JPS61129563A - Instrument for measuring oxygen concentration - Google Patents

Instrument for measuring oxygen concentration

Info

Publication number
JPS61129563A
JPS61129563A JP59252180A JP25218084A JPS61129563A JP S61129563 A JPS61129563 A JP S61129563A JP 59252180 A JP59252180 A JP 59252180A JP 25218084 A JP25218084 A JP 25218084A JP S61129563 A JPS61129563 A JP S61129563A
Authority
JP
Japan
Prior art keywords
oxygen
sensor
pump current
oxygen sensor
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59252180A
Other languages
Japanese (ja)
Inventor
Toyoaki Nakagawa
豊昭 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP59252180A priority Critical patent/JPS61129563A/en
Publication of JPS61129563A publication Critical patent/JPS61129563A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To prevent the deterioration of an oxygen sensor by detecting the increase of the oxygen concn. in an exhaust pipe to the prescribed oxygen concn. or above, for example, the atm. state by means of an oxygen sensor and stopping the pump current to the oxygen sensor when an engine stops. CONSTITUTION:The oxygen sensor (a) is provided in the exhaust pipe of an internal-combustion engine and the concn. is measured by a means (b) for measuring the oxygen concn. The sensor (a) is so constituted that one side of an oxygen ion conductive electrolyte contacts with the atm. air and the other side contacts with the exhaust gas. The pump current is passed to the sensor so as to maintain the specified oxygen partial pressure ratio on both sides thereof and the oxygen concn. is detected from the pump current value by the means (b). The signal to stop the pump current is emitted from a means (c) for generating the stop signal to stop the current on discrimination that the atmosphere of the oxygen sensor is in the state above the prescribed oxygen concn. when the internal-combustion engine stops. The supply of the overcurrent for a long period is thus obviated and the deterioration of the oxygen sensor is thus prevented as the pump current is stopped while the atmosphere of the oxygen sensor is above the prescribed oxygen concn.

Description

【発明の詳細な説明】 (技術分野) 本発明は酸素濃度測定装置、詳しくは酸素センサの劣化
防止を図った酸素濃度測定装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field) The present invention relates to an oxygen concentration measuring device, and more particularly to an oxygen concentration measuring device that prevents deterioration of an oxygen sensor.

(従来技術) 近時、エンジンの燃費、排気対策等の要求を満たすため
、希薄領域においても空燃比がフィードバック制御され
る傾向にあり、このような空燃比は、通常、排気中の酸
素濃度をパラメータとして検出される。
(Prior art) In recent years, in order to meet the demands for engine fuel efficiency and exhaust emissions, there has been a trend toward feedback control of the air-fuel ratio even in the lean region. Detected as a parameter.

このため、リッチからリーンまで空燃比を広範囲に検出
可能な酸素センサ(例えば、特開昭59−67455号
公報、特開昭59−46350号公報参照)が種々開発
されている。このような酸素センサはセンサ電極間が所
定電位差であるときの拡散限界酸素量が酸素濃度に相関
するという特性に着目し、これを拡散電流(ポンプ電流
)として検出することで、酸素濃度(すなわち空燃比)
を検出している。
For this reason, various oxygen sensors have been developed that are capable of detecting air-fuel ratios over a wide range from rich to lean (see, for example, Japanese Patent Laid-Open No. 59-67455 and Japanese Patent Laid-Open No. 59-46350). This kind of oxygen sensor focuses on the characteristic that the diffusion limit oxygen amount is correlated with the oxygen concentration when there is a predetermined potential difference between the sensor electrodes, and by detecting this as a diffusion current (pump current), the oxygen concentration (i.e. Air-fuel ratio)
is being detected.

