates an example of the present invention, and values in parentheses in other experiment numbers indicate cases outside the scope of the present invention.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明に係る複合糸の糸軸方向の側面図で
ある。 1……繊維束、2……マルチフイラメント糸、
3……マルチフイラメント糸を構成するフイラメ
ント。
The figure is a side view of the composite yarn according to the present invention in the yarn axis direction. 1... Fiber bundle, 2... Multifilament yarn,
3...Filaments that make up the multifilament yarn.

Claims (1)

【特許請求の範囲】 1 乾熱温度180℃における乾熱収縮率が10〜25
%である高収縮繊維を10〜50%含有する毛羽様繊
維束を芯成分とし、他方単繊維繊度が0・9デニ
ール以下のマルチフイラメント糸を鞘成分とする
複合糸であつて、鞘成分は該複合糸において30〜
60重量%を占め、且つ互いに混合・交絡した状態
で芯成分を包絡被覆していることを特徴とする芯
鞘構造を有するカシミヤ調複合糸。 2 鞘成分がループ、たるみを形成している特許
請求の範囲第1項記載のカシミヤ調複合糸。 3 マルチフイラメント糸がポリエステルマルチ
フイラメントである特許請求の範囲第1項記載の
カシミヤ調複合糸。 4 単繊維繊度が0.5デニール以下である特許請
求の範囲第1項又は第3項記載のカシミヤ調複合
糸。 5 乾熱温度180℃における乾熱収縮率が10〜25
%である高収縮繊維を10〜50%含有する毛羽様繊
維束と単繊維繊度が0.9デニール以下で、且つ供
給糸条全体の30〜60重量%を占めるマルチフイラ
メント糸とを前者に比べて後者を30〜70%オーバ
ーフイードしつつ流体撹乱処理域に供給し、該流
体撹乱処理域で該マルチフイラメント糸を、該繊
維束の囲りに被覆包絡せしめて芯鞘構造を形成す
ることを特徴とするカシミヤ調複合糸の製造方
法。
[Claims] 1. A dry heat shrinkage rate of 10 to 25 at a dry heat temperature of 180°C.
A composite yarn whose core component is a fuzzy fiber bundle containing 10 to 50% of high shrinkage fibers, and whose sheath component is a multifilament yarn with a single fiber fineness of 0.9 denier or less. 30~ in the composite yarn
A cashmere-like composite yarn having a core-sheath structure, which accounts for 60% by weight and is characterized by enveloping and covering core components in a state of being mixed and intertwined with each other. 2. The cashmere-like composite yarn according to claim 1, wherein the sheath component forms a loop or a slack. 3. The cashmere-like composite yarn according to claim 1, wherein the multifilament yarn is a polyester multifilament yarn. 4. The cashmere-like composite yarn according to claim 1 or 3, wherein the single fiber fineness is 0.5 denier or less. 5 Dry heat shrinkage rate at dry heat temperature 180℃ is 10-25
%, a fuzzy fiber bundle containing 10 to 50% high shrinkage fiber, and a multifilament yarn with a single fiber fineness of 0.9 denier or less and accounting for 30 to 60% by weight of the entire supplied yarn, compared to the latter. is supplied to a fluid agitation treatment area while overfeeding by 30 to 70%, and the multifilament yarn is coated and wrapped around the fiber bundle in the fluid agitation treatment area to form a core-sheath structure. A method for producing cashmere-like composite yarn.
JP5281778A 1978-05-04 1978-05-04 Cashmere like composite yarn and production Granted JPS54147246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281778A JPS54147246A (en) 1978-05-04 1978-05-04 Cashmere like composite yarn and production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281778A JPS54147246A (en) 1978-05-04 1978-05-04 Cashmere like composite yarn and production

Publications (2)

Publication Number Publication Date
JPS54147246A JPS54147246A (en) 1979-11-17
JPS6113015B2 true JPS6113015B2 (en) 1986-04-11

Family

ID=12925385

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281778A Granted JPS54147246A (en) 1978-05-04 1978-05-04 Cashmere like composite yarn and production

Country Status (1)

Country Link
JP (1) JPS54147246A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107160784B (en) * 2017-04-27 2019-02-05 福建隆上超纤有限公司 A kind of Hair style artificial leather

Also Published As

Publication number Publication date
JPS54147246A (en) 1979-11-17

Similar Documents

Publication Publication Date Title
JP3593641B2 (en) Composite crimped yarn, method for producing the same, and knitted fabric
WO2019044910A1 (en) Composite spun yarn with long and short fibers, production method therefor, and woven fabric, knit fabric or fiber clothing product comprising composite spun yarn with long and short fibers
JPS6113015B2 (en)
JP2687513B2 (en) Manufacturing method of bulky fluff
JPS6142012B2 (en)
JPH04316624A (en) Specific bulky yarn
JPH0424240A (en) Woven fabric of polyamide combined filament yarn
JPH0236698B2 (en) FUKUGOKAKOITOOYOBISONOSEIZOHOHO
JP2621951B2 (en) Fluff thread
JPH0299630A (en) Production of spun silk-like bulky textured yarn
JPS6111335B2 (en)
WO2020186417A1 (en) Crimped conductive polyamide filament, and manufacturing method therefor and application thereof
JPH0299626A (en) Production method for crimped yarn with a multilayer structure
JPS60104543A (en) Spun yarn-like filament yarn
JPH04202821A (en) Conjugate crimped yarn
JPS61124637A (en) Special blended fiber yarn
JPH032966B2 (en)
JPS626015B2 (en)
JPS6131218B2 (en)
JP3871400B2 (en) Method for producing polyester-based low crimp composite entangled yarn
JPS6211093B2 (en)
JPS6119736B2 (en)
JP3545212B2 (en) Cellulose acetate composite false twisted yarn and method for producing the same
JP4592167B2 (en) Grained and bulky processed yarn and its manufacturing
JPH02307923A (en) Textured yarn having composite structure