しかしながら、このような従来の酸素濃度測定装置にあ
っては、酸素センサに酸素濃度に相関するポンプ電流を
供給し、この電流値から空燃比を検出しているため、空
燃比がリーン側にシフトする程ポンプ電流の値が増加す
る。そのため、排気管内が大、気に近い状態であるとき
にはポンプ電流の値が最大となり、このような状態が長
い間継続すると酸素センサの劣化を招く。特に、エンジ
ン始動前にイグニションスイッチをON位置に放置し続
けたり、あるいはエンスト時にON位置のままに放置し
た場合等には排気管内が大気に近い状態であるにも拘ら
ずポンプ電流の供給が継続され上記劣化が促進されやす
い。
However, in such conventional oxygen concentration measuring devices, a pump current that correlates with oxygen concentration is supplied to the oxygen sensor, and the air-fuel ratio is detected from this current value, so the air-fuel ratio shifts to the lean side. The pump current value increases accordingly. Therefore, when the inside of the exhaust pipe is in a state close to that of air, the value of the pump current is at its maximum, and if such a state continues for a long time, the oxygen sensor will deteriorate. In particular, if the ignition switch is left in the ON position before starting the engine, or if the ignition switch is left in the ON position when the engine stalls, the pump current will continue to be supplied even though the inside of the exhaust pipe is close to the atmosphere. and the above deterioration is likely to be accelerated.

(発明の目的) そこで本発明は、酸素センサの雰囲気(例えば、排気管
内)が所定酸素濃度以上の状態(例えば、大気状態)で
あるか否かを検出し、機関停止時所定酸素濃度以上の状
態であるときは酸素センサへのポンプ電流の供給を停止
することにより。
(Purpose of the Invention) Therefore, the present invention detects whether the atmosphere of the oxygen sensor (for example, inside the exhaust pipe) is in a state (for example, atmospheric state) of a predetermined oxygen concentration or higher, and By stopping the supply of pump current to the oxygen sensor when the condition is present.

過大なポンプ電流の長時間の供給を回避して酸素1  
    センサの劣化を防止することを目的としている
Oxygen 1 by avoiding long-term supply of excessive pump current
The purpose is to prevent sensor deterioration.

(発明の構成) 本発明による酸素濃度測定装置はその全体、構成図を第
1図に示すように、被測定ガスの酸素濃度に相関するポ
ンプ電流が供給される酸素センサaと、酸素センサaに
供給するポンプ電流の値に基づいて被測定ガスの酸素濃
度を検出し、停止信号が入力されると該ポンプ電流の供
給を停止する濃度測定手段すと、機関停止時酸素センサ
aの雰囲気が所定酸素濃度以上の状態であるか否かを判
別し、所定酸素濃度以上の状態であるとき前記停止信号
を出力する停止信号発生手段Cと、を備えており、過大
なポンプ電流の供給を回避するものである。
(Structure of the Invention) The oxygen concentration measuring device according to the present invention, as shown in FIG. The concentration measuring means detects the oxygen concentration of the gas to be measured based on the value of the pump current supplied to the pump, and stops supplying the pump current when a stop signal is input.When the engine is stopped, the atmosphere of the oxygen sensor a is stop signal generating means C that determines whether or not the oxygen concentration is above a predetermined oxygen concentration and outputs the stop signal when the oxygen concentration is above the predetermined oxygen concentration, thereby avoiding supply of excessive pump current. It is something to do.

(実施例) 以下、本発明を図面に基づいて説明する。(Example) Hereinafter, the present invention will be explained based on the drawings.

第2〜7図は本発明の一実施例を示す図であり、本発明
をエンジンの排気中の酸素濃度、すなわち空燃比を検出
する装置に適用した例である。
2 to 7 are diagrams showing one embodiment of the present invention, and are examples in which the present invention is applied to a device for detecting the oxygen concentration in the exhaust gas of an engine, that is, the air-fuel ratio.

まず、構成を説明すると、第2図において、1はエンジ
ンであり、吸入空気はエアクリーナ2より吸気管3を通
して各気筒に供給され燃料は噴射信号Siに基づいてイ
ンジェクタ4により噴射される。そして、気筒内で燃焼
した排気は排気管5を通して触媒コンバー タロに導入
され、触媒コンバータ6内で排気中の有害成分(Go、
HC,。
First, to explain the configuration, in FIG. 2, 1 is an engine, intake air is supplied from an air cleaner 2 through an intake pipe 3 to each cylinder, and fuel is injected by an injector 4 based on an injection signal Si. Then, the exhaust gas burned in the cylinder is introduced into the catalytic converter through the exhaust pipe 5, and the harmful components (Go,
H.C.

N0x)を三元触媒により清浄化して排出される。NOx) is purified by a three-way catalyst and discharged.

吸入空気の流量Qaはエアフローメータ7により検出さ
れ、吸気管3内の絞弁8によって制御される。ウォータ
ジャケットを流れる冷却水の温度TWは水温センサ9に
より検出され、排気中の酸素濃度は酸素センサ10によ
り検出される。また、エンジン1の回転数Nはクランク
角センサ11により検出され、イグニションスイッチの
操作状況はスイッチセンサ12により検出される。これ
ら各センサ7.9.10.11.12からの信号はコン
トロールユニット13に入力されており、コントロール
ユニット13はこれらのセンサ情報に基づいて空燃比制
御および酸素センサ10のヒータへの通電制御を行うも
ので、詳細な構成は後述する。
The intake air flow rate Qa is detected by an air flow meter 7 and controlled by a throttle valve 8 in the intake pipe 3. The temperature TW of the cooling water flowing through the water jacket is detected by a water temperature sensor 9, and the oxygen concentration in the exhaust gas is detected by an oxygen sensor 10. Further, the rotation speed N of the engine 1 is detected by a crank angle sensor 11, and the operation status of the ignition switch is detected by a switch sensor 12. Signals from each of these sensors 7.9.10.11.12 are input to the control unit 13, and the control unit 13 controls the air-fuel ratio and the energization of the heater of the oxygen sensor 10 based on the sensor information. The detailed configuration will be described later.

第3.4図は酸素センサ10の分解斜視図およびその断
面図である。これらの図において、21は絶縁性を有す
る基板であり、基板21上にはピータ22を介してチャ
ンネル状の大気導入部23を形成した大気導入板24が
積層される。その上に、酸素イオン伝導性の板状固体電
解質25が積層され、固体電解質25の下面には基準電
極26が、それに対応する上面にはポンプ電極27とセ
ンサ電極28がそれぞれ印刷により設けられる。さらに
、この固体電解質25の上に排気を導入するガス導入部
29を窓状に形成した板状体30が積層され、その上に
ガスの拡散を規制する(例えば、リーン時には矢印方向
への拡散を規制する)手段としての小孔31を設けた板
状体32が積層される。なお、33.34はヒータ22
のリード線、35〜37はそれぞれ基準電極26.ポン
プ電極27、センサ電極28のリード線である。ポンプ
電極27と基準電極26は固体電解質25に酸素イオン
の移動を生じさせて上下両面間の酸素分圧比を一定に保
つポンプ電流Ipを流すためのポンプ電極を構成し、セ
ンサ電極28と基準電極26は固体電解質25の両面間
の酸素分圧比によって発生する電圧を検出するためのセ
ンサ電極を構成する。そして、上記大気導入板24.固
体電解質25、基準電極26、ポンプ電極27.センサ
電極28、板状体30および板状体32は排気中の酸素
濃度を検出する素子部38を構成する。
FIG. 3.4 is an exploded perspective view and a sectional view of the oxygen sensor 10. In these figures, reference numeral 21 denotes an insulating substrate, and an air introduction plate 24 having a channel-shaped air introduction portion 23 formed thereon is laminated on the substrate 21 via a repeater 22 . A plate-shaped solid electrolyte 25 having oxygen ion conductivity is laminated thereon, and a reference electrode 26 is provided on the lower surface of the solid electrolyte 25, and a pump electrode 27 and a sensor electrode 28 are provided on the corresponding upper surface by printing. Further, a plate-like body 30 having a window-shaped gas introduction part 29 for introducing exhaust gas is laminated on top of the solid electrolyte 25, and is placed on top of the plate-like body 30 to restrict gas diffusion (for example, when lean, diffusion in the direction of the arrow is Plate-shaped bodies 32 provided with small holes 31 as a means for regulating the amount of water are laminated. In addition, 33.34 is the heater 22
The lead wires 35 to 37 are respectively reference electrodes 26. These are lead wires for the pump electrode 27 and sensor electrode 28. The pump electrode 27 and the reference electrode 26 constitute a pump electrode for flowing a pump current Ip that causes the movement of oxygen ions in the solid electrolyte 25 and keeps the oxygen partial pressure ratio between the upper and lower surfaces constant, and the sensor electrode 28 and the reference electrode 26 constitutes a sensor electrode for detecting the voltage generated by the oxygen partial pressure ratio between both surfaces of the solid electrolyte 25. And the above-mentioned atmosphere introduction plate 24. Solid electrolyte 25, reference electrode 26, pump electrode 27. The sensor electrode 28, the plate-like body 30, and the plate-like body 32 constitute an element section 38 that detects the oxygen concentration in exhaust gas.

第5図はコントロールユニット13の構成を示すブロッ
ク図である。この図において、コントロールユニット1
3は空燃比検出回路41.スイッチ回路42.43、A
/D変換器44〜471.ドライバ回路48およびマイ
クロコンピュータ49により構成される。
FIG. 5 is a block diagram showing the configuration of the control unit 13. In this figure, control unit 1
3 is an air-fuel ratio detection circuit 41. Switch circuit 42.43, A
/D converters 44-471. It is composed of a driver circuit 48 and a microcomputer 49.

空燃比検出回路41は濃度測定手段としての機能を有し
、目標電圧−Vaを発生する電圧源50、差動アンプ5
1、抵抗R1、電流供給回路52および電流検出回路5
3により構成される。差動アンプ51は酸素センサ10
の素子部38における基準電極28に対するセンサ電極
28の電位(以下、センサ電圧という)Vsを目標電圧
−Vaと比較してその差値ΔV(ΔV=V s −(−
V a))を算出する。電流供給回路52は差値ΔVが
零になるように素子部38のポンプ電極27からポンプ
電流IPを流し出す(あるいは流し込む)。すなわちΔ
Vが正のときは工pを増やし、負のときはIpを減らす
、電流検出回路53は抵抗R1の両端間の電位差により
ポンプ電流IPを電圧Vi(VioCIp)に変換して
検出する。なお、ポンプ電流Ipは実線矢印で示す方向
を正(Viも正)、破線矢印で示す逆方向を負とする。
The air-fuel ratio detection circuit 41 has a function as a concentration measuring means, and includes a voltage source 50 that generates a target voltage -Va, and a differential amplifier 5.
1. Resistor R1, current supply circuit 52 and current detection circuit 5
Consisting of 3. The differential amplifier 51 is the oxygen sensor 10
The potential of the sensor electrode 28 (hereinafter referred to as sensor voltage) Vs with respect to the reference electrode 28 in the element section 38 is compared with the target voltage -Va, and the difference value ΔV (ΔV=V s -(-
Calculate V a)). The current supply circuit 52 flows out (or flows into) the pump current IP from the pump electrode 27 of the element section 38 so that the difference value ΔV becomes zero. That is, Δ
When V is positive, the current p is increased, and when it is negative, Ip is decreased.The current detection circuit 53 converts the pump current IP into a voltage Vi (VioCIp) based on the potential difference between both ends of the resistor R1, and detects it. Note that the pump current Ip is positive in the direction indicated by the solid arrow (Vi is also positive), and negative in the opposite direction indicated by the broken arrow.

そして、目標電圧−Vaを素子部38のガス導入部29
内の酸素濃度が所定値に維持されているとき、すなわち
固体電解質25の両面間の酸素分圧比が所定値となると
きのセンサ電圧Vsに相当する値に設定しておくことに
より、電流供給回路52によって検出されるポンプ電流
IPに比例した検出電圧Viは、第6図に示すように空
燃比と一義的に対応するようになる。したがって、この
検出電圧Viを利用すれば空燃比をリッチ域からリーン
域はで広範囲に亘って連続的に精度よく検出することが
できる。
Then, the target voltage -Va is set to the gas introduction section 29 of the element section 38.
The current supply circuit The detected voltage Vi proportional to the pump current IP detected by the pump 52 uniquely corresponds to the air-fuel ratio as shown in FIG. Therefore, by using this detection voltage Vi, the air-fuel ratio can be detected continuously and accurately over a wide range from the rich region to the lean region.

スイッチ回路42はヒータ通電信号shが入力されると
ONとなってバッテリ54からの直流電圧vbを酸素セ
ンサlOのヒータ22に供給し、ヒータ通電信号shの
非入力時には該供給を停止する。
The switch circuit 42 is turned ON when the heater energization signal sh is input, and supplies the DC voltage vb from the battery 54 to the heater 22 of the oxygen sensor IO, and stops the supply when the heater energization signal sh is not input.

ヒータ通電信号shは後述のマイクロコンピュータ49
によりイグニシミンスイッチがスタート位置に操作され
ると出力され、以後イグニショ、ンスイッチがOFFと
なるまで出力が継続される。ヒータ22は直流電圧vb
が供給されると発熱し素子部38を活性化する−0また
、スイッチ回路43は、例えばアナログスイッチにより
構成され、電源信号Sdが入力されるとONとなって直
流電圧vbを空燃比検出回路41に供給し、電源信号S
dの非入力時には該供給を停止する。なお、この場合、
電源信号Sdの出力停止という状態は停止信号の出力に
相当し、電源信号Sdの出力という状態は停止信号の出
力停止に相当する。本実施例では便宜上停止信号と逆の
関係で電源信号Sdという形態を用いている。空燃比検
出回路41は直流電圧vbが供給されると、酸素センサ
10ヘポンプ電流Ipの帰還制御を開始して空燃比の検
出を行って検出電圧Viを出力し、直流電圧vbの供給
が停止されるとポンプ電流Ipの帰還制御を停止する。
The heater energization signal sh is sent to the microcomputer 49, which will be described later.
When the ignition switch is operated to the start position, the output is output, and the output continues until the ignition switch is turned off. The heater 22 has a DC voltage vb
When supplied, the switch circuit 43 generates heat and activates the element section 38. Furthermore, the switch circuit 43 is constituted by, for example, an analog switch, and is turned ON when the power supply signal Sd is input, and outputs the DC voltage vb to the air-fuel ratio detection circuit. 41 and the power signal S
When d is not input, the supply is stopped. In this case,
The state in which the output of the power signal Sd is stopped corresponds to the output of a stop signal, and the state in which the power signal Sd is output is equivalent to the stop in the output of the stop signal. In this embodiment, for convenience, a form of power supply signal Sd is used in the opposite relationship to that of the stop signal. When the air-fuel ratio detection circuit 41 is supplied with the DC voltage vb, it starts feedback control of the pump current Ip to the oxygen sensor 10, detects the air-fuel ratio, and outputs the detection voltage Vi, and the supply of the DC voltage vb is stopped. Then, the feedback control of the pump current Ip is stopped.

A/D変換器44〜46はそれぞれ空燃比検出回路41
.エアフローメーター7および水温センサ9からの各信
号をA/D変換し、A/D変換47はバッテリ54の直
流電圧vbをA/D変換してマイクロコンピュータ49
に出力する。また、ドライバ回路48はマイクロコンピ
ュータ49から出力される燃料の噴射量に対応するイン
ジェクタ駆動パルスPiをインジェクタ4の作動可能な
噴射信号Siに増幅して出力する。
Each of the A/D converters 44 to 46 has an air-fuel ratio detection circuit 41.
.. Each signal from the air flow meter 7 and the water temperature sensor 9 is A/D converted, and the A/D converter 47 A/D converts the DC voltage vb of the battery 54 to the microcomputer 49.
Output to. Further, the driver circuit 48 amplifies the injector drive pulse Pi corresponding to the injection amount of fuel output from the microcomputer 49 into an injection signal Si that enables the injector 4 to operate, and outputs the amplified signal Si.

マイクロコンピュータ49は停止信号発生手段としての
機能を有し、CPU55、ROM56.RAM57、N
VM (不揮発性データメモリ)58および工/○ボー
ト59により構成される。CPU55はROM56に下
記込まれているプログラムに従ってI10ボート59よ
り必要とする外部データを取り込んだり、またRAM5
7およびN V M2Rとの間にデータの授受を行った
りしながら演算処理し、必要に応じて処理したデータを
I10ポート59へ出力する6エ10ポート60にはA
/D変換器44〜47、クランク角センサ11およびス
イッチセンサ12からの信号が入力されるとともに、I
10ポート60からはインジェクタ駆動パルスPi、ヒ
ータ通電信号shおよび電源信号Sdが出力される。R
OM56はCPU55における演算プログラムを格納し
ており、RAM57およびNVM58は演算に使用する
データをマツプ等の形で記憶している。
The microcomputer 49 has a function as a stop signal generating means, and includes a CPU 55, a ROM 56 . RAM57,N
It is composed of a VM (non-volatile data memory) 58 and an engineering/○ board 59. The CPU 55 imports necessary external data from the I10 boat 59 according to the program stored in the ROM 56, and also imports necessary external data from the RAM 5.
The 6D10 port 60 performs arithmetic processing while exchanging data with the 6D10 port 60 and N V M2R, and outputs the processed data to the I10 port 59 as necessary.
Signals from /D converters 44 to 47, crank angle sensor 11 and switch sensor 12 are input, and I
The injector drive pulse Pi, heater energization signal sh, and power supply signal Sd are output from the 10 port 60. R
The OM 56 stores a calculation program for the CPU 55, and the RAM 57 and NVM 58 store data used in calculations in the form of a map or the like.

次に作用を説明する。Next, the effect will be explained.

一般に、センサ電極間が所定電位差であるときの拡散限
界酸素量を排気中の酸素濃度に相関するポンプ電流とし
て検出する酸素センサにあっては、空燃比を広範囲に連
続的に検出することができる反面、空燃比がリーン側に
シフトする程ポンプ電流の値が増加せざるを得ない。そ
して、このような場合、ポンプ電流は連続的に供給され
るため、その値が大きくなるとポンプ電極や固体電解質
の劣化を促進することになる。
In general, oxygen sensors that detect the diffusion-limited amount of oxygen when there is a predetermined potential difference between the sensor electrodes as a pump current that correlates to the oxygen concentration in the exhaust gas can continuously detect the air-fuel ratio over a wide range. On the other hand, as the air-fuel ratio shifts to the leaner side, the value of the pump current must increase. In such a case, since the pump current is continuously supplied, if its value becomes large, it will accelerate the deterioration of the pump electrode and the solid electrolyte.

そこで本実施例では、排気管内が大気となる状態をエン
ジン停止時と判断し、停止回転数に至るとポンプ電流I
pの供給を停止することで、酸素センサの劣化を防止し
ている。
Therefore, in this embodiment, the state in which the inside of the exhaust pipe becomes atmospheric is determined to be when the engine is stopped, and when the engine reaches the stopping speed, the pump current I
By stopping the supply of p, deterioration of the oxygen sensor is prevented.

第7図はROM56に書き込まれているポンプ電流供給
制御のプログラムを示すフローチャートであり1図中P
1〜P4はプログラムの各ステップを示している。本プ
ログラムは所定時間毎に1度実行される。
FIG. 7 is a flowchart showing the program for pump current supply control written in the ROM 56.
1 to P4 indicate each step of the program. This program is executed once every predetermined time.

まず、P工でエンジン回転数Nを読み込み、P2でこれ
を所定の停止判別回転数Nt (例えば、N t =1
0Orpm)と比較する。N≧N6のときは停止状態で
なく排気管5内が大気ではないと判断してP、で電源S
dを出力する(既に出力されているときはその状態を維
持する)、これにより、空燃比検出回路41によりポン
プ電流Ipが帰還制御されてマイクロコンピュータ49
により空燃比が所定の目標空燃比に制御される。一方、
P2でNくNtのときは停止状態に移行して排気管5内
がほぼ大気に近い状態に移行しつつあると判断してP、
で電源信号Sdの出力を停止する。これにより、ポンプ
電流Ipの帰還制御が停止される。したがって、従来と
異なり過大なポンプ電流Ipが不必要に供給されず、ポ
ンプ電極や固体電解質の劣化を防止することができる0
例えば、イグニションスイッチがON位置のまま放置さ
れた場合やエンスト時等にあっても、直ちにポンプ電流
Ipの供給が停止されるため、酸素センサ10の劣化を
防ぐことができる。
First, the engine rotation speed N is read in P, and it is set to a predetermined stop determination rotation speed Nt in P2 (for example, N t = 1
0Orpm). When N≧N6, it is determined that it is not in a stopped state and there is no atmosphere inside the exhaust pipe 5, and the power supply is turned on at P.
d (if it has already been output, maintain that state). As a result, the air-fuel ratio detection circuit 41 performs feedback control on the pump current Ip, and the microcomputer 49
The air-fuel ratio is controlled to a predetermined target air-fuel ratio. on the other hand,
When P2 is Nt, it is determined that the exhaust pipe 5 is transitioning to a stopped state and the inside of the exhaust pipe 5 is transitioning to a state almost close to the atmosphere, and P.
The output of the power signal Sd is stopped. As a result, feedback control of the pump current Ip is stopped. Therefore, unlike in the past, excessive pump current Ip is not unnecessarily supplied, and deterioration of the pump electrodes and solid electrolyte can be prevented.
For example, even if the ignition switch is left in the ON position or the engine stalls, the supply of the pump current Ip is immediately stopped, so deterioration of the oxygen sensor 10 can be prevented.

なお、本実施例では排気管5内が大気となる状態を回転
数Nをパラメータとして行っているが、これに限るもの
ではない。要は酸素センサ10の雰囲気が大気に近い状
態となることが判別できればよく、例えばツユニルカッ
ト信号等に基づいて判別するようにしてもよい。
In addition, in this embodiment, the state in which the inside of the exhaust pipe 5 becomes atmospheric is performed using the rotation speed N as a parameter, but the present invention is not limited to this. In short, it is only necessary to be able to determine that the atmosphere of the oxygen sensor 10 is close to the atmosphere, and the determination may be made based on, for example, a twin cut signal or the like.

また1本発明は上記実施例に示したタイプの酸素センサ
に限定されず、ポンプ電流の値が被測定ガスの酸素濃度
に相関する特性を利用する酸素センサにあってはすべて
に適用が可能である6(効果) 本発明によれば、酸素センサの雰囲気が所定酸素濃度以
上の状態であるときポンプ電流の供給を停止することが
でき、過大なポンプ電流の長時間の供給を避けて酸素セ
ンサの劣化を防止することができる。
Furthermore, the present invention is not limited to the type of oxygen sensor shown in the above embodiment, but can be applied to any oxygen sensor that utilizes the characteristic that the value of the pump current correlates with the oxygen concentration of the gas to be measured. 6 (Effects) According to the present invention, when the atmosphere of the oxygen sensor has a predetermined oxygen concentration or higher, the supply of pump current can be stopped, and the supply of excessive pump current for a long time can be avoided and the oxygen sensor deterioration can be prevented.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の全体構成図、第2〜7図は本発明の一
実施例を示す図であり、第2図はその概略構成図、第3
図はその酸素センサの分M斜視図、第4図はその酸素セ
ンサの断面図、第5図はそのブロック構成図、第6図は
その空燃比と検出電圧との関係を示す図、第7図はその
ポンプ電流供給制御のプログラムを示すフローチャート
である。 1・・・・・・エンジン、 10・・・・・・酸素センサ、 13・・・・・・コントロールユニット(停止信号発生
手段)、 41・・・・・・空燃比検出回路 (濃度測定手段)、
FIG. 1 is an overall configuration diagram of the present invention, FIGS. 2 to 7 are diagrams showing an embodiment of the present invention, FIG. 2 is a schematic configuration diagram thereof, and FIG.
Figure 4 is a sectional view of the oxygen sensor, Figure 5 is its block configuration diagram, Figure 6 is a diagram showing the relationship between the air-fuel ratio and detected voltage, and Figure 7 is a diagram showing the relationship between the air-fuel ratio and detected voltage. The figure is a flowchart showing a program for controlling the pump current supply. 1...Engine, 10...Oxygen sensor, 13...Control unit (stop signal generation means), 41...Air-fuel ratio detection circuit (concentration measurement means) ),

Claims (1)

【特許請求の範囲】 a)被測定ガスの酸素濃度に相関するポンプ電流が供給
される酸素センサと、 b)酸素センサに供給するポンプ電流の値に基づいて被
測定ガスの酸素濃度を検出し、停止信号が入力されると
該ポンプ電流の供給を停止する濃度測定手段と、 c)機関停止時酸素センサの雰囲気が所定酸素濃度以上
の状態であるか否かを判別し、所定酸素濃度以上の状態
であるとき前記停止信号を出力する停止信号発生手段と
、 を備えたことを特徴とする酸素濃度測定装置。
[Claims] A) an oxygen sensor to which a pump current that correlates with the oxygen concentration of the gas to be measured is supplied; and b) an oxygen sensor that detects the oxygen concentration of the gas to be measured based on the value of the pump current supplied to the oxygen sensor. , a concentration measuring means that stops supplying the pump current when a stop signal is input, and c) determines whether or not the atmosphere of the oxygen sensor when the engine is stopped is at a predetermined oxygen concentration or higher; An oxygen concentration measuring device comprising: a stop signal generating means that outputs the stop signal when the above state is reached.
JP59252180A 1984-11-29 1984-11-29 Instrument for measuring oxygen concentration Pending JPS61129563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59252180A JPS61129563A (en) 1984-11-29 1984-11-29 Instrument for measuring oxygen concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59252180A JPS61129563A (en) 1984-11-29 1984-11-29 Instrument for measuring oxygen concentration

Publications (1)

Publication Number Publication Date
JPS61129563A true JPS61129563A (en) 1986-06-17

Family

ID=17233600

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59252180A Pending JPS61129563A (en) 1984-11-29 1984-11-29 Instrument for measuring oxygen concentration

Country Status (1)

Country Link
JP (1) JPS61129563A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103563A (en) * 1985-10-31 1987-05-14 Mitsubishi Motors Corp Air/fuel sensor protector
JPH01227834A (en) * 1988-03-08 1989-09-12 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103563A (en) * 1985-10-31 1987-05-14 Mitsubishi Motors Corp Air/fuel sensor protector
JPH01227834A (en) * 1988-03-08 1989-09-12 Mitsubishi Electric Corp Air-fuel ratio control device for internal combustion engine
US4915082A (en) * 1988-03-08 1990-04-10 Mitsubishi Denki Kabushiki Kaisha Air-fuel ratio controller of internal combustion engine

Similar Documents

Publication Publication Date Title
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US6341599B1 (en) Power supply control system for heater used in gas concentration sensor
JPH065217B2 (en) Air-fuel ratio controller
JPH073403B2 (en) Abnormality detection method for oxygen concentration sensor
JPH079417B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073404B2 (en) Abnormality detection method for oxygen concentration sensor
JPH073405B2 (en) Abnormality detection method for oxygen concentration sensor
US4566419A (en) Apparatus and method for controlling air-to-fuel ratio for an internal combustion engine
US6712054B2 (en) Device and method for measuring element temperature of air-fuel ratio sensor, and device and method for controlling heater of air-fuel ratio sensor
JP2553509B2 (en) Air-fuel ratio controller for internal combustion engine
JP4228488B2 (en) Gas concentration sensor heater control device
JPH11344466A (en) Heater control device of gas concentration sensor
JPH0461180B2 (en)
JPS61129563A (en) Instrument for measuring oxygen concentration
JP3869629B2 (en) Air-fuel ratio sensor activity determination device
JPS61122558A (en) Instrument for measuring oxygen concentration
JPH0627724B2 (en) Air-fuel ratio detector
JPH11271264A (en) Temperature control unit for gas concentration sensor
JPS61274249A (en) Oxygen concentration measuring apparatus
JPH05240829A (en) Air-fuel ratio sensor
JPH053908B2 (en)
JPS61116652A (en) Heater controller for oxygen sensor
JPH053976Y2 (en)
JPS6078340A (en) Air-fuel ratio detector
JP3734685B2 (en) Sensor element temperature detection device for air-fuel ratio sensor